用户名: 密码: 验证码:
董志塬地下水系统动态及水资源合理利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
董志塬为研究区,采用时间序列分析方法就该区水文气象要素的变化趋势和周期进行分析;根据水量平衡原理,采用水文模型方法和遥感反演等手段量化台塬区土壤水库动态,采用GIS和地下水动力学方法计算泉水溢出量;根据地区地下水开采量化人类活动对台塬区地下水月、年尺度的影响。在土壤水库和地下水库补排计算的基础上,构建降水、土壤水和地下水之间的“三水”转化关系。并以2010年为基准年,以2015、2020和2030年为规划年,以水资源持续利用和缺水量最小目标,由三种主要影响因素构造八种水资源供应预案,基于WEAP模型模拟和预测董志塬2011~2030年的水资源供需平衡。主要结论如下:
     (1)过去60年,董志塬地区气温呈上升趋势,上升速率为0.36℃/10a;降水呈下降趋势,下降速率为9.58mm/10a;M-K检验结果表明,气温在整个研究时段呈显著的上升趋势,降水则无显著变化趋势;小波分析结果表明气温年际变化存在33年、9年和4年等三个主周期,年降水量存在3年、13年和8年、20年等四个主周期。
     (2)董志塬地区降水入渗主要发生在6-9月(雨季,占全年66.88%);陆表蒸发量发生在4-10月份(植被生长期,占全年93.20%)。董志塬地区降水入渗补给增加速率(1.55%)远低于陆表蒸散发增加速率(19.89%)。董志塬土壤水库动态主要表现为负均衡。其中,5、6月份土壤水分亏缺明显。
     (3)过去30年,地下水库垂向补给量锐减,2000s较1980s减少34%;开采量递增,2000s较1980s增加了49.38%;两者共同作用,致使该区地下水位连续下降(平均累计下降15.7m);地下水位下降导致泉水衰减,2000s的泉水溢出量比1980s累计减少36.50%。
     (4)基于董志塬经济社会发展规划对社会水资源系统水资源供需进行量化,根据董志塬地区影响水资源利用的三个主要因素构造八种供需预案,基于WEAP模型进行模拟,基于供需关系对比确定推荐预案。推荐预案下,各规划年水资源供需矛盾得到较好的缓解,表明所遴选预案对董志塬水资源合理利用具有一定实践意义。
     研究可为黄土台塬区地下水系统综合研究和水资源合理利用及优化配置提供模式借鉴。
The purpose of this paper is to detect the dynamics of underground water system in a typical Loess Tableland named Dongzhi (DLT) and analyze local water demand and supply by using a systematically trained WEAP model. Meteorological Time series in the DLT was tested by M-K approach and wavelet analysis method for a general illustration of the hydrometeorology in the study area. According to the hydrogeological characteristics of the DLT, the underground water system was conceptually divided into two parts as the upper soil water reservoir (SWR) and the deeper groundwater reservoir (GWR). The monthly dynamic of the SWR was defined by a hydrologic model named SWAT combined with remote sensed methods while the GWR was quantified by groundwater dynamics method for the spring overflow combined with the survey data of well abstraction. Studies above helped to clarify the transfer mechanism among water from atmosphere, in the SWR and the GWR. Based on which, the WEAP model was parameterized and trained for the regional water utilization analysis, according to that, a best water allocation scenario was defined from eight scenarios from combinations of three dramatic influential factors on water utilization in the DLT. Main conclusion are followed as:
     (1) It is found that the air temperature increased with a decadal ratio of0.36℃/10a while the regional precipitation decreased with a decadal ration of9.58mm/10a. M-K test suggested the air temperature catastrophe appeared in1993while it was unclear for the trend analysis of the precipitation. Wavelet analysis resulted main periods orderly of33,9and4years for the air temperature and3,13,8and20years for the precipitation.
     (2) According to the results from SWAT modeling and remote sensed methods, supply from precipitation to the SWR mainly occurred during the time period of June to September (rainy season in the DLT, precipitation supply in the period occupied92.25%to the annual total) while the land surface evapotranspiration (ETc) occurred mainly from April to October (growing season in the DLT, ETc in this period occupied93.20%to the annual total). It was found that ratio of increase of the precipitation supply (1.55%) was much less than that (19.89%) of the land surface ETc. The SWR experienced mainly a negative balance especially in May and June over the past30years.
     (3) Vertical recharge including SWR transfer and rainfall percolation to the deeper GWR maintained decrease, with a reduction of34%in2000s when compared with that in1980s, while well abstractions increased by49.38%, both negatively drove the groundwater level an accumulative drawdown of15.7m and also, the spring overflow declined by an overall36.50%in the past30years.
     (4) Along with the social economy survey and forecasting, the WEAP model was parameterized and trained for the scenarios analysis of water utilization in the DLT. The best water demand and supply strategy was defined based on eight scenarios comparison which identify the three main factors influencing future water allocation. The best water use framework makes water supply and demand balance in most of the planning years, meant a satisfactory practice to the social water utilization.
     The study is probably a case example for underground water system quantification and rational utilization of water resources in the area of semi-arid loess tableland.
引文
[1]邓伟,何岩.水资源:21世纪全球更加关注的重大资源问题之一[J]地理科学.1999,19(2):97-101.
    [2]陈志恺.21世纪中国水资源持续开发利用问题[J].中国工程科学.2002,2(3)7-11.
    [3]Wada, Y., L. P. H. v. Beek, et al. (2010)."Global depletion of groundwater resources. "Geophysical Research Letters 37 (L20402 (2010)):1-5.
    [4]Li, C., J. Qi, et al. (2010). " Quantifying the Effect of Ecological Restoration on Soil Erosion in China's Loess Plateau Region:An Application of the MMF Approach." Environmental Management 45 (3):476-487.
    [5]朱显谟,任美锷.中国黄土高原的形成过程与整治对策[J].中国水土保持.1992,2(119):4-10.
    [6]McVicar TR, Li LT, Van Niel TG, Zhang L, Li R, Yang QK, Zhang XP, Mu XM, Wen ZM, Liu WZ, Zhao YA, Liu ZH, Gao P (2007) Developing a decision support tool for China's re-vegetation program:Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. Forest Ecology and Management 251:65-81;
    [7]Hessel R, Jetten V, Liu B, Zhang Y, Scolte Jannes (2003) Calibration of the LISEM model for a small Loess Plateau catchment. Catena 54 (1-2):235-254
    [8]朱显谟.试论黄土高原的生态环境与“土壤水库”—重塑黄土地的理论依据[J].第四纪研究,2000,20(6):514-520.
    [9]Schaller, M. F., and Y. Fan (2009), River basins as groundwater exporters and importers:Implications for water cycle and climate modeling, J. Geophys. Res.,114, D04103, doi:10.1029/2008JD010636.
    [10]Tillman, F. D., J. B. Callegary, et al. (2012). "A simple method for estimating basin-scale groundwater discharge by vegetation in the basin and range province of Arizona using remote sensing information and geographic information systems." Journal of Arid Environments 82 (0):44-52.
    [11]Zhu Rui-rui,Zheng Hong-xing,Liu Chang-ming (2010). Changes of Groundwater Recharge and Discharge in Watershed of the Loess Plateau.[J]. Scientia Geographica Sinica.30 (1):108-112.
    [12]陈崇希,地下水资源评价及数值模拟,http://wenku.baidu.com.
    [13]Xia Jun, Ye Aizhong, Wang Ling, Zhang Xuecheng (2007). Water cycle mechanisms on the Loess Plateau, China:the Chabagou catchment case study[J].311:10-17.
    [14]Li, C., J. QI, et al. (2010). "Parameters optimization based on the combination of localization and auto-calibration of SWAT model in a small watershed in Chinese Loess Plateau." Frontiers of Earth Science in China 4 (3):296-310.
    [15]王锐,刘文兆,赵小鹏(2010).长武塬区地下水动态特征分析[J].干旱区农业研究.28(3):48-52.
    [16]Natural Resources Management and Environment Department in FAO. Groundwater Management IN Water Report:the Search for Practical Approaches. http://www.fao.org/DOCREP/005/Y4502E/y4502e04.htm#TopOfPage
    [17]Yaqiao Sun, Hui Qian and Xuehua Wu (2007). Hydrogeochemical characteristics of groundwater depression cones in Yinchuan City, Northwest China [J].Chinese Journal of Geochemistry.Volume 26, Number 4,350-355.
    [18]周斌,魏玉涛,陇东盆地地下水环境问题及防治意见探讨,2010,地下水,119-120.
    [19]Cai Qiangguo (2002).The Relationships between Soil Erosion and Human Activities on the Loess Plateau[C].12th ISCO Conference.
    [20]Charles J. Taylor, Taylor, William M. Alley (2001).Groundwater Level Monitoring and the Importance of Long-Term Water Level Data[M].
    [21]吴钦孝,赵鸿雁.黄土高原水土保持目标及对策[J]水土保持研究1999,6(2):77-80.
    [22]王锐,《基于环境同位素的黄土塬区降水-土壤水-地下水转换关系研究》,中科院水土保持与生态环境研究中心博士论文,2007.
    [23]Jacobus J. de Vries and Ian Simmers (2002). "Groundwater recharge:an overview of processes and challenges." Hydrogeology Journal 10 (1):5-17.
    [24]唐亦川,代革联,王晓明.渭北西部黄土台塬区黄土地下水补给来源的初步分析[J].西北地质,1997,18(4):85-89.
    [25]朱芮芮,郑红星,刘昌明.黄土高原典型流域地下水补给-排泄关系及其变化[J].地理科学,2010,30(1):108-112
    [26]Huang, T. and Z. Pang (2011). "Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles:a case study at Guyuan and Xifeng in the Loess Plateau of China." Hydrogeology Journal 19 (1):177-186.
    [27]陈葆仁,洪再吉,汪福析.地下水动态及其预测[M].北京:科学出版社,1988.
    [28]Maria. V.E, Carlos.D. Environmental effects of aquifer over ex-Ploitation:a case study in the Highlands of Mexico[J].Environmental Management.2002,29 (2):26-278.
    [29]Viventsova E. A, Voronov A.N. (2003).Groundwater discharge to the Gulf of Finland:ecological aspects[J].Environmental Geology.45:221-225.
    [30]唐仲华,朱伟式.地下水时间序列分析模型应用特点[J].勘察科学技术.1995,5:28—32.
    [31]王宏,娄华君,邹立芝MODFLOW在华北平原区地下水库模拟中的应用[J].世界地质,2003,22(1):70-72.
    [32]平建华,李升,钦丽娟等.地下水动态预测模型的回顾与展望[J].水资源保护,2006,2(4):11-15.
    [33]齐跃明,江玉祥,孟茜,艳青.肥城矿区充水含水层地下水动态研究[J].水资源保护,2008,24(1):11-15.
    [34]Bharati L, Smakhtin V U, Anand B K. Modeling Water Supply and Demand Scenarios:The Godavari Krishna Inter-basin Transfer, India[J].Water Pocicy,2009 (11):140-153.
    [35]Abbas Al-Omari, Saleh Al-Quraan, Adnan Al-Salihi, et al. A Water Management Support System for Amman Zarqa Basin in Jordan[J]. Water Resource Management,2009 (23):3165-3189.
    [36]Simone Giertz, Bernd Diekkruger, and Britta Hollermann. Assessment of the current and future water balance of the Oueme catchment (Benin) for an integrated water resource management by using the WEAP water planning model[J] Geophysical Research Abstracts,2010 (12)
    [37]Max Linsen, Lineu Rodrigues. The role of water balance accounting in the decision-making process leading to new small dams in the Preto River Basin in the Federal District,Brazil[J] Geophysical Research Abstracts.2010 (12).
    [38]刘宗平,马正耀,李育鸿,Robin Wardlaw.基于需求考虑的流域尺度水资源评价与综合管理规划系统——石羊河流域WEAP模型应用研究[J].水利水电技术.2009(4):5-9.
    [39]马金辉,沈巨龙,马正耀,岳东霞.基于WEAP模型水管理方案影响的量化分析[J].甘肃科技学报.2009,21(4):121-124.
    [40]李青,孙韧,田丽丽,王东,石春力,李云生,王玉秋WEAP模型在天津市滨海新区水资源与水环境管理中的应用初探[J].水资源与水工程学报.2010,21(2):56-59.
    [41]http://baike.baidu.com/view/1418355.htm.
    [42]王岩,刘若琼.论董志塬地下水资源及其可持续利用[J].水资源保护.2005,21(1):64-66.
    [43]甘枝茂,从黄土地貌的发育中认识黄土高原的土壤侵蚀及其防治[J].水土保持通报,1982.
    [44]张维样,胡双熙.陇东黄土源区黑庐土形成的时代与过程[J].科学通.1989,(16):1252-1255.
    [45]周广业,王宏凯,方社会.旱地黑坊土水分动态规律及合理利用途径研究[J].同壤通报,1991,22(4):149-152.
    [46]徐宗学,张玲,阮本清.北京地区降水量时空分布规律分析[J].干旱区地.2006,29(2):186-192.
    [47]张建云,章四龙,王金星,李岩.近50年来中国六大流域年际径流变化趋势研究[J].水科学进展.2007,18(2):230-234.
    [48]刘亚龙,王庆,毕景芝,张明明,邢前国,施平.基于Mann-Kendall方法的胶东半岛海岸带归一化植被指数趋势分析[J].2010,32(3):79-87.
    [49]王金花,康玲玲,赵广福.基于Mann-Kendall法的水沙系列突变点研究[J].人民黄河,2010,32(1)”43-45.
    [50]Yue S,Pilon P. (2004).A comparison of the power of the t test.Mann-Kendall and bootstrap tests for trend detection[J].Hydrological Sciences Journal,49 (1):1-37.
    [51]李常斌,李文艳,王雄师,杨文瑾,杨致远.黑河流域中、西部水系近50年来气温降水径流变化特征[J].兰州大学自然学报.2011,47(4):7-11.
    [52]王文圣,丁晶,向红莲.小波分析在水文学中的应用研究及展望[J].水科学进展.2002,13(4):515-520.
    [53]衡彤.小波分析及其应用[C].四川大学博士学位论文.2003.
    [54]周钢.洞庭湖水系四水流域年最大流量序列分析[C].湖南师范大学硕士学位论文.2007.
    [55]高军省,张代清.基于小波分析的区域水资源总量变化的周期特性研究[J].水资源与水工程学报.2009,20(6):5-8.
    [56]杜新强,秦延军,齐素文,慕山.地下水库特征水位与特征库容的划分及确定研究].水文地质与工程地质,2008(4):22-26.
    [57]赵天石.关于地下水库几个问题的探讨[J].水文地质与工程地质,2002(5):65-67.
    [58]Deng, M. J. (2012). "Ground Reservoir:A New Pattern of Groundwater Utilization in Arid North-west China -A Case Study in Tailan River Basin." Procedia Environmental Sciences 13 (0):2210-2221.
    [59]康绍忠,粟晓玲,杜太生等.《西北旱区流域水资源转化规律及其节水调控模式》之《基于SWAT的杂木河流域分布式水文模型及径流对变化环境响应的模拟》[M].中国水利水电出版社.
    [60]SWAT2000 Theoretical Documentation (Chinese Version)
    [61]李常斌,李文艳,杨文瑾等.黄土高原祖厉河流域日降雨-径流过程模拟兰州大学学报(自然科学版)[J].2012,48(1):1-7.
    [62]房孝铎,王晓燕,欧洋.径流曲线数法(SCS法)在降雨径流量计算中的应用——以密云石匣径流试验小区为例[J].首都师范大学学报.2007,28(1):89-92.
    [63]Li, C., J. QI, et al. (2010). "Parameters optimization based on the combination of localization and auto-calibration of SWAT model in a small watershed in Chinese Loess Plateau." Frontiers of Earth Science in China 4(3):296-310.
    [64]Nash JE, Sutcliffe JV (1970).River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology 10 (3):282-290.
    [65]Guo, R., F. Li, et al. (2011). Spatial and Temporal Variability of Annual Precipitation during 1958-2007 in Loess Plateau, China. Computer and Computing Technologies in Agriculture IV, Springer Boston.345:551-560.
    [66]Shi, W.-Y., R. Tateno, et al. (2011). "Response of soil respiration to precipitation during the dry season in two typical forest stands in the forest-grassland transition zone of the Loess Plateau." Agricultural and Forest Meteorology 151 (7):854-863.
    [67]Tu, X. B., A. K. L. Kwong, et al. (2009). "Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides." Engineering Geology 105 (1-2):134-150.
    [68]SWAT 2000 Theoretical Documentation
    [69]ALLEN, R. G., L. S. Pereira, et al. (1998). " Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, Italy.
    [70]Kang, S., B. Gu, et al. (2003)." Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region." Agricultural Water Management 59 (3):239-254.
    [71]赵传燕.甘肃省祖厉河流域潜在生态条件的GIS辅助模拟研究[C].兰州大学博士学位论文.2003.
    [72]Curran, P. J., J. L. Dungan, et al.(1992). "Seasonal LAI in slash pine estimated with landsat TM." Remote Sensing of Environment 39 (1):3-13.
    [73]Nemani, R. R. and S. W. Running. (1989). "Estimation of regional surface resistance to evapotranspiration form NDVI and Thermal-IR AVHRR data." Journal of Applied Meteorology 28:276-284.
    [74]李常斌.陇西黄土高原祖厉河流域分布式水文模拟[C].兰州大学博士学位论文.2006.
    [75]Kang, S., B. Gu, et al. (2003). "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region." Agricultural Water Management 59 (3):239-254.
    [76]Zhan, Z.M., Feng, Z.D., and Q. M. Qin. (2004), Study on land surface evapotranspiration based on Remote Sensing data on Longxi Loess Plateau of China, Geography and Geo-Information Science,20 (1):16-19.
    [77]Huang, T. and Z. Pang. (2011). "Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles:a case study at Guyuan and Xifeng in the Loess Plateau of China." Hydrogeology Journal 19 (1):177-186.
    [78]Jacobus J. de Vries and Ian Simmers. (2002). "Groundwater recharge:an overview of processes and challenges." Hydrogeology Journal 10 (1):5-17.
    [79]Freeze, R. A. and P. A. Witherspoon. (1967). "Theoretical analysis of regional groundwater flow:2. Effect of water-table configuration and subsurface permeability variation." Water Resour. Res.3 (2):623-634.
    [80]Kalbus, E., C. Schmidt, et al. (2009). "Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge." Hydrology and Earth System Sciences 2009 (13):69-77.
    [81]王德潜,刘祖植,尹立河.鄂尔多斯盆地水文地质特征及地下水系统分析[J].第四纪研究.2005,25(1):6-14.
    [82]Rimmer, A. and A. Hartmann. (2011). "Simplified conceptual structures and analytical solutions for groundwater discharge using reservoir equations." In Nayak P.C. [ed.] In Tech Open Access book, "Hydrology", ISBN 979-953-307-369-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700