用户名: 密码: 验证码:
内蒙古河套平原高砷地下水水化学演化过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河套盆地位于内蒙古自治区中西部,是我国饮水型地方性砷中毒暴露面积最大、受影响人口最多的地区。原生高砷地下水导致的砷中毒对居民身体健康造成了严重的影响,部分中毒者失去劳动能力,严重者甚至导致死亡。地方性砷中毒严重制约着当地的经济和社会的发展。因而,尽量避免饮用高砷水,保障当地居民饮用水安全有着非常重要的意义。
     本文通过对研究区大范围的地下水采样分析,对区内地下水的砷分布和水化学特征有了比较清楚的认识。高砷地下水的主要特征与世界其他高砷区相似,即具有较高的pH,较强的还原环境,铁、锰含量较高,SO_4~(2-)和NO3-被还原而浓度较低,水中砷以As(Ⅲ)为主。除此之外,该区另一显著的特点是,高氟伴随着高砷地下水同时出现,这在其他高砷区并未发现。
     在还原强度的分析上,本文打破原有的简单靠氧化还原电位或还原产物如硫化物或氨氮的方式定性说明还原强度,而是通过类比方法计算SO_4~(2-)的还原量及还原比率,定量的说明还原强度与砷含量的关系。
     与此同时,在研究区选择典型剖面,钻孔采集沉积物分析矿物成分及组成,并在不同层次含水层成井,定期采集不同深度含水层水样,分析沉积物中矿物与地下水之间的水岩作用,在时间和空间上对水中砷和氟含量的影响发现:(1)砷与氟均来自于含水层沉积矿物中,但经过分析发现,两者的水文地球化学过程是不同的。砷通过还原作用进入地下水中,在迁移过程中受到蒸发浓缩作用和解吸附作用的影响。砷浓度随着地下水水位的周期性变化也发生周期性起伏,且随着浅层地下水水位的升高而增加。而氟在深度上并未表现出明显的变化,主要受蒸发浓缩作用影响,使得地下水中Ca~(2+)与HCO3-沉淀,萤石加速溶解于地下水中,水中氟含量升高;(2)山前地下水灌溉区,由于灌溉期抽取地下水,使得地下水位下降,含水介质氧化还原环境发生改变,降低了砷由沉积物向地下水中释放,而非灌溉期地下水位升高使得含水介质恢复还原环境,地下水中砷含量升高;引黄灌溉区域,由于地表水对地下水的补给,地下水水位升高,开始阶段由于稀释作用使得氟和砷含量降低,到夏季受蒸发浓缩作用影响,氟含量升高。而砷含量升高的原因是由于沉积层氧化还原环境发生改变,加快了沉积物中砷向地下水中释放的速度。上层地下水受到的影响大于下层,由于存在滞后效应,下层地下水受影响时间晚于上层;(3)S2-, NH_3~-N和Fe~(2+)三种还原性产物与砷呈现出较好的相关关系,进一步证明了砷的释放与还原环境有关。
The Hetao basin is located in the Midwestern part of Mongolia, where high Asgroundwater seriously affected health of local residents. Many people suffered fromendemic arsenicosis. Some lost the ability of working, and some faced death. Arsenicpoisoning has limited the development of local economy and the society. Thus, it isvery important to avoid drinking high-arsenic water in order to protect the drinkingwater safety for local residents.
     According to three-year investigation of the groundwater samples, thedistribution of high As groundwater and their geochemical characteristics have beenfigured out. The high As groundwater was characterised by high pH, low redoxpotential and the high concentrations of Fe and Mn. Concentrations of SO_4~(2-)and NO3-were relatively low because of reduced conditions. Arsenic(III) was the predominantAs species in high As groundwater. Besides, high F concentration was also observedin high As groundwater, which was not found in other high As groundwater areas.
     Although Eh, sulfide or ammonia was normally used to correlate with Asconcentrations, they are only indicators for low redox potentials and can not be usedfor quantatively describing As mobilization in the aquifers, The quantitativerelationship between the reducing intensity of SO_4~(2-)and As concentrations in thegroundwaters was established.
     A typical flow path was selected in the study area to study the spatial andtemporal evolution of high-arsenic groundwater. Sediments were collected from thedrilling boreholes and analyzed for chemical components. Long-term monitoring dataof multilevel samples at four locations were used to evaluate the influence ofwater-rock interaction on the concentration of As. Both groundwater As and F comefrom the aquifer sediment. Hydrogeochemical processes of these two elements weredifferent. Arsenic was mobilized into groundwater in reduction conditions, andconcentrated because of the evaporation and concentration effect and desorption.Besides, As concentrations varied with fluctuations of groundwater levels, which washigher with high groundwater levels. However, F-concentration was affected by theevaporation and mineral precipitation. Low Ca2+concentrations led to high F-concentration.
     In groundwater irrigation areas, the extraction of groundwater resulted inchanges of redox conditions and adsorption of As from groundwater to sediments.During the seasons without irrigation, the groundwater level increased leading to lowredox potential, whern As concentrations increased. In the surface water Irrigationareas, the groundwater level increased because of the recharge from surface water,which makes fluoride and arsenic concentrations decreased in the sallowest aquifers. In summer, the fluoride concentration increased due to the evaporation. However, theelevated levels of arsenic results from the change of redox conditions whichaccelerates the speed of arsenic release to groundwater. The impact of groundwater bythe upper aquifers is greater than lower ones. Concentrations of S2-, NH3-N and Fe2+showed good correlations with As, which further proves the correlation between theredox environment and the release of As.
引文
Ahmed K M, Bhattacharya P, Hasan M A, et al. Arsenic enrichment in groundwaterof the alluvial aquifers in Bangladesh: An overview [J]. Applied Geochemistry,2004,19:181-200.
    Anawar H M, Akai J, Komaki K, et al. Geochemieal occurrence of arsenic ingroundwater of Bangladesh: source and mobilization proeesses. J GeochemExplorer,2003,77:109-131.
    Berg M, Tran H C, Nguyen T C.et al. Arsenic contamination of groundwater anddrinking water in Vietnam: a human health threat. Environmental Science andTechnology,2001,35:2621-2626
    Berg M,Stengel C,Trang P T K,et al. Magnitude of arsenic pollution in the Mekongand Red River Deltas-Cambodia and Vietnam. The Science of the TotalEnvironment,2007,372:413-425.
    Bhattacharya P, Welch A H, Stollenwerk K G, et al. Arsenic in the environment:Biology and Chemistry. Science of the Total Environment,2007,379:109-120.
    Brambilla E., Hippe H., Hagelstein A., et al.16S rDNA diversity of cultured anduncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys,Antarctica. Extremephiles,2001,5:23-33.
    Buschmann J., Berg M. Impact of sulfate reduction on the scale of arseniccontamination in groundwater of the Mekong, Bengal and Red River deltas.Applied Geochemistry24(2009)1278–1286.
    Chae, G T., Yun, S T., Mayer, B.,et al. Fluorine geochemistry in bedrock groundwaterof South Korea. Sci. Total Environ.2007,385:272-283.
    Charlet L, Chakraborty S, Varma S, et al. Adsorption and heterogeneous reduction ofarsenic at the phyllosilieate-water interface. Advances in arsenic research ACSSYMPOSIUM SERIES,2005,915:41.
    Craig H. Isotopic variations in meteoric waters. Science,1961,133,1702-1703.
    Farquhar M L, Charnoek J M, Livens F R, et al. Mechanisms of arsenic uptake fromaqueous solution by interaction with goethite, lepidocroeite, mackinawite andpyrite:an X-ray absorption spectroscopy study. Environmental Seience andTechnology,2002,36:1757-1762.
    Fein J B, Martin A M, Wightman P G. Metal adsorption onto bacterial surfaces:Development of a predictive approach. Geochimica et Cosmochimica Acta,2001,65(23):4267-4273.
    Ferguson J F., Gavis J. A review of the arsenic cycle in natural water [J]. WaterResearch,1972,6:1259-1274.
    Foster A L, Breit G N, Weleh A H, et al. In-situ identification of arsenic species insoil and aquifer sediments from Ramrail, Brahnmabaria, Bangladesh. Eos Trans.Am. Geophy Union.2000,81(48): F523.
    Gao C. Study on the arsenic pollution of groundwater-A case study in the Hetao Plainof Inner Mongolia, China-Dr. paper of Graduate School of Science and Technology,Niigata Universy, Japan.2000(in Japanese with English abstract)
    Gao C. The geological setting of arsenic contamination in Inner Mongolia,China. TheSpecial Issue of“Chigaku-Kyoiku to Kagaku Undo”,1997,28-33.(in Japanesewith English abstract)
    Gao C. Researeh Group for Applied Geology. Inner Mongolia Groundwater ResearehSub-Group Arsenic pollution of groundwater in the Hetao Plain of Inner Mongolia,China. Earth Science,1999,53:434-451.(in Japanese with English abstract)
    Gao C, Toshiaki I,Akio K,et al.Salinization of soil and arsenic polluted groundwaterin the Hetao Plain,Inner Mongolia,China.Earth Science,1998,52:431-432.(inJapanese)
    Gao Y, Mucci A. Acid base reactions, phosphate and arsenate complexation and theircompetitive adsorption at the surface of goethite in0.7M NaCl solution. Geoehim.Cosmochim. Acta.2001,65:2361-2378.
    Gault A G, Polya D A, Lythgoe P R, et al. Arsenic speciation in surface waters andsediments in a contaminated waterway:an IC-ICP-MS and XAS based study[J].Appl. Geochem.2003,18:1387-1397
    Guo HM, Tang XH et al. Effect of indigenous bacteria on geochemical behavior ofarsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: Evidence fromsediment incubations. Applied Geochemistry,23(2008):3267–3277.
    Guo H M., Zhang B., Li Y., et al. Hydrogeological and biogeochemical constrains ofAs mobilization in shallow aquifers from the Hetao basin, Inner Mongolia.Environmental Pollution,2011a,159:876-883
    Guo H M., Zhang B., Zhang Y. Control of organic and iron colloids on arsenicpartition and transport in high arsenic groundwaters in the Hetao basin, InnerMongolia. Applied Geochemistry,2011b,26:360-370
    Guo H M., Zhang B., Wang G C., Shen Z.L. Geochemical controls on arsenic and rareearth elements approximately along a groundwater flow path in the shallow aquiferof the Hetao basin, Inner Mongolia. Chemical Geology,2010,270:117-125.
    Guo H M., Yang S Z., Tang X H., Li Y., Shen Z L. Groundwater geochemistry and itsimplications for arsenic mobilization in shallow aquifers of the Hetao Basin, InnerMongolia. Science of the Total Environment,2008,393:131-144
    Horneman A, Van Geen A, Kent D V, et al. Decoupling of As and Fe release toBangladesh groundwater under reducing conditions. Part l: Evidence from sedimentprofiles. Geochimica et Cosmoehimica Acta,2004,68:3459-3473
    Islam F S, Gault A G, Boothman C, et al. Role of metal-reducing bacteria in arsenicrelease from Bengal delta sediments. Nature,2004,430:68-71.
    Jain C K. Fluoride contamination in ground water, in: Lehr, J., Keeley, J., Lehr, J.J.(Eds), Water encyclopedia. Wiley, New Jersey,2005:130-135.
    Jin K, Nriagu J. Oxidation of arsenite in groundwater using ozone and oxygen. TheScience of Total Enlronment,2000,247:71-79.
    Kerkar S, Bharathi P A L.2007. Stimulation of sulfate-reducing activity atsalt-saturation in the salterns of Ribandar, Goa, India. Geomicrobiology Journal,24:101-110.
    Kowk R K, Mendola P, Liu Y Z, et al. Drinking water arsenic exposure and bloodpressure in healthy women of reproductive age in Inner Mongolia, China.Toxicology and Applied Pharmacology,2007,222:337-343.
    Lin Z, Puls R W. Adsorption, desorption and oxidation of arsenic affeeted by clayminerals and aging proeess. Environ. Geol.,2000,39:753-759.
    Lloyd J R, Oremland R S. Microbial Transformations of Arsenic in the Environment:From soda lakes to Aquifers. Elements,2006,2(2):85-90.
    Manning B A, Goldberg S. Modeling competitive adsorption of arsenate withphosphate and molybdate on oxide minerals.Soil Sci. Soc. Am. J.1996a60:121-131.
    Masion A., Rose J., Ziarelli F., et al. NMR evidence of arsenic binding to silicacolloids.16th Annual V M Goldschmidt Conference,2006.
    McArthur J M, Ravenseroft P, Safiullah S, et al. Arsenic in groundwater: testingpollution mechanisms for sedimentary aquifers in Bangladesh. Water ResourcesResearch,2001,37:109-117.
    MeArthur J M, Banerjee D M, Hudson-Edwards K A, et al. Natural organic matter insedimentary basins and its relation to arsenic in anoxic groundwater: the exampleof West Bengal and its worldwide implications.Applied Geochemistry,2004,19:1255-1293.
    Morin G, Juillot F, Casiot C, et al. Bacterial Formation of Tooeleite and MixedArsenic(Ⅲ) or Arsenic(V)-Iron(Ⅲ) Gels in the Camoules Acid Mine Drainage,France. AXANES, XRD, and SEM Study. Environmental science and Technology2003,37(9):1705-1712.
    Morton W E, Dunette D A. Health effect of environ-mental arsenic[C]//NRIAGUJO(ed). Arsenic in the Environment, Part II: Human and Ecosystem Effects. NewYork: Wiley and Sons,1994:17-34.
    Niekson R T, McArthur J M, Shrestha B, et al. Arsenic and other drinking waterquality issues in Muzaffargarh Distriet, Pakistan. Applied Geochemistry,2005,20:55-68.
    Nordstrom D K., Jenne E A. Fluorite solubility equilibria in selected geothermalwaters [J]. Geochim Cosmochim Acta.1977,41:175-188.
    Parkhurst D L. Users Guide to PHREEQC-A Computer Program for Speciation,Reaction path, Advective-Transport,and Inverse Geochemical Calculations. U.S.Geol. Surv. Water Resour. Invest. Rep.95-4227.1995.
    Parkhurst D L, Christenson S, Breit G N. Ground-Water-Quality Assessment of theCentral Oklahoma Aquifer, Geochemical and Geohydrologic Investigations. U.S.Geol. Sury. Open-File Report92-642.1993.
    Parkhurst D L. Users Guide to PHREEQC-A Computer Program for Speciation,Reaction path, Advective-Transport and Inverse Geochemical Calculations. U. S.Geol. Surv. Water Resour Invest. Rep.95-4227.1995.
    .
    Parkhurst D L., Appelo C A J. User's guide to PHREEQC (version2)-a computerprogram for speciation, batch-reaction, one dimensional transport and inversegeochemical calculation. USGS Water Resources Investigation Report99-4259.Denver: U.S. Geological Survey;1999,312pp.
    Park J M, Lee J S, Lee J U, et al. Microbial effects on geochemical behavior ofarsenic in As-contaminated sediments [J]. Journal of Geochemical Exploration,2006,88:134-138.
    Petrick J S, Ayala-Fierro F, CullenW R,et al. Monomethylarsonous acid (MMAIII)ismore toxic than arsenite in changinghuman hepatocytes [J]. Toxicology andApplied Pharmacology,2000,163:203-207.
    Rimstidt J D,Chermark J A,Gagen P M. Rates of reaction of galena. sphaleritemchalcopyrite and arsenopyrite, with Fe(Ⅲ) in acidic solution.In: Alpers C.N.,Blowes D W.(Eds.) Environmental Geochemistry of Sulfide Oxidation. Am. Chem.Soc. Symp., Series,1994,550,2-13.
    Robertson F N. Arsenic in groundwater under oxidizing conditions, south-west UnitedStates [J]. Environmental Geochemistry and Health,1989,11:171-185.
    Redman A D, Macalady D L, Ahman D. A preliminary study of various factorsinfluencing arsenic mobility in porous media [R]. USGS Workshop on Arsenic inthe Environment, Denver: Feb.21-22,2001.
    Roman-Ross G, Cuello G J, Turrillas X, et al. Arsenite sorption and co-precipitationwith calcite. Chemical Geology,2006,233(3-4):328-336.
    Stollenwerk K G. Geochemical processes controlling transport of arsenic ingroundwater: a review of adsorption. In: Weleh A. H., Stollenwerk K.G (Eds.),Arsenic in Groundwater: Geochemistry and Occurrence Kluwer AcademicPublishers, Boston, MA,2003:67-100.
    Shraim A, Sekaran N C, Anuradha C D, et al. Speciation of arsenic in tube-well watersamples colleeted from West Bengal, India, by high-performance liquidchromatography-inductively coupled plasma mass spectrometry. AppliedOrganometallic Chemistry,2002,16(4):202-209.
    Smedley P L, Nicolli H B, Macdonald D M J,et al. Hydrogeochemistry of arsenic andother inorganic constituents in groundwaters from La Pampa, Argentina [J].Appllied Geochemistry,2002,17:259-284.
    Smedley P L, Kinniburgh D G. A review of the source, behavior and distribution ofarsenic in natural waters [J]. Appllied Geochemistry,2002,17:517-568.
    Smedley P L, Zhang M, Zhang G et al. Mobilisation of arsenic and other traceelements in fluviolacustrine aquifers of theHuhhot Basin, Inner Mongolia. AppliedGeoehemistry,2003,18:1453-1477.
    Stumm W, Morgan J J. Aquatic chemistry,3rd edn. Wiley, New York,1996.
    Tndukar N, Bhatiacharya P, Neku A, et al. Extent and severity of arsenic Poisoning inNepal. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds).Managing arsenic in the environment: from soil to human health.Melboume,Australia: CSIRO publishing,2006,595-604.
    Warwick P E., I.Evans N. Arsenic’s interaction with humic acid [J]. Environ. Chem.2005,2,119-22.
    Marzio M, Edoardo P, Enrico Z. Groudwater contaninant transport in presence ofcolloids I: A stochastic nonlinear modle and parameter identification [J]. Annals ofNuclear Energy,2001,28(8):777-803.
    Wang S L,Mulligan C N. Effect of natural organic matter on arsenic release fromsoils and sediments into groundwater. Environmental Geochemisty and Health,2006,28:197-214.
    Welch A H, Lico M S. Factors controlling As and U in shallow groundwater, southernCarson Desert, Nevada [J]. Appllied Geochemistry,1998,13:521-539.
    Wolthers M,Charlet L, Van der Weijden, CH,et al. Arsenic mobility in the ambientsulfidic environment: Sorption of arsenic(V) and arsenic(Ⅲ) onto disorderedmackinawite.Geoehimica et Cosmoehimiea Acta,2005,69:3483-3492.
    Xu H,Allard B,Grimvall A. Influence of pH and organic substance on the adsorptionof As(V) on geological materials. Water Air Soil Pollut,1988,40:293-305.
    Yong R N,Mulligan C N. Natural Attenuation of Contaminants in Soils.Boca Raton:CRC Press,2004.
    Zakharyan R A, Ayala-Fierro F, Cullen W R. et al. Enzymatic methylation of arseniccompounds, VII. Monomethylarsonous acid (MMAIII) is the substrate for MMAmethyltransferase of rabbit liver and human hepatocytes [J]. Toxicology andApplied Pharmacology,1999,158:9-15.
    Zhang H. Heavy-metal Pollution and arseniasis in Hetao region,China.Ambio,2004,33:138-140.
    Zhang H,Ma D,Hu X. Arsenic pollution in groundwater from Hetao area.ChinaEnvironmental Geology,2002,41:638-643.
    董兵,刘健荣.内蒙地区水砷和人体血、尿砷含量的测定[J].中国卫生检验杂志,2006,16(9):1098-1099
    董海良,于炳松,吕国.地质微生物学中几项最新研究进展[J].地质论评,2009,55(4):552-580.
    邓娅敏.河套盆地西部高砷地下水系统中的地球化学过程研究[D].中国地质大学(武汉)博士学位论文,2008.
    郭华明,王焰新,李永敏.山阴水砷中毒区地下水砷的富集因素分析[J].环境科学,2003,24(4):60-67
    候少范,王五一,李海蓉,等.我国地方性砷中毒的地理流行病学规律及防治对策[J].地理学科学进展,2002,21(4):391-40。
    黄天明.应用环境同位素研究巴丹吉林沙漠地下水补给来源[D].兰州大学硕士学位论文,2007.
    金银龙,梁超柯,何公理,等.中国地方性砷中毒分布调查(总报告)[J].卫生研究,2003,32(6):519-540.
    李建彪,冉勇康,郭文生.河套盆地托克托台地湖相层研究[J].第四纪研究,2005,25(5):630-639.
    李富君,孙贵范,梁刚.我国各型砷中毒临床表现特点及高砷环境成因[J].中国公共卫生,1998,14(11):651-652.
    李媛.天然菱铁矿与人造菱铁矿除砷性能研究[D].2010.中国地质大学(北京).
    马恒之,武克恭,夏雅娟,等.关于地方性砷中毒临床诊断指标的探讨[J].中国地方病学杂志,1995,14(2):70-72.
    邱立萍.砷污染危害及治理技术[J].新疆环境保护,1999,21(3):15-19.
    任福弘,曾溅辉,刘文生,等.华北地区浅层高氟地下水研究中心的几个问题[M].地质矿产部环境地质实验室.1990、1991年报.北京:地震出版社:10-11.
    任燕.人造菱铁矿造粒条件及其除砷性征研究[D].2011.中国地质大学(北京)
    沈雁峰,孙殿军,赵新华,等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学杂志,2005,24(2):172-175.
    汤洁,林年丰,卞建民,等.内蒙河套平原砷中毒病区砷的环境地球化学研究[J].水文地质工程地质,1996,(1):49-54.
    王连方,孙幸之,冯兆悦,等.地下水砷含量及其与居民慢性砷中毒关系[J].环境与健康杂志,1986,3(5):22-25。
    王雷,张美云,罗振东.呼和浩特盆地富砷地下水的分布、特征及防治对策[J].内蒙古民族大学学报(自然科学版),2003,18(5):402-404.
    王国荃,肖碧玉,黄月珍,等.新疆地方性氟砷中毒的流行病学调查[J].中华预防医学杂志,1995,29(1):30-33.
    王连方,王生玲,朱绍濂,等.两型地方性砷中毒某些临床表现比较[J].地方病通报,1996,11(2):91-95.
    王焰新,郭华明,阎世龙,等.浅层孔隙地下水系统环境演化及污染敏感性研究[M].北京:科学出版社,2004。
    王强,卜锦春,魏世强,等.赤铁矿对砷的吸附解吸及氧化特征[J].环境科学学报,2008.28(8):1612-1617。
    吴楚施.硫酸盐还原菌的环境适应性研究[J].广州化工,2009.37(4):107-108.
    徐苑苑,李听,梁秀芬,等.内蒙古不同浓度砷暴露人群尿砷代谢产物研究[J].中国公共卫生,2006,22(8):956-957.
    袁瑞强,刘贯群,张贤良,等.黄河三角洲浅层地下水中氢氧同位素的特征[J].山东大学学报(理学版),2006,41(5):138-143.
    曾溅辉,刘文生.浅层地下水氟的溶解/沉淀作用的定量研究[J].地球科学,1996,21(3):337-340.
    曾溅辉,张宗祜,任福弘.非饱和带土体-浅层地下水系统氟的地球化学:以河北邢台山前平原为例[J].地球学报,1997,18(4):389-396.
    张美云,张玉敏,王春雨,等.呼和浩特富砷地下水的分布及砷的迁移与释放[J].中国地方病学杂志,2000,19(6):442-444.
    张美云,张玉敏,张阁有,等.呼和浩特慢性砷中毒地区地下水水质分析[J].环境与健康杂志,2002,19(3):220-222.
    张威,傅新锋,张甫仁.地下水中氟含量与温度、pH值、(Na++K+)/Ca2+的关系[J].地质与资源,水文/工程/环境地质,2004,13(2):109-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700