用户名: 密码: 验证码:
电场作用下液体乙醇微细尺度层流扩散燃烧的实验与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS技术的迅速发展,微型动力系统的研究已成为当今研究的热点,微型动力系统在国防和经济建设中已经有了广泛的应用前景。目前微型燃烧器主要采用碳氢燃料燃烧释放热量进行电、热和功的转化。燃料在微型燃烧器中进行的是微细尺度燃烧,它与大尺度燃烧有着极大的区别,在微细尺度条件下会碰到如表面积/体积比相对增加,热损失量增加以及时间尺度缩短等难题。现阶段对微细尺度燃烧主要集中在气体碳氢燃料的研究,而对于液态碳氢燃料的研究仍然处于实验起步阶段,相比而言,液态燃料的燃烧过程较气体燃料复杂得多,但液态碳氢燃料具有密度大,体积小等优点,更适用于微型燃烧器。因此,微细尺度液体燃料燃烧的研究引起我们的关注,在前期对微细尺度下液体乙醇层流扩散燃烧特性的实验研究基础上,本文采用实验和数值模拟相结合的研究方法来分析火焰特征尺寸、火焰温度以及流动特性与管径、燃料流量和电场之间的关系,从而揭示出液态燃料微细尺度的燃烧机理,为微燃烧器研制和开发打下基础。
     在实验研究过程中,选取三种不同规格的微细尺度陶瓷管作为燃烧器,陶瓷管内径分别为0.4mm、0.6mm和1.0mm。采用微型注射泵来实现微流量液体燃料的供给;体视显微镜配以数字摄像头及计算机来观测微火焰结构;S型热电偶测量微火焰温度;高压直流电源提供匀强电场。
     在数值模拟过程中,采用Fluent6.3数值模拟软件建立了与实验相对应的三维数值燃烧模型。考虑到陶瓷管的微细结构,采用Tet/Hybrid类型的网格,利用TGrid方法进行网格划分;流动数学模型采用层流模型,辐射换热采用P-1辐射模型,燃烧化学反应采用层流有限速率模型,采用通用有限速率化学反应模型来计算乙醇的输送和燃烧,采用用户自定义标量处理电场问题,选择基于压力法的求解器进行数值计算。
     在实验和数值模拟的基础上对液体乙醇层流扩散微火焰的外形特征、特征尺寸和温度场特性进行了对比分析。研究结果表明,实验拍摄到的淬熄极限火焰、稳定火焰和振荡火焰与数值模拟火焰外形结构相似度较高。实验和数值模拟得到的微火焰高度和宽度与液体乙醇体积流量之间为线性增加关系,数值模拟的线性斜率比实验要高,说明数值模拟模型只在小流量范围内适用;微火焰高度和宽度的数值模拟值均比实验值大,但偏差在10%以内,属于允许偏差范围内。在不同流量条件下,微火焰的温度的数值模拟值与实验值吻合较好,偏差在3%以内。以上分析结果充分证明了数值模拟的可靠性。
     本文对数值模拟结果进行重点分析,揭示了陶瓷管内径、雷诺数Re和电场与微火焰结构、温度场、浓度场以及速度场之间的关系。研究结果表明,边界滑移和热扩散效应对微细尺度条件下火焰的结构和火焰温度场均产生直接影响,而且管内径越小,边界滑移和热扩散影响越大。微火焰最高温度与Re呈开口向下的抛物线关系,不同内径陶瓷管和不同外加电场条件下,微火焰最高温度最大值与对应的Re数值均不同;正向和反向电场均可提高内径1.0mm和0.6mm陶瓷管的微火焰最高温度最大值,而降低内径0.4mm陶瓷管的微火焰最高温度最大值。中轴线上火焰温度与管口距离之间呈左倾斜的开口向下抛物线,内径越小的陶瓷管,倾斜程度越大;正向和反向电场对管径较大陶瓷管中轴线上温度场分布的影响较大,对管径较小陶瓷管的影响较小。反向电场可降低内径1.0mm和0.4mm陶瓷管X轴向上火焰温度,正向电场可降低内径0.6mm陶瓷管X轴向上火焰温度。火焰无量纲高度和宽度与Re呈线性关系;无外加电场时陶瓷管内径越小,火焰无量纲高度和宽度增加幅度就越大;正向和反向电场对内径1.0mm陶瓷管火焰无量纲高度和宽度影响均较小;正向和反向电场对内径1.0mm和0.6mm陶瓷管火焰无量纲宽度影响较小,但可提高内径0.4mm陶瓷管火焰无量纲宽度;正向电场可提高内径0.6mm陶瓷管火焰无量纲高度,降低内径0.4mm陶瓷管火焰无量纲高度;反向电场可降低内径0.6mm陶瓷管火焰无量纲高度,提高内径0.4mm陶瓷管火焰无量纲高度。反向电场可减少内径1.0mm陶瓷管中轴线上乙醇质量分数,增加内径0.4mm和0.6mm陶瓷管中轴线上乙醇质量分数。陶瓷管内液体乙醇由于受热气化而引起了流速急剧变化,中轴线上流速与离陶瓷管入口距离之间为线性增加关系,而且内径1.0mm陶瓷管内流速线性斜率最小,内径0.4mm陶瓷管内流速线性斜率最大;反向电场可加快内径1.0mm陶瓷管内流速的变化,正向和反向电场均可加快内径0.6mm和0.4mm陶瓷管内流速的变化;X轴向流速分布曲线呈开口向下抛物线,内径越小,X轴向上流速变化越明显,反向电场可降低内径1.0mm陶瓷管中流速,正向和反向电场均可提高内径0.6mm和0.4mm陶瓷管中流速。由此可见,陶瓷管内径、雷诺数Re和电场与火焰的结构、温度场、浓度场以及速度场之间关系密切。
Along with the rapid development of MEMS technology, micro dynamic system has become the research focus of research, the micro dynamic system has the broad application prospect in national defense and economic construction. Currently micro combustor mainly adopts hydrocarbon fuels for electricity, heat and heat power transformation.Combustion in micro scale has great difference than in large scale. Combustion in micro scale will encounter problems such as surface/volume relative increase, heat loss increase and time scale shortening etc. At present micro scale combustion is mainly concentrated in gas hydrocarbon fuels, and the liquid hydrocarbon fuels are still in the experimental stage research. Liquid fuel combustion is much more complicated than gas fuel, but liquid hydrocarbon fuels has advantage of big density, small volume etc. Liquid hydrocarbon fuels are more suitable for micro combustor. Therefore, research of the liquid fuel burning in micro cause our attention. Based on experimental study of liquid ethanol lamimar disffusion characteristics, experimental and numerical simulation method combining study is used to analyze the relationship between flame characteristics size, the flame temperature and flow characteristics and tube diameter, fuel flow field. Thus reveals the liquid fuel combustion mechanism in micro scale, it will lay the foundation for micro combustor to develop.
     In the process of experiment research, three different specifications of micro scale ceramic burner with inner diameter 0.6 mm、0.4 mm and 1.0mm ceramic tubeare slected as combustors.The injection pump supplies micro flow of liquid fuel. Stered microscope with digital cameras and micro computer observe flame structure.S-type thermocouple measures temperature of micro flame. High-voltage dc power provides strong electric fields.
     In numerical simulation process, using numerical simulation software Fluent6.3 establishes three-dimensional numerical combustion model corresponding with the experiment.Considering the micro-structure of ceramic tube, the grid type of Tet/Hybrid and the gridding method of TGrid are slected.Selecting laminar model as flow mathematical model, P-1 radiation model as radiation heat transfer, laminar finite rate model as combustion chemical reation, general finite rate chemical reation model as liquid fuels transport and combustion, UDS as solving electric field,solver based on pressure as numerical calculation.
     In the experiment and numerical simulation based on laminar diffusion flame liquid ethanol shape characteristic, characteristic size and temperature field characteristic are analyzed.The study results show that the quenching limit flame, stability flame and oscillation flame in the experiment is highly similar to the flame shape structure of numerical simulation.The relations between micro flame height and width in the experiment and numerical simulation and liquid ethanol volume flow are linear increasing and linear slopes in numerical simulation are high than in the experiment, this illustrate that numerical simulation models can be used for small flow range; the numerical simulation values of micro flame height and width are larger than experimental values, but the deviations are less than 10% and belong to allow deviation range.In different flow conditions, the numerical simulation values of the micro flame temperature agree well with experimental values,the deviations are less than 3%.The above analysis proves the reliability of numerical simulation.
     In order to reveal that the ceramics tube inner diameter, Reynolds number and electric field are influence to micro flame structure, the temperature field, concentration field and velocity field effect, the results of numerical simulation are analyzed emphatically. The study results show that the boundary sliding and thermal diffusion have a direct impact on flame structure and flame temperature and the impact of the boundary sliding and thermal diffusion is larger when inner diameter is smaller.The relation between the higherst temperature and Re is open side down parabola,under the condition of different inner ceramic tube and different additional electric field,the maximum values of the highest temperature of the flame with corresponding Re are different; the positive and reverse electric field can improve the maximum values of the highest temperature of the inner diameter 0.6mm and 1.0mm ceramic tubes and reduce the maximum values of the highest temperature of the inner diameter 0.4mm ceramic tube. The relation between the flame temperature and pipe orifice distances at the central axis is left slant and open side down parabola, slant degree is larger when inner diameter is smaller; the positive and reverse electric field has a great influence on temperature field distribution of larger inner diameter ceramic tube, has less influence on themperature field distribution of small inner diameter ceramic tube.Reverse electric can reduce the flame temperature of X axis of inner diameter 1.0mm and 0.4mm ceramic tubes, positive electric field can reduce the flame temperature of X axis of inner diameter 0.6mm ceramic tube. The relation between flame dimensionless height and width and Re is linear; increasing range of flame dimensionless height and width will be larger when inner diameter ceramic tube is small without additional electric field; the positive and reverse electric field has less influence on flame dimensionless height and width of inner diameter 1.0mm ceramic tube; the positive and reverse electric field has less influence on flame dimensionless width of inner diameter 1.0mm and 0.6mm ceramic tube, but it can improve flame dimensionless width of inner diameter 0.4mm ceramic tube; the positive electric field can improve flame dimensionless height of inner diameter 0.6mm ceramic tube and reduce flame dimensionless height of inner diameter 0.4mm ceramic tube; the reverse electric field can reduce on flame dimensionless height of inner diameter 0.6mm ceramic tube and improve flame dimensionless height of inner diameter 0.4mm ceramic tube.The reverse electric field can reduce ethanol mass fraction of inner diameter 1.0mm cenramic tube on the central axis and improve ethanol mass fraction of inner diameter 0.4mm and 0.6mm cenramic tubes on the central axis.Fluid velocity can change rapidly because liquid ethanol is heated to gaseous ethanol in ceramic tube, the relation between fluid velocity and ceramic tube inlet distance is linearity increase.Velocity linearity slope of inner diameter 1.0mm ceramic tube is the smallest and velocity linearity slope of inner diameter 0.4mm ceramic tube is the largest; the positive and reverse electric field can improve fluid velocity change in cermic tube.The distribution curved shape of X axis fluid velocity is open down parabola,X axis fluid velocity is more obvious when the inner diameter is smaller, the reverse electric field can reduce fluid velocity of inner diameter 1.0mm ceramic tube, the positive and reverse electric field can improve fluid velocity of inner diameter 0.6mm and 0.4mm ceramic tubes.Clearly, there is close relation between inner diameter of ceramic tube, Reynolds number and electric field and flame structure, temperature field, concentration field and velocity field.
引文
[1]黄良甫,贾付云.空间微机电系统的研究与进展[J].真空与低温,2002,8(4):187-196.
    [2]朱健.MEMS技术的发展与应用[J].半导体技术,2003,28(1):29-32.
    [3]张西慧,梁春广.微机电系统技术进展[J].河北工业大学学报,2003,3(25):105-109.
    [4]陈昊,廖波,孔德文.基于MEMS技术的微热电器件的研究进展[J].微电子学,2004,34(1):7-12.
    [5]刘晓为,邓琴,郭猛等.MEMS微电源技术[J].传感器技术,2003,22(7):77-80.
    [6]A. H. Epstein and S. D. Senturia.Micro engineering-macro power from micro machinery [J].Science, 1997, 276:1211-1211.
    [7]Alan H. Epstein, Stuart A. Jacobson, Jon M. Protz et al.Sptrtbutton-sized gas turbins: the engineering challenges of micro high speed rotating machinery[C]//Presented at Proceedings of the 8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-8), Honolulu, Hawaii, 2000.
    [8]齐臣杰,刘理天,谭智敏.微电机和微动力MEMS[J].电子科技导报,2003,12:21-23.
    [9]Spadaccini C M,Zhang Xin,Christopher P C,et al.Preliminary development of a hydrocarbon-fueled catalytic micro-combustor[J].Sensors and Actuators,2003,103(1-2): 219-224.
    [10]Norton D G, Vlachos D G.Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures [J].Chemical Engineering Science, 2003, 58(21):4871-4882.
    [11]Kaoru M,Koichi T,Sitzki L,et al.Catalytic combustion in micro-channel for MEMS power generation[C]//The Third Asia-Pacific Conference on Combustion.Seoul, Korea,2001:1-4.
    [12]Bo Xu,Yiguang Ju.Concentration slip andits impact on heterogeneous combustion in a micro scale chemical reactor[J].Chemical Engineering Science,2005,60:3561-3572.
    [13]徐涛,杨泽亮,甘云华.基于微尺度的燃烧特性研究进展[J].广州航海高等专科学校学报,2009,17(3):4-8.
    [14]严传俊,范玮.燃烧学[M].西安:西北工业大学出版社,2005:1-4.
    [15] A.G.Gaydon & H.G.Wolfhand,王方译.火焰学[M].北京:中国科学技术出版社,1994:84-211.
    [16]同济大学.燃气燃烧与应用[M].北京:中国建筑工业出版社,1988:92-93.
    [17]安德烈·斯坦标林努,清华大学热能工程教研组译.工业火焰的燃烧过程[M].北京:机械工业出版社,1983:59-311.
    [18]欧文·格拉斯曼,赵惠富等译.燃烧学[M].北京:科学出版社,1983:190-192.
    [19]岑可法.燃烧理论与污染控制[M].北京:机械工业出版社,2004:10-145.
    [20]万俊华,郜冶,夏允庆.燃烧理论基础[M].哈尔滨:哈尔滨工程大学出版社,2007:185-193.
    [21]Kenneth,K.Kuo,陈义良等译.燃烧原理[M].北京:航空工业出版社,1992:293-317.
    [22] C.K.Law,李天祥译.液滴的蒸发与燃烧[M].安徽:中国科学技术大学出版社,1982:10-19.
    [23]王婧.PowerMEMS氢气微燃烧过程的数值模拟[D].重庆:重庆大学硕士论文,2007.
    [24]邓军,李德桃,潘剑锋等.微型火焰管中燃烧的研究[J].工程热物理学报,2004,25 (3);537-539.
    [25]黄俊,潘剑锋,唐维新等.微热光电系统中柱型燃烧室的试验[J].农业机械学报,2006,37(3):119-121.
    [26]张永生,周俊虎,杨卫娟等.微型燃烧器热电转化实验研究[J].中国电机工程学报, 2006,26(21):114-118.
    [27]张永生,周俊虎,杨卫娟等.T型微细管道内氢气空气预混燃烧实验研究[J].中国电机工程学报,2005,25(21):128-131.
    [28]唐维新,李德桃,袁文华等.微型热光电系统中的微燃烧室研究[J].邵阳学院学报(自然科学版),2004,1(3):68-70.
    [29]W. M. Yang, S. K. Chou, C. Shu, et al.Combustion in micro-cylindrical combustors with and without a backward facing step [J].Applied Thermal Engineering, 2002, 22:1777-1787.
    [30]W. M. Yang, S. K. Chou, C. Shu, et al.Microscale combustion research for application to micro thermo photovoltaic systems [J].Energy Conversion and Management, 2003, 44: 2625-2634.
    [31]W.M. Yang, S.K. Chou, C. Shu, et al.Research on micro-thermo photovoltaic power generators [J]. Solar Energy Materials&Solar Cells, 2003, 80: 95-104.
    [32]H. Xue, W. M. Yang, S. K. Chou, et al.Microthen nophotovoltaics power system forportable MEMS devices [J]. Microscale thermophysical engineering, 2005, 9:85-97.
    [33]张孝友,卫尧,吴勇军等.氢氧混合比对微型TPV燃烧器内燃烧的影响[J].河南科技大学学报(自然科学版),2005,26 (2):18-21.
    [34]L. Sitzki, K. Borer, E. Schuster, et al.Combustion in microscale heat-recirculating burners[C]//The Third Asia-Pacific Conference on Combustion. Seoul, Korea, 2001,(4):24-27.
    [35] K. Muruta, K. Takeda, L. Sitzki, et al.Catalytic combustion in microchannel for MEMS power generation[C]//The Third Asia-Pacific Conference on Combustion, Seoul, Korea, 2001:24-27.
    [36]V.V. Zamashchikov.Combustion of gases in thin-walled small-diameter tubes [J]. Combustion, Explosion and Chock Waves, 1995, 31(1):20-22.
    [37]V.V. Zamashchikov.Experimental investigation of gas combustion regimes in narrow tubes [J].Combustion and Flame, 1997, 108(3):357-359.
    [38]V.V. Zamashchikov.An investigation of gas combustion in narrow tube [J].Combustion Science and Technology,2001,166 (1):1-14.
    [39]李军伟,钟北京.微细直管内甲烷/氧气燃烧的实验和数值模拟[J].清华大学学报(自然科学版), 2007,47(8):1370-1374.
    [40]B. A. Cooley, D. C. Walther, A. C. Fernandez-Pello.Exploring the limits of microscale combustion[C]// Western States Section /The Combustion Institute, Fall Meeting, 1999.
    [41]G.Veser, G. Friedrich, M. Z. Freygang.A micro reaction tool for heterogeneous catalytic gas phase reactions[C]//The 12th IEEE International Conference, 1999, 394-399.
    [42]G.Veser.Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor [J].Chemical Engineering Science, 2001, 56(4):1265-1273.
    [43]P. D. Ronny.Analysis of non-adiabatic heat-recirculating combustors [J].Combustion and flame, 2003, 135(4):421-439.
    [44]J.Vican,B.F.Gajdeczko,F.L.Dryer,et al.Development of a microreator as a thermal source for MEMS power generation [J].Proceedings of the combustion institute, 2002, 29(1):909-916.
    [45]C.M.Spadaccinia, A.Mehra,J.Lee,et al.High power density silicon combustion system for micro gas turbine engines [J]. Journal of Engineering of Gas Turbines and Power,2003,125:709-719.
    [46]C.M.Spadaccinia,,X.Zhnag,C.P.Cadou,et al.Preliminary development of a hydrocarbon-fueled catalytic micro-combustor[J]. Sensors and Actuators A , 2003 ,103:219-224.
    [47]A.Mehra,X.Zhang,et al.A six-wafer combustion system for a silicon micro gas turbine engine [J].Journal of microeleetromechanical systems,2000,9(4):517-527.
    [48]M.Wu,J.S.Hua,K.Kumar.An improved micro-combustor design for micro gas turbine engine and numerical analysis[J].Journal of Micromeehanics and Microengineering,2005,15:1817-1823.
    [49]X.C.Shan, Z.F.Wang,Y.F.Jin, el al.Studies on a micro combustor for gas turbine engines[J].Journal of Micromechanics and Microengineering, 2005,15:215-221.
    [50]胡国新,王明磊.微细通道内可燃气体预混燃烧实验与微型发动机燃烧方案[J].热能动力工程,2003,18(4):352-355.
    [51]胡国新,王明磊,李艳红等.过量空气系数对微细腔内氢气预混燃烧效率的影响[J].上海交通大学学报,2004,38(7):1177-1180.
    [52]潘剑锋,李德桃,邓军等.微热光电系统中的微燃烧研究[J].热科学与技术,2004,3(3):261-266.
    [53]曹彬,陈光文,袁权.微通道反应器内氢气催化燃烧[J].化工学报,2004,55(1):42-47.
    [54]王国锋,钟北京,唐皇哉.微细通道中甲烷与氧气的预混燃烧[J].燃烧科学与技术,2006,12(2):97-100.
    [55]任泰安,张长富,蒋庄德.微内燃机点火和燃烧中微尺寸效应的研究[J].西安交通大学学报,2007,41(7):776-779.
    [56]赵黛青,蒋利桥,黄显峰等.微尺度预混合火焰结构和熄火特性研究[J].工程热物理学报, 2006,27(4):711-713.
    [57]Jimsong Hua, Meng Wu, Kurichi Kumar.Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers.Part I: Fundamental study [J].Chemical Engineering Science, 2005, 60(13):3479–3506.
    [58]Jimsong Hua,Meng Wu,Kurichi Kumar.Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers.PartⅡ:CFD analysis for a micro-combustor[J].Chemical Engineering Science, 2005, 60(13):3507–3515.
    [59]林博颖,张根烜,刘明侯等.微小空腔内气体的预混燃烧[J].燃烧科学与技术,2007,13(3):269-274.
    [60]曹海亮,徐进良.进气方式对回热型微燃烧器燃烧特性的影响[J].自然科学进展,2006,16(12):1598-1605.
    [61]曹海亮,徐进良.微尺度环形燃烧室的燃烧特性[J].自然科学进展,2006,16(7):874-880.
    [62]D.G.Norton and D.G.Vlachos.Combustion characteristics and flame stability at the microscale:a CFD study of premixed methane/air mixtures[J].Chemical Engineering Science,2003,58(21):4871–4882.
    [63]Kaili Zhang, S.X.Chou, Simon S.Ang.MEMS-based solid propellant microthruster design, simulation, fabrication, and Testing.Journal of microelectromechanical systems, 2004, 13(2):165-175.
    [64]钟北京,洪泽恺.甲烷微尺度催化燃烧的数值模拟[J].工程热物理学报,2003,24(1): 173-176.
    [65]钟北京,伍亨.甲烷在逆流换热微燃烧器内催化燃烧的数值模拟[J].工程热物理学报,2005,26(2):351-353.
    [66]潘剑锋,黄俊,李德桃等.微热光电系统带环形翅片燃烧室的数值模拟[J].热科学与技术,2006,5(4):346-350.
    [67]许考,刘中良,康天放等.预混天然气小尺度燃烧特性的CFD研究[J].热能动力工程,2006,21(1):48-52.
    [68]BanH, VenkateshS, SaitoK.Convection-diffusion controlled laminar micro flames [J]. Journal of Heat Transfer, 1994, 116:542-959.
    [69]Nakamura Y, kubotaA, YamashitaH, et al.Near extinction flame structure of micro-diffusion flames[C]// The International symposium on Micro-Mechanical Engineering, 2003:163-170.
    [70]吕欣荣等.湍流扩散燃烧的层流小火焰理论及模型[C]//全国船舶机电学术会议,2002: 73-76.
    [71]Ida T, Fuchihata M, Mizutani Y.Microscopic diffusion flame structure with micro flames[C]// Proceeding of the Third International Symposium on Scale Modeling,NagoyaJapan,2000.
    [72]P.B.SUNDERLAND,D.L.URBAN, Z.G. YUAN.Shapes of nonbuoyant round luminous hydrocarbon/air laminar jet diffusion flames[J].Combustion and Flame,1999, 116:415-431.
    [73]孔文俊,杜文锋,张孝谦.重力对扩散射流火焰动态特性的影响[J].工程热物理学报,2000,21(3):373-377.
    [74]杜文锋,张孝谦,韦明罡等.微重力环境中的蜡烛火焰[J].工程热物理学报,2000,21(4):515-519.
    [75]Yei-chin Chao,Tony Yuan,Yong-Charn Jong.Measurements of the stabilization zone of a lifted jet flame under acoustic excitation[J].Experiments in fluids,1994,17(6):381-389.
    [76]YUNG-CHENG CHEN and ROBERT W.BILGER.Stabilization Mechanisms of Lifted Laminar Flames in Axisymmetric Jet Flows [J].COMBUSTION AND FLAME, 2000, 123:23-45.
    [77]王宇,姚强,王世昌等.本生灯教学实验台改良及实验数据处理[J].实验技术与管理,2005,22(5):51-54.
    [78]A.V.Isaev.Mechanism of in-flame gasification of disperse carbon in diffusion combustion of hydrocarbons [J].Chemistry and Technology of Fuels and Oils, 2004, 40(5):311-319.
    [79]王琼.燃气燃烧火焰燃烧过程光学测量方法研究[D].杭州:浙江大学硕士学位论文,2005.
    [80]王宇,姚强.电场控制火焰中细颗粒生成及分布的研究进展[J].煤炭转化,2005,28(4):86-91.
    [81]袁理明.二维线性湍流浮力扩散火焰高度[J].中国科学技术大学学报,1997,27(1):79-83.
    [82]黄显锋.微尺度扩散火焰特性的数值解析[J].工程热物理学报,2005,26(5):883-886.
    [83]蒋利桥,赵黛青,汪小憨.微尺度甲烷扩散火焰及其熄灭特性[J].燃烧科学与技术, 2007,13(2):183-183.
    [84]夏云春,王清安.磁场对扩散火焰特性的影响[J].火灾科学,2002,11(4):240-244.
    [85]王海峰,陈义良,董刚等.拉伸层流扩散火焰面结构及熄火的研究[J].工程热物理学报,2003,24(4):695-698.
    [86]周璟.乙醇燃料小型扩散火焰实验研究[D].广州:华南理工大学硕士学位论文,2006.
    [87]赖伟其.液体燃料射流扩散小火焰的实验研究[D].广州:华南理工大学硕士学位论文,2007.
    [88]杨泽亮,刘志成,甘云华.液体燃料小尺度扩散火焰影响因素分析[J].顺德职业技术学院学报, 2009,7(4):15-18.
    [89]程静.小尺度乙醇燃料扩散火焰的实验研究[D].广州:华南理工大学硕士学位论文,2008.
    [90]杨泽亮,甘云华,赖伟其等.液体燃料扩散小火焰的实验研究[J].热科学与技术,2009,8(2):151-155.
    [91]陈春香,杨泽亮,甘云华.电场作用下扩散小火焰实验分析[J].节能, 2009,(8):16-18.
    [92]杨泽亮,程静,甘云华.小尺度乙醇扩散火焰及管壁温度场的实验研究[J].热科学与技术,2009,8(1):44-48.
    [93]杨泽亮,薛峰,甘云华.陶瓷管作燃烧器的乙醇扩散小火焰实验研究[J].热科学与技术,2008,7(4):367-372.
    [94]杨泽亮,董觉非,甘云华.电场作用下乙醇汽化及其扩散火焰特性的实验研究[J].热科学与技术,2008,7(3):279-284.
    [95]Yang Zeliang, Xu Tao, Gan Yunhua.Experimental study on the diffusion flame using liquid ethanol as fuel in mini-scale[C]//Proceedings of the ASME Micro/Nanoscale Heat Transfer International Conference, Tainan, Taiwan, 2008:853-857.
    [96]Yang Zeliang; Cheng Jing; Xu Tao et al.Experimental study of small diffusion flame under strong electric field[C].2008 Proceedings of the ASME Micro/Nanoscale Heat Transfer International Conference, Tainan, Taiwan, 2008:841-844.
    [97]杨泽亮,周璟,赖伟其.乙醇燃料小型扩散火焰图像实验研究[C].中国教育学会工程热物理专业委员会第十二届全国学术会议,2006: 898-902.
    [98]杨泽亮,陈绍友,甘云华等.磁场下液体乙醇微尺度扩散火焰的实验研究[J].华南理工大学学报(自然科学版),2010,28(3):114-117.
    [99]Gan Yunhua, Xue Feng, Yang Zeliang.Experimental study on the diffusion flame from small ceramic tube[C]//2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 2010:1-4.
    [100]Yunhua Gan, Juefei Dong, and Zeliang Yang.Experimental Study on the Characteristics of Ethanol Evaporation and Its Diffusion Flame under the Effect of DC Field [J].Heat Transfer-Asian Research, 2010, 39(2):77-86.
    [101]Yunhua Gan, Jing Cheng, and Zeliang Yang.Experimental Study on the Small-Scale Diffusion Flame of Ethanol and the Wall Temperature Field[J].Heat Transfer-Asian Research, 2010, 39(2):87-96.
    [102]Gan, Yunhua; Yang, Zeliang.Characteristics of small diffusion flames in a confined space[C]//Proceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference 2009:1-5.
    [103]郝红伟,施光凯.Origin 6.0实用教程[M].北京:中国电力出版社,2000.
    [104]叶卫平,方安平,于本方.Origin 7.0科技绘图及数据分析[M].北京:机械工业出版社,2004.
    [105]章克昌,吴佩琮.酒精工业手册[M].北京:轻工业出版社,1989.
    [106]王福军.CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [107]Norton D G, Vlachos D G.Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures [J].Chemical Engineering Science, 2003, 58(21):4871-4882.
    [108]Zhang K L, Chou S K, Simon S A.MEMS-based solid propellant microthruster design, simulation, fabrication and testing [J].Journal of Microelectromechanical systems, 2004, 13(2):165-175.
    [109]钟凡.天燃气在多孔陶瓷板辐射器中预混燃烧的数值模拟[D].哈尔滨:哈尔滨工业大学硕士论文,2006.
    [110]王式民,赵延军,王凤林.光学分层热成像法重建火焰三维温度场分布的研究[J].工程物理学报, 2002, 23(6):233-236.
    [111]袁恩熙.工程流体力学[M].北京:石油工业出版社,1998:5-205.
    [112]吴承伟,马国军.关于流体流动的边界滑移[J].中国科学, 2004, 34(6):681-690.
    [113] Stephen R.Turns.燃烧学导论:概念与应用[M].第2版.姚强,李水清,王宇译.北京:清华大学出版社,2009:24-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700