用户名: 密码: 验证码:
PDP用蓝、绿色荧光粉的合成及光谱性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子平板显示技术(Plasma flat panel display technology)消除了画面几何变形,具有聚焦清晰、亮度均匀、色彩纯度高、对比度高,画面大、视角宽阔等一系列优点,是高清电视的一个非常重要的发展方向,它已成为最有希望的大屏幕高清晰度的平板显示技术。
     荧光粉是决定显示质量的关键因素之一。PDP荧光粉用147nm或172nm的真空紫外线激发,因此,要求其应具备热稳定性好、发光效率高、粉体粒度小、粒径分布范围较窄、色纯度高、余辉时间短等性能。目前,PDP商用荧光粉的性能还存在许多缺陷:(1)红粉:Y2O3:Eu3+发光效率相对比较低,而(Y,Gd)BO3:Eu3+色纯度不高;(2)蓝粉:Eu2+激活的BaMgAl10O17(BAM)荧光粉稳定性差,光色变化大;(3)绿粉:Zn2SiO4:Mn2+余辉时间太长。
     基于上述原因,本文利用XRD、SEM、粒度、荧光粉性能分析等手段,对PDP用(La,Ce,Tb)BO3和Ln(BO3,PO4):Ce3+,Tb3+绿色荧光粉的合成与光谱特性、BAM:Eu2+蓝色荧光粉的合成及抗热劣化性能进行了研究;以BAM:Eu2+荧光粉为合成对象,研究了助熔剂对BAM:Eu2+荧光粉合成机理和发光性能的影响;以SrAl2O4:Eu,Dy发光材料为合成对象,对喷雾热解制备稀土发光材料工艺进行了研究,通过实验得出以下结论:
     (1)高温固相法合成的(La,Ce,Tb)BO3绿色发光粉的晶体结构和LaBO3相同,Ce3+, Tb3+的掺入没有改变基质晶体结构,发光粉颗粒大小均匀,形貌规则,粒度在5μm左右。随Tb3+含量的增加样品中TbBO3相增加,当Tb含量达15%(mol)及以上时,TbBO3杂相含量增加更为明显。(La,Ce,Tb)BO3的光谱性质表明,在(La,Ce,Tb)BO3的发射和激发光谱中除了有铽的特征发射和激发峰外,还有Ce3+的特征激发峰和发射峰。(La,Tb)BO3的激发光谱和(;La,Ce)BO3发射光谱存在重叠,这为Ce3+→Tb3+的能量传递创造了条件。在(La,Ce,Tb)BO3中存在铈、铽的浓度猝灭效应,固定铈或铽的情况下,增加铽或铈的含量,(La,Ce,Tb)BO3的发射主峰的相对强度均呈先升后降的态势。固定铈铽比时,(La,Ce,Tb)BO3的发射主峰的相对强度随镧的增加先升后降,当镧含量为70%时,发射主峰相对强度最高。镧含量为80%时,在较宽的Ce/Tb范围内,能得到发光性能较好的(La,Ce,Tb)BO3样品。固定镧含量时,当镧含量为80%及以内时,(La,Ce,Tb)BO3的发射主峰的相对强度随Ce/Tb的增大先升后降,当铈铽比为3/1时,(La,Ce,Tb)BO3的发射主峰的相对强度达到最大。对(La,Ce,Tb)BO3的发射谱图与商品粉(La,Ce,Tb)PO4进行了比较,两者的发射主峰都在541nm处,(La,Ce,Tb)BO3在489nm处的发射峰稍有红移,计算表明,(La,Ce,Tb)BO3的发光亮度达到商品粉(La,Ce,Tb)PO4的94.7%,是一很有应用前景的绿色发光粉。
     (2)以自制磷酸硼(BP04)及稀土化合物为原料,采用一步烧成法合成了具有良好结晶的Ce3+,Tb3+激活的Ln(BO3,PO4)(Ln=La, Y, Gd)荧光粉,并对其在147nm激发下的光谱性质进行了研究。结果表明:Ln(BO3,PO4):Ce3+,Tb3+(Ln=Y, La, Gd)激发光谱是由来自B033-和P043-的120-175nm基质敏化带和来自Tb3+离子的4f→5d跃迁的175-300nm多宽带组成;改变基质稀土离子,发射光谱中的荧光分支比和色坐标也随之改变,其中以Gd(BO3,PO4):Ce3+,Tb3+荧光粉的荧光分支比为最高;拟合Gd(BO3,PO4):Ce3+,Tb3+荧光粉的衰减曲线后,得出其荧光寿命为2.92ms,10%的余辉为6.7ms,优于Zn2SiO4:Mn2+商品粉,能够满足PDP器件的要求。高温固相一步法是一行之有效的稀土硼酸盐发光材料合成方法,在较低合成温度条件下,便可得到与传统高温固相法晶型结构相同、结晶更完整的样品。高温固相一步法合成的Ln(BO3,PO4):Ce3+,Tb3+荧光粉的发光性能优于传统高温固相法所制备的荧光粉。
     (3)采用高温固相法制备了BaMgAl10O17:Eu2+(BAM:Eu2+)蓝色荧光粉。研究表明:合成工艺条件,诸如激活离子浓度、烧结温度和时间、还原温度和时间等,对BAM晶体结晶度、物相纯度、粉体颗粒形貌和发光强度有较大影响;少量Sr取代Ba对基质晶体结构的影响很小,Sr的掺入使BAM蓝粉的相对发光亮度下降,但可以提高其抗热劣化性能。采用实验所获得的较优条件所制备的Ba0.82Sr0.08MgAl10O17:Eu0.1蓝粉粒度为3.24gm,色坐标为x=0.0151、y=0.075(与商品粉的色坐标x=0.0145、y=0.072接近),发光亮度基本相当,相对亮度为商品粉的98.3%,抗热劣化性能优于商品粉,符合PDP用蓝色荧光粉的要求。
     采用不同的助熔剂,均能制备出BAM:Eu2+发光材料,且样品的形貌更规整、颗粒大小更趋均一;Eu2+的掺入对基质晶体结构没有明显的影响;随着烧结时间的延长,样品结晶更趋完整、杂相减少,粉体发光强度随之提高;采用不同的助熔剂,合成反应的机理发生变化,所得样品的结晶完整性、杂相组成和含量、发光中心的分布、粉体粒径等性能产生相应变化,最终导致样品的发光性能发生改变,样品的特征发射峰强度随AlF3、H3BO3、 MgF2、Li2CO3、无助熔剂依次降低。
     (4)以SrAl2O4:Eu,Dy为合成对象,考察了喷雾热解法合成稀土发光材料的可行性。实验结果表明:只要控制好工艺技术条件,喷雾热解法是一可取的合成稀土发光材料的方法;较之高温固相法,喷雾热解法能在较低的温度下制备具有分散性好、粒度小、粒径分布窄(2μm~5μm)、形貌规则(实心球形)、发光性能优良等优点的发光材料。
     喷雾热解两段法制备的SrAl2O4:Eu,Dy发光材料的晶体结构与a-SrAl2O4磷石英晶体结构相同,掺杂Eu、Dy对晶体结构的影响很小。金属离子总浓度、热解温度和还原温度对产物的形貌、粒度分布、发光性能有较大影响。随着还原温度的升高,产物的发射主峰位置发生红移。
     添加剂的使用能明显改善和修饰材料的形貌、增强材料的初始亮度、延长材料的余辉时间(柠檬酸的使用会缩短材料的余辉时间)。柠檬酸的加入有助于获得实心球形颗粒,乙醇除了良好的分散性,还能有效的增大颗粒的球形度,但无法获得实心颗粒,PEG能够起到分散剂和稳定剂的作用。当三种添加剂同时使用时可获得初始亮度高、余辉时间长、分散性好、粒度小、粒径分布窄(2μm~5μm)的实心球形颗粒。
Plasma flat panel display technology eliminates the geometric distortion of the picture, and offers brightness uniformity, high color purity, high contrast, and other advantages. Plasma flat panels (PDPs) is the most promising candidate for large size flat-panel information-display devices, is a very important development direction of HDTV. Fluorescent powders are one of the key factors which determine display quality. PDP phosphor is excited by147nm or172nm vuv light, therefore, it should have good thermal stability, high luminous efficiency, small powder particle size, and a narrow range of grain size distribution, high color purity, afterglow time is short and other properties. The performance of present commodities-PDP phosphor has many shortcomings:(l)red phosphor:color purity of (Y,Gd) BO3:Eu3+red phosphor is not high, and light-emitting efficiency of Y2O3:Eu3+is relatively low, and (2)blue phosphor: Eu2+activated BAM phosphor has poor stability, and its peak maximum also shift during various stages of panel fabrication and (3)green powder:the decay time of Zn2SiO4:Mn2+phosphor is somewhat longer for practical application.
     Therefore,(La,Ce,Tb) BO3green phosphor, Ln (BO3,PO4):Ce3+,Tb3+green phosphor, BAM:Eu2+blue phosphor for PDP are synthesized by high temperature solid state reaction and modified high temperature solid state reaction. SEM, XRD, TG-DTA, luminescence spectra and other means were used to study the phosphor samples. The effect of flux on high temperature solid state reaction mechanism and the feasibility of the spray pyrolysis synthesis using to synthesize rare earth luminescent materials were studied. The studied conclusions came following:
     (1) The phosphors of (La,Ce,Tb)BO3was synthesized by high temperature solid state reaction. X-ray diffractometry (XRD) patterns indicate that the Crystal Structure of (La,Ce,Tb)BO3and LaBO3is the same. The crystal structure has not been changed by Ce3+and Tb3+mixed into. Emission scanning electron microscopy (SEM) images show that the particle size of phosphors is more uniform, morphology is more rules, and granularity is about5μm. The content of TbBO3phase in (La,Ce,Tb)BO3increases with increasing of Tb content in (La,Ce,Tb)BO3. When Tb concentration reaches15%and above, the content of TbBO3phase in (La,Ce,Tb)BO3increases more rapidly. The luminescence properties of (La,Ce,Tb)BO3and the sensitization of Ce3+to Tb3+were studied. There are three peaks at around244,268and330nm in the excitation spectrum of Ce3+, and there are two peaks at365and380nm in the emission spectrum of Ce3+, respectively. All of them have the large overlap. The excitation peaks of Tb3+is230nm and its Maximum emission wavelength is541nm. Both the Tb3+characteristic emission and excitation peaks and the Ce3+characteristic emission and excitation peaks were observed in the emission and excitation spectrum of (La,Ce,Tb)BO3. Comparing the emission spectrum of (La,Tb)BO3with the excitation spectrum of (La,Ce)BO3, and find them having the large overlap, it inferred that there is remarkable energy transfer from Ce3+to Tb3+in it. When the concentration of Ce or Tb in (La,Ce,Tb)BO3is fixed, because of concentration self-quenching effect, the relative intensity of main emission peak (at541nm)increases firstly and then decreases with increasing of the concentration of Tb or Ce. At fixed ratio of Ce concentration to Tb concentration, the relative intensity of the main emission peak of (La,Ce,Tb)BO3is the highest when La concentration in (La,Ce,Tb)BO3reaches70%. The sample with better luminescence properties will be obtained in variety range of Ce concentration to Tb concentration at fixed La concentration of80%. When La concentration is80%and above, the relative intensity of the main emission peak of (La,Ce,Tb)BO3will be highest at Ce concentration to Tb concentration of3/1. Comparing commercial phosphor (La,Ce,Tb)PO4with experimental (La,Ce,Tb)BO3phosphor, experimental (La,Ce,Tb)BO3phosphor has a little red shift at489nm and its relative emission intensity was94.7%of the commercial phosphor (La,Ce,Tb)PO4. Therefore, it is inferred that (La,Ce,Tb)BO3would be a promising PDP green-emitting phosphor.
     (2) Cerium-and terbium-doped lanthanum borophosphate [Ln(BO3,PO4):Ce3+, Tb3+] phosphor have been prepared by a single-step calcination using self-made BPO4as borophosphate sourse. Fine crystal structures are observed by XRD patterns. The excitation spectrum of Ln(BO3,PO4):Ce3+,Tb3+(Ln=Y, La, Gd) includes host sensitization band at120-175nm which is relative to the BO33-and PO43-groups, and several bands at175-300nm originated from4f→5d transition of Tb3+. The replacement of the host leads to changes of fluorescence Intensity ratios and CIE coordinate in emission spectrum. Among these phosphors, Gd(BO3,PO4):Ce3+,Tb3+phosphor shows best green fluorescence intensity ratio. The lifetime of the emission transition3D4→7F4of Tb3+is2.92ms, with a10%afterglow of6.7ms, which make it better than Zn2SiO4:Mn2+commercial phosphor for PDP.
     (3) BaMgAl10O17:Eu2+phosphors were synthesized by high temperature solid-state reaction method. Using the X-ray powder diffraction, scanning electron microscopy and photoluminescence spectra, the effect of different fluxes, reaction time on such properties as crystals crystallinity, phase purity, particle morphology, luminescence intensity and thermally stability of the blue phosphor were investigated. The mechanism of synthesis of BaMgAl10O17:Eu2+with different fluxes was analyzed. The results show that synthesis conditions such as flux, concentration of doped ions, sintering temperature and time, reduction temperature and time have important influence on crystals crystallinity, phase purity, particle morphology, luminescence intensity and thermally stability of the blue phosphor. Incorporation of Sr has little influence on crystal structure of BAM matrix, it would cause the drop of initial relative brightness of phosphor's, but the thermally stability of BAM luminous phosphor would be improved. When flux is adopted, BaMgAl10O17:Eu2+phosphors with more regular morphology, uniform particle size and crystals crystallinity can be obtained at lower sintering temperature. Incorporation of Eu2+has less influence on crystal structure of BaMgAl10O17matrix. Along with the agglutination time's extension, the sample's crystallization becomes more completely, the content of impurity phase in it reduces and its luminous intensity increase. As different fluxes are used, the mechanism of synthesis of BaMgAl10O17:Eu2+will change. The performances of prepared sample such as crystallization integrity, phase purity, the luminescent center distribution have corresponding change with the change of the synthesis mechanism, thus the luminescent properties of the samples change correspondingly.
     Comparing the experimental blue phosphor obtained at optimized conditions (Ba0.82Sr0.08MgAl10O17:Eu0.1) with the commodity powder BAM, relative emission intensity of the experimental blue phosphor is98.3%of the commercial phosphor BAM, its color coordinate is close to the commercial phosphor (experimental blue phosphor's color coordinate is x=0.0145, y=0.072, and the color coordinate of commercial phosphor is x=0.0145, y=0.072). The experimental blue phosphor has better thermally stability than that of the commercial phosphor. The granularity of it was3.24μm Therefore, it is expected that the experimental blue phosphor would be used for PDP blue phosphor.
     (4) Through the synthesis of SrAl2O4:Eu,Dy, the feasibility of the spray pyrolysis synthesis using to synthesize rare earth luminescent materials was studied. Experimental results show that spray pyrolysis method is a desirable method of synthesis of rare earth luminescence materials as long as the technology conditions are optimized. Compared with the SrAl2O4:Eu,Dy prepared by solid state method, the SrAl2O4:Eu,Dy prepared by spray pyrolysis has more regular morphology (compact solid spherical particles), smaller particle size, narrower particle size distribution and more excellent luminescent properties, and the synthesis temperature can be significantly reduced.
     The SrAl2O4:Eu,Dy prepared by spray pyrolysis belongs to the α-SrAl2O4phosphor crystal structure and small amount of Eu, Dy doped into the matrix has little effect on the crystal structure of SrAl2O4. The morphology, size distribution and luminous performances of the phosphors could be affected with synthesizing conditions, such as precursor concentration, sintering temperature, reduction temperature etc. As the reduction temperature rised, red shift of the main peak position in the emission spectrum occurs (move to longer wavelengths).
     Additives caould obviously improve the morphology, reinforce the initial brightness, and enlarge the afterlow time (citric acid would shorten the afterlow time). Citric acid could help to obtain solid spherical particle. Ethanol was not only a good dispersant but also improved the sphericity of particle. Howerve, solid spherical particles couldn't be gotten in this condition. PEG played the role of dispersant and stabilizer. The solid spherical SrAl2O4:Eu,Dy particles with high initial brightness, long twilight time, good dispersion, small particle size and narrow particle size distribution (2μm~5μm) when these additives was used at the same time.
引文
[1]Mentley D E. State of flat panel display technology and future trends. Proceedings of the IEEE,2002,90 (4):453-459
    [2]Larry F W,姜晓鹏(译).高发光效率电视的竞争.现代显示,2007,77:23-30
    [3]胡文波.彩色等离子体显示技术的最新发展.真空电子技术,2009,(6):10-15
    [4]袁泽民,杨玉叶,高锐敏.现代显示技术的研究进展.现代显示,2008,(94):18-22
    [5]应根裕.中国平板显示技术发展30年.现代显示,2009,(97):6-17
    [6]新天.平板(FPD)电视的未来发展方向.家电检修技术,2009,(1):1-7
    [7]阎双耀.浅谈大屏幕显示.现代显示,2009,(100):11-15
    [8]沈思宽,张小宁,黄金福.离子显示技术的新进展.液晶与显示,2009,(1):38-42
    [9]陈思鸿,刘青梅.PDP技术原理与制程解析.现代电子技术,2008,(1):44-47
    [10]王林生,周健,文小强.PDP与LCD两大平板显示技术探析.江西有色金属,2007,(4):31-33
    [11]姜建发,李正坚,薛承典.PDP与LCD大屏幕显示器性能评价方法和技术探讨.现代电视技术,2009,(5):136-140
    [12]魏建设,魏青.液晶电视和等离子电视之比较.现代电影技术,2006,(5):46-47
    [13]童林夙.2012年后的平板显示世界.现代显示,2007,77:6-16
    [14]韩广兴.等离子体电视机的结构和原理.电子世界,2005,(3):54-56
    [15]张芳.平板显示技术的发展现状与产业前景.新材料产业,2006,(6):60-65
    [16]谢智波.平板显示技术的新进展.电视技术,2007,(5):34-39
    [17]姚剑敏,林金堂,郭太良.平板显示技术及产业发展现状与对策.电子科技,2009,(增):258-261
    [18]Kim C H, Kwon I E. Phosphors for plasma display panels. Journal of Alloys and Compounds,2000,311(1):33-39
    [19]Asakura R, Isobe T. Effects of citric acid additive on photoluminescence properties of YAG:Ce3+ nano particles synthesized by glycothermal reaction. Journal of Luminescence,2007,127(2):416-422
    [20]Fu Y, Zhang G. Energy transfer in LaMgB5O10:Pr3+, Mn2+ under VUV excitation. Journal of Luminescence,2007,1(2):370-374
    [22]Peng M, Hong G. Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu. Journal of Luminescence,2007,127(2):735-740
    [22]True M, Chen Y. VUV spectroscopy of pure and Tm3+ doped LiCaAlF6 crystals. Journal of Luminescence,2007,1(2):279-285
    [23]Tamatani M. Contact electrification phenomena on phosphor particle surfaces. Journal of Luminescence,2002,100:317-323
    [24]Santa C, Ravishanker, Khan A F, Ashish Y. Enhanced luminescence and degradation resistance in Tb modified Yttrium Borate core nano silica shell phosphor under UV and VUV excitation. Applied Surface Science,2011,257(16):7167-7171
    [25]Liu B T, Zhang F, Zhu G, et al. Optical properties of Si-N doped BaMgAl10O17:Eu2+, Mn2+ phosphors for plasma display panels. Journal of Alloys and Compounds,2011, 509(25):7100-7104
    [26]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004:604-610
    [27]刘行仁,王晓君,申五福.全色等离子平板显示器用发光材料.发光快报,1995,9(3):9-13
    [28]Chen L, Jiang Y, Yang G T. New red phosphor (Y, Gd, Lu)BO3:Eu3+ for PDP applications. Journal of Rare Earths,2009,27(2):312-315
    [29]Saubat B, Fouassier C, Hagenmuller P. Luminescence efficiency of Eu3+ and Tb3+ in LaMgB5O10 type borates under excitation from 100 to 400 nm. Materials Research Bulletin,1981,16(2):193-198
    [30]Nakazawa E, Shiga F. Vacuum ultraviolet luminescence excitation spectra of RPO4:Eu3+ (R=Y, La, Gd and Lu). Journal of Luminescence,1977,15(3):255-259
    [31]Fukuzawa T, Tanimizu S. Fluorescence decay characteristics of Tb3+ activated phosphates under He VUV laser excitation. Journal of Luminescence,1978,16(4): 447-456
    [32]Ohishi I, Kojima T, Ikeda H. An experimental real time color TV display with a DC gas discharge panel. IEEE transactions on electron devices,1975,22(9):650-656
    [33]Mayolet A, Krupa J C. Luminescence quantum yield of Tb3+ activated yttrium compounds excited in the UV and VUV range. Journal of the Society for Information Display,1996,4(3):173-175
    [34]Kollia Z, Sarantopoulou E, Cefalas A C. Vacuum ultraviolet inter configurational 4f3→4f25d absorption and emission studies of the Nd3+ion in KYF, YF and YLF crystal hosts. Journal of the optical society of america b-optical physics.1995,12(5):782-785
    [35]Sarantopoulou E, Cefalas A C, Dubinskii M A. VUV and UV fluorescence and absorption studies of Tb3+ and Tm3+ trivalent ions in LiYF4 single crystal hosts. Modern Optics,1994,41(4):767-775
    [36]Sarantopoulou E, Cefalas A C, Dubinskii M A. VUV and UV fluorescence and absorption studies of Pr3+ doped LiLuF4 single crystals. Optics Letters,1994,19(7): 499-501
    [37]Sarantopoulou E, Cefalas A C, Dubinskii M A. VUV and UV fluorescence and absorption studies of Nd3+ and Ho3+ions in LiYF4 single crystals. Optics Communications,1994,107:104-110
    [38]Szczurek T, Schlesinger M. Spectroscopic studies of excited Tm3+ ions in CaF2 crystal. Physical Review B:Condensed Matter and Materials Physics.1986,34(9):6109-6110
    [39]Yang K H, Deluca J A. VUV fluorescence of Nd3+, Er3+, and Tm3+ doped tri-fluorides and tunable coherent sources from 1650 to 2600. Applied Physics Letters,1976,29(8): 499-501
    [40]Ronda C R. Recent achievements in research on phosphors for lamps and displays. Luminescence,1997,74:49-54
    [41]Junro K, Takehiro K, Ryuya T. Phosphors for gas discharge color display panels. Journal of the Society for Information Display,1980:150-151
    [42]邓新荣,胡国荣,彭忠东.PDP用红色荧光粉的研究进展.材料导报,2006,(2):40-43
    [43]倪海勇,李许波,丁建红.离子显示器用荧光粉的研究进展.材料研究与应用,2008, (2):83-87
    [44]周立亚,魏建设,龚福忠.彩色PDP荧光粉的研究进展.化工技术与开发,2007,36(11):20-23
    [45]Kim C H, Kwon I E, Park C H. Phosphors for plasma display panels. Alloys and Comps. 2000,311:33-39
    [46]Thomas J, Jean C K, Detlef U W. VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps. Journal of Luminescence,2001,93:179-189
    [47]郑传伟,张密林,董国君.离子显示器用荧光粉.化工新型材料,2002,30(1):15-18
    [48]袁秋华,李友芬,杨儒.PDP荧光粉的研究进展及存在问题.真空电子技术,2004,2:27-30
    [49]蔡红红,卜忍安,王文江.彩色PDP荧光粉的劣化研究.发光学报,2002,(2):197-200
    [50]Zhang S, Kono T, Ito A. Degradation mechanisms of the blue emitting phosphor BaMgAl10O17:Eu2+ under baking and VUV irradiating treatments. Journal of Luminescence,2004,106:39-46
    [51]Bizarri G, Moine B. On BaMgAl10O17:Eu2+ phosphor degradation mechanism:thermal treatment effects. Journal of Luminescence,2005,113 (3-4):199-213
    [52]Kazuyoshi Y, Zhang S X, Kimura K. Eu2+activated barium magnesium aluminate phosphor for plasma displays Phase relation and mechanism of thermal degradation. Journal of Luminescence,2001,92:223-227
    [53]Kodaira C A, Stefani R. Optical investigation of Y2O3:Sm3+nano-phosphor prepared by combustion and Pechini methods. Journal of Luminescence,2007,127(2):616-622
    [54]Wada N, Kojima K. Glass composition dependence of Eu3+ion red fluorescence. Journal of Luminescence,2007,126(1):53-62
    [55]Won P B, Sik C. White electroluminescent device with horizontally patterned blue yellow phosphor layer structure. Journal of Luminescence,2007,127(2):531-533.
    [57]Mihokova E, Nikl M. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics. Journal of Luminescence,2007,126(1):77-80
    [58]陶怡,李岚,王达健.PDP荧光粉的优化研究.天津理工大学学报,2005,4:74-77
    [59]赖华生,陈宝玖,王林生.钒硼酸钇铕荧光粉的真空紫外光谱特性研究.功能材料,2005,36(8):1175-1177
    [60]Zheng C, Zhu W, Wang L. VUV luminescence properties of Y0.95Eu0.05PO4 phosphor derived by a modified solid state route. Rare Metals,2008,4:354-357
    [61]Rao R P, Devine D J. Re-activated lanthanide phosphate phosphors for PDP applications. Journal of Luminescence.2000, (87-89):1260-1263
    [62]Tanaka S, Ozaki I, Kunimoto T. Blue emitting CaAl2O4:Eu2+ phosphors for PDP application. Luminescence,2000, (87-89):1250-1253
    [63]Kolk E, Dorenbos P. Optimized co-activated will emit phosphors for application in plasma display panels. Journal of Luminescence,2000, (87-89):16-19
    [64]Kubota S, Shimada M. Sr3Al10SiO20:Eu2+as a blue luminescent material for plasma displays. Applied Physics Letters,2002,8(15):2749-2751
    [65]Lee K G, Yu B Y, Pyun C H. Vacuum ultraviolet excitation and photoluminescence characteristics of (Y, Gd)Al3(BO3)4/Eu3+. Solid State Communication,2002,122: 485-488
    [66]Zhou L Y, Gong F Z, Shi J X. A novel red phosphor Na2Ca4Mg2Si4O15:Eu3+ for plasma display panels. Materials Research Bulletin,2008,43:2295-2299
    [67]何玲,孙卫民,王育华.(Y,Gd)BO3:Eu荧光粉的溶胶-凝胶法合成及其发光性能.兰州理工大学学报,2009,(3):68-71
    [68]Rao R P, Tb3+ activated green phosphors for plasma display panel applications. Journal of the Electrochemical Society,2003,150(8):165-171
    [69]Zhang J Y, Zhang Z T. Synthesis and characterization of BaMgAl10O17:Eu phosphors derived by sol-gel processing. Powder Technology,2002,126:161-165
    [70]Zhang J, Zhang L. Luminescent properties of (Ceo.67Tbo.33)MnxMg1-xAl11O19 phosphor in VUV region. Ceramics International,2003, (29):583-586
    [71]Tae H C, Ho J C. Preparation and characterizations of Zn2SiO4:Mn green phosphors. Ceramics International,2003, (29):611-618
    [72]蒋凯,余兴海.溶胶-凝胶法制备小颗粒(Y,Gd)BO3:Eu及其表征.发光学报,2004,25(1):55-61
    [73]张世英,李德意,魏坤.溶胶-凝胶法制备BaMgAl10017:Eu荧光粉的研究.中国陶瓷工业,2003,10(2):36-38
    [74]景晓燕,郑传伟,王君.化学共沉淀制备PDP荧光粉BaAl12O19:Mn研究.哈尔滨工程大学学报,2003,(2):229-232
    [75]Wu X, You H, Cui H. Vacuum ultraviolet optical properties of (La, Gd)PO4:RE3+(RE= Eu, Tb). Materials Research Bulletin,2002, (37):1531-1538
    [76]张占辉,王育华,都云昆.BaMgAl10O17:Eu2+荧光粉的化学共沉淀法合成及其发光性质.功能材料,2004,35(5):627-629
    [77]尹海斌,袁曦明,王永钱.化学共沉淀法制备小颗粒红色荧光粉(Y, Gd) BO3:Eu3+地质科技情报,2007,26(6):105-109
    [78]赖华生,许武,王晓君.共沉淀法制备Y(P,V)O4:Eu3+荧光粉及其真空紫外光谱特性研究.功能材料,2004,35(增刊):228-230
    [79]赖华生,陈宝玖,许武等.钒磷酸钇铕PDP用荧光粉的合成及其发光特性研究.光谱学与光谱分析,2005,25(12):1929-1932
    [80]郑翠红,朱伟长,王露.共沉淀法制备PDP荧光粉Y0.95Eu0.05AlO3安徽工业大学学报,2007,(4):392-394
    [81]李沅英,戴德昌,蔡少华.微波热效应法合成Y2O3:Eu3+荧光体.高等学校化学学报,1996,16(6):844-846
    [82]李沅英,彭明立,冯守华.微波热效应法合成(Y, Gd)BO3:Eu3+荧光体.发光学报,1995,16(3):261-264
    [83]李沅英,王旻,蔡少华.磷酸镧铈铽荧光体微波热效应法合成和发光性能.应用化学,1996,13(3):72-74
    [84]苏锵,林君,刘胜利.用软化学法合成稀土硅酸盐和铝酸盐磷光体.发光学报,1996,17(增刊):1-3
    [85]I W L, Bin X, Hiroaki M. Synthesis of LaPO4: Ce, Tb phosphor particles by spray pyrolysis. Materials Letters,2001,50:92-96
    [86]Byung S J, Gun Y H, Young K Y. Spherical BaMgAl10O17:Eu2+ phosphor prepared by aerosol pyrolysis technique for PDP applications. Journal of the Electrochemical Society, 2001,148(9):H128-H131.
    [87]Kang Y C, Roha H S, Par H D. Optimization of VUV characteristics and morphology of BaMgAl10O17:Eu2+phosphor particles in spray pyrolysis. Ceramics International,2003, 29:41-47
    [88]Kyeong Y J, Dong Y Le, Yun C K. Improved photo-luminescence of BaMgAl10O17:Eu2+ blue phosphor prepared by spray pyrolysis. Journal of Luminescence,2003,105:27-133
    [89]Kim E J, Kang Y C, Park H D. UV and VUV characteristics of (Y, Gd)2O3:Eu phosphor particles prepared by spray pyrolysis from polymeric precursors. Materials Research Bulletin,2003,38:515-520
    [90]Lee D Y, Kang Y C, Park H D. VUV characteristics of BaAl12O19:Mn2+ phosphor particles prepared from aluminum poly cation solutions by spray pyrolysis. Journal of Alloys and Compounds,2003,353:252-256
    [91]王列松,林君,周永慧.喷雾热解法制备YBO3:Eu球形发光粉.高等学校化学学报,2004,25(1):11-15
    [92]邢德松,龚盂濂,邱学青.等离子显示用稳定发光的BaMgAl10O17:Eu2+荧光粉的制备及性能.中山大学学报(自然科学版),2007,46(1):57-61
    [93]Kim D K, Hwang S H, Kim I G. Low temperature synthesis of fine BaMgAl10O17:Eu2+ phosphor based on the solubility isotherms. Solid State Chemistry,2005,178: 1414-1421
    [94]张俊英,张中太,唐子龙,等.溶胶-凝胶法合成BaMgAl10O17粉末.硅酸盐学报,2002,30(1):121-124
    [95]陈哲,严有为.PDP用纳米BaMgAl10O17:Eu荧光粉的燃烧合成及发光性能.物理化学学报,2006,22(8):1030-1033
    [96]Mahakhode J G, Dhoble S J, Joshi C P. combustion synthesis of phosphor display panels. Journal of Alloys and Compounds,2007,438(1~2):293-296
    [97]Kang Y C, Roh H S. Optimization of VUV characteristics and morphology of BaMgAl10O17:Eu2+ phosphors particles in spray pyrolysis. Ceramics International,2003, 29(1):41-46
    [98]张继红,庞明,袁曦明.PDP蓝色荧光粉BaMgAl10O17:Eu2+研究现状与前景.材料导报,2005,19(4):131-134
    [99]梁超,何锦华,蒋建清.PDP用BaMgAl10O17:Eu蓝粉的表面包覆研究.中国稀土学报,2007,48:365-369
    [100]Wu Z, Dong Y, Jiang J Q. Thermal treatment effects on degradation of BaMgAl10O17:Eu2+phosphor for PDP. Materials Science and Engineering B-solid state materials for advanced technology,2008,150(3):151-156
    [101]鱼志坚,庄卫东,赵春雷.Sr, Ca掺杂对铝酸盐蓝色荧光粉性能的影响.中国稀土学报,2001,6:590-593
    [102]Liang C, Zhang C, Dong Y. Improving Thermal Stability of BaMgAl10O17:Eu Phosphor. Journal of rare earths,2006,22:153-156
    [103]Young K J, Kim H J, Kim H G. Luminescent properties of BaMgAl10O17:Eu2+ blue phosphor grown with SiO2 using atomic layer deposition. Applied Physics,2009,9(3): S249-S251
    [104]Chen Z, Yan Y W, Liu J M. Microstructure and luminescence of surface coated nano BaMgAl10O17:Eu2+ blue phosphor. Journal of Alloys and Compounds,2009,478: 679-683
    [105]Zhu H, Yang H, Fu W. The improvement of thermal stability of BaMgAl10O17:Eu2+ coated with MgO. Materials Letters,2008,62:784-786
    [106]Sohn S H, Lee J H, Lee S M. Effects of the surface coating of BaMgAl10O17:Eu2+ phosphor with SiO2 nano particles. Journal of Luminescence,2009,129:478-481
    [107]Lai H S, Chen B J, Xu W. Photo-luminescence characteristics of (Y, Gd)P0.5V0.504: Tin3+ phosphor particles prepared by co-precipitation reaction. Journal of Alloys and Compounds,2005,395:181-184
    [108]赖华生,陈宝玖,许武.共沉淀法制备Y(P, V)O4:Tm3+荧光粉及其光致发光研究.发光学报,2005,26(2):205-210
    [109]赖华生,陈宝玖,许武.Dy3+/Tm3+共掺杂钒磷酸钇的共沉淀法合成及光谱性质研究.发光学报,2005,26(3):354-358
    [110]Danielson E, Devenney M, Giaquinta D M. A rare earth phosphor containing one dimensional chain identified through combinatorial methods. Science,1998,279: 837-839
    [111]Lee Y E, Norton D P, Budai J D. Photo and cathode luminescence characteristics of blue light emitting epitaxial Sr2CeO4 thin film phosphor. Applied Physics Letters,2000, 77:678-680
    [112]Singh V, Rao G, Zhu J J. A rapid combustion process for the preparation of MgSrAl10O17:Eu2+phosphor and related luminescence and defect investigations. Journal of Luminescence,2008,128:583-588
    [113]Zhang H, Fu X, Niu S. Blue luminescence of nano crystalline CaZrO3:Tm phosphors synthesized by a modified Pechini sol-gel method. Journal of Luminescence,2008,128: 1348-1352
    [114]Sankar R. Efficient blue luminescence in Ce+activated borates A6MM(BO3)6. Solid State Sciences,2008,10:1864-1874
    [115]Sivakumar V, Hong G Y, Kim J S. Novel blue emitting phosphor Sr2.979Eu0.021Al10_xBxSiO2o (x=0,0.25,0.5,0.75 and 1) for PDP applications. Journal of Luminescence,2009,129:1632-1636
    [116]Zhou L, Wei J, Shi J. A novel green phosphor GdCaAlO4:Tb3+ for PDP application. Journal of Luminescence,2008,128:1262-1266
    [117]朱宪忠,黄昌清,崔燕.钡铝酸盐绿荧光粉化学组成对光谱特性的影响.电子元件与材料,2009,(2):23-26
    [118]董岩,张超,蒋建清.掺杂元素对BaAl12O19:Mn2+荧光粉发光性能的影响.东南大学学报(自然科学版),2005,35(6):911-914
    [119]赵晓霞,王晓君,黄春荣.(Y, Gd)BO3:Tb3+的真空紫外及紫外激发的光谱特性.发光学报,2005,26(4):489-491
    [120]刘端阳,何大伟,康凯.(Y, Gd)Al3(BO3)4:Tb3+的真空紫外光谱特性.光谱学与光谱分析,2005,25(7):1034-1036.
    [121]沈雷军,张中义,韩莉,等.(Ba, Mg, Sr)OnAl2O3:Mn2+的合成及发光性质研究.发光学报,2003,24(2):189-192
    [122]尤洪鹏,吴雪艳,洪广言,等.BaMgAl10O17:R2+(R=Eu, Mn)的真空紫外光谱特性.发光学报,2002,20(6):572-574
    [123]尤洪鹏,吴雪艳,洪广言,等.LaMgAl11O9:R (R=Mn, Tb)的真空紫外光谱特性. 发光学报,2003,24(1):87-89
    [124]Yang H C, Li C Y, He H, et al. VUV-UV excited luminescent properties of LnCa4O(BO3)3:RE3+(Ln=Y, La, Gd; Re=Eu, Tb, Dy, Ce). Journal of Luminescence, 2006,118:61-69
    [125]Kyung N K, Ha-Kyun J, Hee D P, et al. High luminance of new green emitting phosphor, Mg2SnO4:Mn. Journal of Luminescence,2002,99; 169-173
    [126]董岩,蒋建清,吴直森.化学共沉淀法合成小粒径BaAl12O19:Mn2+绿色荧光粉.功能材料,2005,36(12):1931-1934
    [127]吴雪艳,尤洪鹏,曾小青.共沉淀法合成稀土正磷酸盐(La, Gd)PO4: RE3+(RE=Eu,Tb)及其真空紫外光谱特性.高等学校化学学报,2003,24(1):1-4
    [128]狄卫华,王晓君,陈宝玖.YPO4:Tb荧光粉的制备及其VUV激发下的发光性能.发光学报,2005,26(5):592-595
    [129]赖华生.彩色PDP用新型荧光粉的制备及发光性能:[博士学位论文],吉林:中国科学院研究生院,2005
    [130]Duault F, Junker M, Grosseau P, et al. Effect of different fluxes on the morphology of the LaPO4:Ce,Tb phosphor. Powder Technology,2005,154; 132-137
    [131]袁曦明,王永钱,王红梅.彩色PDP纳米稀土荧光Zn2Si04:Mn, Er的制备与性能研究.材料导报,2004,(2):152-153
    [132]武祥,邵义,康煜平.溶胶凝胶法制备PDP用荧光粉BaAl12O19:Mn.沈阳工业大学学报,2005,27(5):502-505
    [133]Wang Y Q, Zhang J H, Song Y, et al. Preparation and after treatment of BaMgAl10O17: Mn2+. Journal of China University Geosciences,2006, (3):272-275
    [134]Sonekar R P, Manwar S K, Moharil S V, et al. Luminescence in LaBaB9O16 prepared by combustion synthesis. Journal of Luminescence,2009,129:624-628
    [135]Kang Y C, Park H D. Brightness and decay time of Zn2SiO4:Mn phosphor particles with spherical shape and fine size. Journal of Applied Physics,2003,7:529-532
    [136]Jung D S, Kwon H S, Lee H J, et al. Effect of boric acid flux on the characteristics of (Ce, Tb)MgAl11O19 phosphor particles prepared by spray pyrolysis. Journal of Alloys and Compounds,2005,398:309-314
    [137]Kang H S, Kang Y C, Park H D, et al. Y2Si05:Tb phosphor particles prepared from colloidal and aqueous solutions by spray pyrolysis. Applied Physics A-materials Science & Processing,2003,4(2):123-125
    [138]张超,董岩,梁超.PDP绿色荧光粉BaAl12O19:Mn2+基质的单相合成研究.江苏冶金,2007,(3):1-3
    [139]Kyoungun K, Young-Min M, Sungho C, et al. Luminescent properties of a novel green emitting gallium borate phosphor under vacuum ultraviolet excitation. Materials Letters,2008,62:3925-3927
    [140]Dexter D L. Possibility of Luminescent Quantum Yields Greater than Unity. Physical Review,1957,108:630-633
    [141]Sommerdijk J L, Bril A, DeJager A W. Two photon luminescence with ultraviolet excitation of trivalent praseodymium. Journal of Luminescence,1974,8(4):341-343.
    [142]Piper W W, Deluca J A, Ham F S. Cascade fluorescent decay in Pr3+~ doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light. Journal of Luminescence,1974,8 (4):344-348
    [143]Ronda C R. Phosphors for lamps and displays:an application view. Journal of Alloys and Compounds,1995,225:534-538
    [144]Pappalardo R. Calculated quantum yields for photon cascade emission (PCE) for Pr+ and Tm3+in fluoride hosts. Journal of Luminescence,1976,14(3):159-193
    [145]Wegh R T, Donker H, Meijerink A. Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+in LiYF4. Physical Review B:Condensed Matter and Materials Physics,1997,56:13841-13848
    [146]Wegh R T, Donker H, Meijerink A. Spin allowed and spin forbidden fd emission from Er3+and LiYF4. Physical Review B:Condensed Matter and Materials Physics,1998,5: 2025-2028
    [147]Wegh R T, Harry D, Koenraad D O, et al. Visible Quantum Cutting in LiGdF4:Eu3+ Through Downconversion. Science,1999,283:663-666
    [148]Wegh R T, Donker H, Van Loef E V D. Quantum cutting through downconversion in rare-earth compounds. Journal of Luminescence,2000,89:1017-1019
    [149]Wegh R T, Donker H, Oskam K D. Visible quantum cutting in Eu3+-doped gadolinium fluorides via down conversion. Journal of Luminescence,1999,82:93-104
    [150]陈永虎,刘波,施朝淑.Gd2Si05:Eu3+中VUV激发的量子剪裁.中国科学(A辑),2002,32(8):711-715
    [151]陈永虎,施朝淑,魏亚光.Gd2Si05:Eu3+的VUV~UV光谱特性.核技术,2002,25(10):788-792
    [152]张庆礼,郭常新,施朝淑.GdVO4:Eu3+的真空紫外激发光谱研究.中国稀土学报,2001,19(1):1-4
    [153]Bernard M, Lena B, Patrick G. Research of green emitting rare earth doped materials as potential quantum cutter. Optical Materials,2008,30:1083-1087
    [154]叶旭,陈冬梅,李娴.稀土发光材料的研究进展.材料导报,2009,23:322-324
    [155]Su Q, Liang H, He H, et al. Application of Heavy Lanthanide Ions in Luminescence M arterials. Journal of the Chinese Rare Earth Society (in Chinese),2002,20(6):485-490
    [156]黄以万,肖兵.稀土发光材料的研究与应用展望.矿产保护与利用,2008,(6):51-54
    [157]黄春辉.稀土配位化学.北京:科学出版社,1997.5-18
    [158]李建宇.稀土发光材料及其应用.北京:化学工业出版社,2003.15-27
    [159]Rambabu U, Munirathnam N R, Prakash T L, et al. Emission spectra of LnPO4:RE3+ (Ln= La, Gd; RE=Eu, Tb and Ce) powder phosphors. Materials Chemistry and Physics, 2002,78:161-166
    [160]Duault F, Junker M, Grosseau P, et,al. Effect of different fluxes on the morphology of the LaPO4:Ce,Tb phosphor. Powder Technology,2005,154:132-137
    [161]Wuledlenggoro I, Xia B, Mizushima H, et al. Synthesis of LaPO4:Ce, Tb phosphor particles by spray pyrolysis. Materials Letters,2001,50:92-95
    [162]Ding S, Zhang D, Wang P, et al. Preparation and photo luminescence of the Ce, Tb and Gd-doped lanthanum borate phosphate phosphor. Materials Chemistry and Physics, 2001,68:98-102
    [163]王晓君,林海,刘行仁.Ce3+和Tb3+掺杂的稀土硼酸盐玻璃的发光性.中国稀土学报,1999,17(4):318-323
    [165]Kwon I, Yu B, Bae H. Luminescence properties of borate phosphors in the UV/VUV region. Journal of Luminescence,2000,1039:87-89
    [166]石士考.Ce3+与Tb3+共激活的BaMgF4体系的发光性质与能量传递.河北大学学报(自然科学版),2000,20(1):22-24
    [167]彭夷安,郭风瑜.LaBO3中Ce3+, Dy3+的发光和能量传递.中国稀土学报,1989,7(4):21-25.
    [168]刘春棠,何大伟,李少霞,等.稀土离子Ce, Tb掺杂硼磷酸锶荧光粉的发光性质.光谱与光谱分析,2005,25(8):1203-1207
    [169]孙益民,腾晓明,庄卫东.(Ce,Tb)MgAl11O9绿色荧光粉的发光性质和能量传递.安徽师范大学学报(自然科学版),2005,28(1):56-60
    [170]刘行仁,石士考,吴渊.BaMgF4中Gd3+的光谱以及Gd3+和Tb3+之间的能量传递.发光学报,1990,11(4):277-281
    [171]Guo C, Ding X, Seo H J. Double emitting phosphor NaSr4(BO3)3:Ce3+, Tb3+ for near UV light emitting diodes. Optics & Laser Technology,2011,43(7):1351-1354
    [172]丁士进,张卫,徐宝庆.(La, Ce, Tb)(PO4, BO3)绿粉的合成及发光研究.功能材料,2000,31(增刊):84-86
    [173]Rao R P. Tb3+ activated green phosphors for plasma display panel applications. Journal of the Electrochemical Society,2003,150(8):165-171
    [174]Kee S S, Jae M L, I W J. Combinatorial searching for Tb3+ ~activated phosphors of high efficiency at vacuum UV excitation. Journal of the Electrochemical Society,2003, 150(8):182-186
    [175]Wu X, You H, Cui H, et al. Vacuum ultraviolet optical properties of (La, Gd)PO4:RE3+ (RE=Eu, Tb). Materials Research Bulletin,2002, (37):1531-1538
    [176]Di D, Wang X, Chen B, et al. Preparation, characterization and VUV luminescence property of YPO4:Tb phosphor for a PDP. Optical Materials,2005,27(8):1386-1390
    [177]Chau C N, Chenot C F. Gray L F. Method of making lanthanum cerium terbium phosphate phosphor with improved brightness. European Patent,0456936A1, 1992-07-21
    [178]Chau C N. Method of making lanthanum cerium terbium phosphate phosphor. United Stated Patent,5116532,1992-10-13
    [179]Hahimoto N, Takada Y, Sato K, et al. Green luminescent (La, Ce)PO4:Tb phosphors for small size fluorescent lamps. Journal of Luminescence,1991,48(49):893-897
    [180]Levin E M, Roth R S, Martin B. Polymorphism of ABO3 type rare earth borates. American Mineralogist,1961,46:1030-1037
    [181]Begun G M, Beall G W, Boatner L A, et al. Raman Spectra of the rare earth orthophates. Raman Spectroscopy,1981,11(4):273-278
    [183]陈哲,严有为,尹懿,等.助熔剂对纳米BaMgAl10O17:Eu2+发光性能影响的机理.硅酸盐学报,2008,36(9):1267-1271
    [184]王晓娟,辛红,吴俊芳.助熔剂对BAM:Eu2+蓝色荧光粉形貌和发光强度的影响.西安工程科技学院学报,2007,21(4):503-506
    [185]Deng C, Zhuang W, He D, et al. Preparation and luminescent properties of BAM blue phosphor for PDP and CCFL. Journal of Rare Earth,2004,22(1):108-113
    [186]Pao R P. Morphology and stability of flux grown blue emitting BAM phosphor for plasma display panels applications. Electrochemical Society,2005,152(7):115-119
    [187]刘宇晖.三基色荧光粉蓝粉制取工艺的改进.江西有色金属,2002,16(2):19-21
    [188]王林生,周健,文小强,等.PDP用BaMgAl10O17:Eu2+蓝色荧光粉的研究进展.江西有色金属,2007,21(2):26-29
    [189]吴直森,刘凯,梁步青,等.BAM蓝粉荧光粉热劣化现象研究现状.江苏冶金,2006,34(2):3-7
    [190]文小强.彩色PDP用绿色荧光粉的制备及发光性能研究:[硕士学位论文],江西:江西理工大学,2008
    [191]周波,余兴海,黄京根.BaMgAl10O17:Eu2+(BAM)蓝粉热劣化机理研究.发光学报,2000,21(4):345-348
    [192]Mahakhode J G, Dhoble S J, Joshi C P. Combustion synthesis of phosphors for plasma display panels. Alloys and Compounds,2007,438:293-297
    [193]Chen Z, Yan Y. Crystallinity and luminescent properties of citrate sol-gel derived BAM phosphor. Materials Letters,2007,61:3927-3930
    [194]Chen L T, Sun I L, Hwang C S, et al. Luminescence properties of BAM phosphor synthesized by TEA co-precipitation method. Journal of Luminescence,2006,118: 293-300
    [195]Teng X, Zhuang W, Huang X, et al. Properties of BaMgAl10O17:Eu2+Phosphors Coated with Y2Si05 Luminescent. Rare Earths,2006,24:143-145
    [196]祝理君,余展,曾智江,等.PDP用BAM蓝色荧光粉制备技术研究现状.兵器材料科学与工程,2007,30(6):70-74
    [197]Nag A, Kutty T. Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4:Eu,Dy. Journal of Alloys and Compounds,2003,354(1-2):221-231
    [198]张勤勇,蒋洪川,张永强,等.H3803添加量对SrAl2O4:Eu2+, Dy3+蓄光性能的影响.四川师范大学学报(自然科学版),2005,28(5):344-346.
    [199]袁莹,施惠生.影响铝酸锶铕荧光粉光强因素及其余辉的研究.同济大学学报,1998,26(2):185-188
    [200]Chen I, Chen T. Sol-gel synthesis and the effect of boron addition on the phosphorescent properties of SrAl2O4:Eu2+, Dy3+phosphors. Journal of Materials Research,2001,16(3):644-651
    [201]陈永杰,孙彦彬,邱关明,等.超长余辉发光材料的研究.稀土,2002,23(4):50-53
    [202]Yamamoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+. International Conference Luminescence,1996,8: 131-137
    [203]Jorma H, Taneli L, Mika L, et al. Electronic structure of the SrAl2O4:Eu2+persistent luminescence material. Journal of Rare Earths,2008,6:53-57
    [204]徐晓.超长余辉发光材料的制备及其性能表征:[硕士学位论文],上海:华东师范大学,2008
    [205]Jia D D, Wang Y, Cuo Y, et al. Synthesis and characterization of YAG:Ce3+LED nanophosphors. Journal of the Electrochemical Society,2007,154(1):1-7
    [206]Haranath D, Harish C, Pooja S, et al. Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light emitting diodes. Applied Physics Letters,2006,89: 118-122
    [207]Kasuya R, Isohe T, Kuma H. Glycothennal synthesis and photo-luminescence of YAG: Ce+, nano-phosphors. Journal of Alloys and Compounds,2006,820:408-412
    [208]Jorma H, Taneli L, Mika L. Electronic structure of the SrAlO4:Eu2+ Persistent luminescence material. Journal of Rare Earth,2009,27(4):550-557
    [209]邱东.长余辉发光材料的制备与性能研究:[博士学位论文],安徽:合肥工业大学,2009
    [210]常素玲,曹立新,高英俊,等.掺杂硼对铝酸锶体系长余辉材料制备及发光性能影响的研究进展.发光学报,2007,59(4):15-21
    [211]Lv H, Liu A, Xiong P, et al. Preparation and luminescence properties of Sr1-xBaxAl2O4:Eu2+,Dy3+. Chinese Journal of Luminescence,2009,30(3):17-23
    [212]Liao F, Wang Y, Hu Y, et al. Temperature impact on luminescence Performances of long lasting afterglow glass. Chinese Journal of Luminescence,2009,30(4):28-36
    [213]邓新荣,胡国荣,彭忠东,等.喷雾热解法合成球形(Y,Gd)BO3:Eu荧光粉的研究.中国稀土学报,2007,25(2):37-42
    [214]戚发鑫.喷雾热解法制备稀土YAG荧光粉:[硕士学位论文],江苏:南京工业大学,2006
    [215]Hyuan S B, Woo J C, Ki W. Effect of barite rib height variation on the luminous characteristics of ac plasma display panel. Journal of Applied Physics,2004,95(1):30-34
    [216]Marchal J, John T, Baranwal R, et al. Yttrium aluminum garnet nano-powders produced by liquid feed flame spray pyrolysis (LF-FSP) of metal organic precursors. Journal of Materials Chemistry,2004, (16):822-828
    [217]井艳军,王海波,黄如喜,等.喷雾热解法制备红色发光粉LiEu(SiO2)1/6W2O8的研究.发光学报,2007,28(5):715-721
    [218]黎学明,李武林,孔令峰,等.YAG:Ce荧光粉的喷雾干燥热解二步法合成与表征.中国稀土学报,2007,25(4):406-412
    [219]陈伟.三基色PDP荧光粉的喷雾热解法合成及其表征:[硕士学位论文],广东:中山大学,2006
    [220]周传仓,卢忠远,戴亚堂.共沉淀法制备超细长余辉发光材料铝酸锶铕镝的研究.稀有金属,2005,29(1):20-24
    [221]周健.PDP用蓝色荧光粉的性能优化研究:[硕士学位论文],江西:江西理工大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700