用户名: 密码: 验证码:
轮辋滚压过程仿真与成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,轮辋滚压成形工艺研究依靠传统的“试错法”,在过去取得一定的成绩。但这种方法调试时间长,成本高,不能适应目前企业所面临新技术的挑战,同时由于轮辋加工截面复杂、工艺参数多和工序多等特点,人们尚未完全有效地掌握轮辋成形规律并控制加工质量这一重要难题。近年来,在能源和环境的压力下企业纷纷把研究重点投向了高强钢轮辋,由于现有技术条件的限制,要想深入掌握各种型号产品的成形工艺,仅仅依靠理论解析或实验研究比较困难。
     目前,计算机技术的飞速发展和有限元技术的不断成熟给工程研究带来了一场革命。有限元分析已经成为工程设计和应用分析不可或缺的主流手段。对高强钢轮辋滚压成形工艺进行数值仿真建模,不仅可以预测成形性能,较为准确地了解应力应变和成形质量等情况,还可以进行成形质量敏感因素分析及工艺优化,科学地指导工艺设计和成形质量控制,缩短产品设计周期,节约生产成本。
     本文主要工作是,在有限元软件ABAQUS上探讨轮辋多工步滚压过程数值仿真建模方法,并进行某轮辋成形质量敏感因素分析和实际工艺改进工作,开展了轮辋滚压成形过程的三维弹塑性有限元数值仿真建模问题,研究滚压成形过程中有限单元、求解算法、仿真加载速度和导向轮建模等,其中重点讨论导向轮与坯料的接触建模方法。针对滚压工艺边界条件复杂性,采用虚拟弹簧来模拟导向轮真实气缸,实现滚压工艺中导向轮和坯料间的接触。研究表明,在ABAQUS/Explicit模块上通过选取壳单元和导向轮与坯料的柔性接触等方法可以获得准静态求解及满意的计算效率。以此为基础,完成了某14寸车轮轮辋的多工步数值仿真(扩口和3步滚压工序)。仿真结果与实验值比较表明,本文所建立的轮辋滚压过程仿真建模方法及其多工步数值仿真是可信的,为进一步理解工艺规律和控制成形质量提供有效方法。
     轮辋成形多工步数值仿真显式,轮辋成形过程各工序中轮缘圆角处厚度减薄量最大,其次是凹槽底部靠近轮缘圆角处。基于数值仿真及正交试验设计方法,考察了材料参数和工艺参数对轮辋滚压成形质量缺陷(圆角减薄)的影响。敏感因素分析表明,对所研究因素中敏感性从大到小依次为板料厚度、屈服强度、摩擦系数、应变强化指数,为工艺质量控制提供了科学依据。最后,针对工厂提出的各道工序加工时间不均匀的问题,对轮辋工序件的几何尺寸进行重新设计,以减少一滚加工时间,并进行新工艺数值仿真。工艺数值仿真结果表明,实际问题可以得到一定改善,且新工艺的零件尺寸满足要求,而圆角减薄略有加大趋势,但仍满足工业制造要求。这对解决上述实际问题提供工程上可行性参考。
In traditional ways, engineers usually depend on their experiences to design the wheel rim. It had achieved a lot success in the past, but now it gives new challenges in quality and cost control, for it has many process and contact parameters, which are complicated and not completely mastered by people now. Because of some technical limits, it is very hard to clearly understand the forming and process, only depending on theoretical analysis and experimental study.
     Now quick development of computer technology and incessant improvement of finite elements technology have taken a revolution into engineering research. Numerical simulation of roll forming can help us not only predicting forming performance, coaching process design, but also deeply evaluating optimizing, controlling forming quality, reducing period of production design and cost.
     This paper mainly use software ABAQUS to establish roll forming model for wheel rim, and analysis quality sensitive factors, then develop the roll forming technics. The study of how to establish 3D elastic-plastic FEA modeling, including the establishing of material model, the choice of element type, meshing, boundary condition and the guiding roll modeling by the general FEA software ABAQUS. Spring is used in guide roll modeling. These methods are to guarantee the simulation process get steady standard static state solution and the method for wheel rim roll forming simulation is fast and credible. Then successfully complete the whole process of 14 inch wheel rim roll forming simulation, and the results compared with experiment indicate that the established model is credible and efficiency.
     The thickness reduce most on the corner of rim edge, next is on the corner of bottom groove. Then analysis the effect of material and process parameters on wheel rim quality defect (corner thickness reduction rate). The result indicate that the most sensitive factor is material thickness, then is yield strength, next is friction coefficient, the last one is strain strengthen exponent. The regress equation is founded. Lastly the punch and die was redesigned to solve the problem from factory that the time costs in different working procedure are asymmetry that influence its produce ability. The main task is to lessen the first step roll forming time. The simulation results indicate that the problem can be improved in a way, and the dimension and thickness reduction fulfill the thchnics demands. The study provide feasibility reference for solve this practical problem.
引文
[1] Thomas Heck. Presentation of Automobile Steel Wheel: The Road to Dual Phase [R/OL], Hayes Lemmerz International Press, American Iron and Steel Institute, 2006, 02, 14.
    [2] Ron Krupitzer. Steel Begins to Regain Market Share in Automotive Steel Wheels, New Designs, New Materials, and Lower Cost Overcome Aluminum’s Advantages [R/OL], American Iron and Steel Institute, October 12, 2004.
    [3]王先进.冷弯型钢生产及应用[M].北京:冶金工业出出版社, 1994.
    [4]林时宪.国外冷弯型钢[M].北京:冶金工业出出版社, 1984.
    [5]韩志武,刘才,陆卫平.滚弯成型工艺、理论及CAE技术研究进展与展望.钢铁, 1999,34(7):70-72.
    [6]王兰维,郭生龙.滚压工艺实际应用.山西机械. 1999增刊, 22-24.
    [7]记莲清.无内胎车轮轮辋滚形工艺.锻压机械, 2002, 3:26-27.
    [8]刘锦文.轮辋复合滚轮扩张滚压成形工艺及分析.锻压机械, 2005,35(1): 26-28.
    [9]单汝钿.轮辋滚形工艺研究.锻压技术, 2001,26(4):37-38.
    [10]蔡基楼.轻型汽车轮辋冷滚压成形.压力加工, 2001,11:39-40.
    [11]纪莲清、蒋玮.无内胎车轮轮辋滚形时的变形分析.锻压技术, 2003,1:42-43.
    [12]董晓光.微型汽车滚形轮辋工艺的研究.汽车科技, 2004,3(5):19-21.
    [13]陈景烨.截面非对称轮辋滚压成形工艺的研究与应用.模具工业, 2007,33,1:27-29.
    [14] Stuart Phillip Keeler. Application and forming of higher strength steel. Journal of Material Processing Technology, 1994, 46:443-454.
    [15] Application and forming of higher strength steel. http://www.autosteel.org
    [16]小奈弘,刘继英.冷弯成形技术[M].北京:化学工业出版社. 2007.
    [17]国内外汽车钢制车轮行业的现状和趋势. http://www.cnbuses.com/news/10126.htm, 2005.
    [18]董恬.乘用车钢制车轮设计方法新动向.汽车制造业,2007,1:75-77.
    [19]韩志武,刘才,陆卫平等.工艺参数对简单断面型钢滚弯成型过程的影响[J].金属学报,2002,38(3):331-333.
    [20] Liu C,Zhou Y,Lu W. Numerical simulation of roll-forming by B-spline finite strip method[J]. Journal of Material Processing Technology,1996,60:215-218.
    [21]周瑛,姜文光,刘才.滚式成形过程的样条有限元分析[J]..机械工程学报1997,33(2):82-87.
    [22] Han Z W,Liu C,Lu W P,Ren L Q. Simulation of a multi-stand roll-forming process forthick channel section[J]. Journal of Material Processing Technology,2002,127:382-387
    [23]刘才,张乐乐,张华弟.基于OOP的滚弯成形多工步模拟中的新技术[J].机械工程学报. 2002,38(6):72-75.
    [24] Frank Heislitz, Haydar Livatyali, Mustafa A. Ahmetoglu, Gary L. Kinzel, Taylan Altan. Simulation of roll forming process with the 3-D FEM code PAM-STAMP. Journal of Materials Processing Technology[J], 1996,59(1-2):59-57
    [25] Nitin Duggal, Mustafa A. Ahmetoglu, Gary L. Kinzel, Taylan Altan .Computer aided simulation of cold roll forming—a computer program for simple section profiles. Journal of Materials Processing Technology[J], 1996,59(1-2):41-48.
    [26] M Brunet, Mguil and P Pol. Modelling of a roll-forming process with a combined 2D and 3D FEM code [J]. Journal of Materials Processing Technology,1998,80-81:213-219
    [27] A. Alsamhan, P. Hartely and I. Pillinger. The computer simulation of cold-roll-forming using FE methods and applied real time re-meshing techniques [J]. Journal of Materials Processing Technology,2003,142(1):102-111
    [28] M.A. Sheikh and R.R. Palavilayil .An assessment of finite element software for application to the roll-forming process [J]. Journal of Materials Processing Technology, 2006, 180(1-3):221-232.
    [29] Kiuchi M, Wang F Z. FEM simulation of roll-forming of ERW pipes and mill/process design. Proceedings of NUMISHEET’99(Gelin J C., P.Picart eds.), Besancon France, 1999: 529-534
    [30]李大永,罗应兵,张少睿等.动力显式有限元法滚弯成形多工步仿真关键问题[J].机械科学与技术. 2004,23(12):1466-1469.
    [31]李大永,蒋劲茂,彭颖红,尹纪龙.滚弯成形过程仿真与参数优化.系统仿真学报. 2007,19(4):893-896.
    [32]尹纪龙,李大永,彭颖红,王飞舟.滚弯成形数值研究综述及多工步仿真技术研究[J].塑性工程学报, 2006,13(1):36-39.
    [33]曾国,来新民,于忠奇,郭永进.多道次滚弯成形数值模拟技术.上海交通大学学报, 2007,10(41):1598-1602.
    [34]罗晓亮,曾国,李淑慧,于忠奇.材料参数对高强钢滚弯成形边波影响的有限元分析.上海交通大学学报, 2008,41(5):776-778.
    [35] He Yang, Lianggang Guo, Mei Zhan, Zhichao Sun,Research on the influence of material properties on cold ring rolling processes by 3D-FE numerical simulation, Journal of Materials Processing Technology, 2006, 177 : 634-638.
    [36]袁海伦、王泽武,等.异形截面环件虚拟轧制及其工艺优化[J].塑性工程学报, 2006,13(6): 15-18.
    [37] G.nefussi,L.proslier,P.gilormini. A Simulation of Cold-Roll Forming for Elastoplastic materials.Elsevier science, 1998, 40(1):15-25.
    [38] Kiuchi M Analytical study on cold roll forming process[C], Report of the Ind Sci., No.23, University of Tokyo. 1973.
    [39] Neffusi G, Gilormini P. A simplified method for the simulation of cold roll forming [J]. International Journal of Mechanical Sciences , 1993, 35(10): 867-878.
    [40] Abaqus产品介绍. http://www.abaqus.com.cn.
    [41] Abaqus, Getting Started with Abaqus: Interactive Edition. Abaqus Version 6.7 Documentation.
    [42]王鹏,董湘怀. U型件冲压成形回弹过程的数值模拟及参数优化.上海交通大学学报, 2007,10(41):1590-1593.
    [43] W J Chung, J W Cho, T Belytschko. On the dynamic effects of explicit FEM in sheet metal forming analysis [J]. Engineering in Computations , 1998, 15 (6) : 750~756.
    [44] ABAQUS. ABAQUS analysis user’s manual [M]. Indiana, USA: [s. n.]. 2004, 450~600.
    [45] Sandip Bhattacharyya, M.Adhikary, M.B.Das, Sudipto Sarkar. Failure analysis of cracking in wheel rims- material and manufacturing aspects. Engineering Failure analysis, 2008,15:547-554.
    [46]林忠钦,艾健,张卫刚.冲压稳健设计方法及其应用[J].塑性工程学报, 2004,11(4):56-60.
    [47] Y. Abe. K. Mori, O. Ebihara. Optimisation of the distribution of wall thichness in the multistage sheet metal forming of wheel disks. Journal of Materials Processing Technology, 2002, 125-126:792-797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700