用户名: 密码: 验证码:
自制抗蒸腾叶面肥对苗木生长生理指标的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在干旱半干旱的条件下,蒸腾作用会引起植物水分大量丢失,就会导致植物水分亏缺甚至脱水。本实验在深入了解国内外抗蒸腾剂和叶面肥的发展历史和研究现状的基础上,通过对不同的抗蒸腾剂叶面肥进行分析研究和科学配比,研发出一种新型抗蒸腾叶面肥。实验采用四因素三水平的正交设计,研究了不同的抗蒸腾剂叶面肥对杏树(Prunus armeniaca)和旱柳(Salix matsudana)的生理指标及生长指标的影响。即在不同土壤含水量的条件下,用不同喷施浓度的不同种类的抗蒸腾剂叶面肥分别对杏树和旱柳进行处理。测定并分析了不同处理’下苗木的新梢长度、新梢直径、植物的生物量等生长指标以及叶绿素、光合速率、蒸腾速率、水分利用效率、叶水势等植物的生理指标的变化,筛选出对杏树和旱柳最有利的抗蒸腾叶面肥的种类、喷施浓度和土壤含水量组合。为黄土高原地区干旱半干旱地区植被恢复及生态建设提供理论和技术支撑。
     实验结果分析如下:
     (1)喷施2种自制抗蒸腾叶面肥对杏树和旱柳的新梢长度、新梢直径、生物量均有不同程度地促进作用。综合各项指标分析,杏树的生长指标提高效果最为显著的组合为自制叶面肥①、喷施浓度为900倍、土壤含水量为15%。组合自制叶面肥①、喷施浓度为900倍、土壤含水量为20%对旱柳的生长指标提高效果十分显著。
     (2)喷施2种自制抗蒸腾叶面肥均能不同程度地降低杏树和旱柳的蒸腾速率,增强叶片光合速率,提高水分利用效率,提高叶片的叶水势。综合各项指标,杏树的生理指标提高效果最为显著的组合为自制叶面肥①、喷施浓度为900倍、土壤含水量为20%。组合自制叶面肥①、喷施浓度为900倍、土壤含水量为20%以及组合自制叶面肥①、喷施浓度为900倍、土壤含水量为10%均对旱柳的生理指标提高效果十分显著。
     (3)综合各指标可得,影响杏树和旱柳喷施效果的三因素中,按高低排序依次均为叶面肥种类因素,喷施浓度因素,土壤含水量因素。对杏树综合性状增效最为显著的组合为A1B2C2、3,即在土壤含水量为15%-20%条件下,喷施浓度为900倍的自制叶面肥①。组合A1B2C3对旱柳的总体性状增效最为显著,即在土壤含水量为20%条件下,喷施浓度为900倍的自制叶面肥①。
In arid and semi-arid conditions, plants will lost a lot of water because of transpiration, which lead to deficit or even dehydration. On the basis of research of the developing history and current situation of anti-transpirant and foliar fertilizer home and aboard, a novel anti-transpiration foliar fertilizer was developed by analyzing and modifying the ratio of anti-transpirants and foliar fertilizer. The four-factor-three-level orthogonal experiment design was adopted to investigated the influence of foliar fertilization on seedling growing indexes, physiological indexes and some other index effects of Primus armeniaca and Salix matsudana. Under different soil moisturing conditions, Prunus armeniaca and Salix matsudana were treated with different concentration ratio of different foliar fertilization. The growing indexes including new shoots height, new shoots diameter, biomass and the physiological indexes including chlorophyll content, photosynthetic rate, transpiration rate, water use efficiency were measured and analyzed in order to select an optimal combination of anti-transpiration foliar fertilizer and soil moisture for Prunus armeniaca and Salix matsudana., This study aiming at providing theoretic and technical support for vegetation restoration and ecological building in arid and semiarid areas of loess plateau.
     Results are as follows:
     (1) Both self-made anti-transpiration foliar fertilizer and market fertilizer improved new shoots height、new shoots diameter and biomass of Prunus armeniaca and Salix matsudana. For Prunus armeniaca, the optimal treatment is self-made①with900times diluted and15%soil moisture. The best formula for Salix matsudana is self-made①with900times diluted and20%soil moisture.
     (2) Both kinds of self-made anti-transpiration foliar fertilizer and market fertilizer have positive effects on chlorophyll content,photosynthetic rate,transpiration rate, water use efficiency and leaf RWC of Prunus armeniacci and Salix matsudana in varying degrees. The best formula for Primus armeniac physiological indicator is self-made①with900times diluted and15%soil moisture. And the best formula for Salix matsudana physiological indicator is self-made①with900times diluted and10%soil moisture or20%soil moisture.
     (3) Taking all indicators available into consideration, we could rank the factors as fertilizer, spraying concentration and soil moisture. The optimal combination to improve general traits of Primus armeniaaca is A1B2C2.3, i.e. the best is900times dilution of the concentration between the self-made fertilizers①on soil water content of15%-20%. The most prominent combination to improve general trais of Salix matsudana is A1B2C3,that is,900times dilution of the concentration between the self-made fertilizers①on soil water content of20%.
引文
[1]鲍思伟.蚕豆(Vicia faba L.)叶片蒸腾速率的因子分析[J].四川师范大学学报:自然科学版,2001,24(3):296-298.
    [2]曹晓霞,郭建斌,李文斌.抗蒸腾叶面肥对苗木抗旱性的调节作用研究[J].西北农林科技大学学报,2010,38(9):61-65.
    [3]曹晓霞,郭建斌,李文斌.新型抗蒸腾叶面肥对刺槐水分利用效率的影响[J].亚热带水土保持,2012,22(3).20-27.
    [4]曹晓霞,郭建斌,杨晓菲,李文斌.不同浓度叶面肥处理下核桃瞬时水分利用效率研究[J].西北林学院学报,2011,26(3).26-29.
    [5]曹晓霞.抗蒸腾叶面肥对苗木基本生理及抗旱性指标的影响研究[D].北京林业大学,2011;
    [6]陈明扬.中国风尘堆积与全球干旱化[J].第四纪研究,1991,4:361-370.
    [7]邓春娟.新型抗蒸腾叶面肥对叶片蒸腾速率的影响[J],水土保持通报,2010,30(1).113-118.
    [8]邓春娟.新型抗蒸腾叶面肥在火炬树、刺槐、白榆上的应用.硕[D],北京林业大学,2008.
    [9]段剑波.FA旱地龙对作物水分生理及生长特性影响效应的试验研究[D],中国农业大学,2006.
    [10]杜美利,姜素荣,陈宏贵.多养分复合叶面肥的制备与性能[J].西安科技大学学报,2010,(01).23-28.
    [11]杜明华,刘文峰.叶面肥施用存在的问题及解决措施[J].内蒙古农业科技,2007,(01):23-26.
    [12]杜佩剑.不同基质配方及叶面肥浓度对四种观赏树种容器苗生长的影响.[D],南京农业大学,2008.
    [13]冯建灿,张玉洁等.干旱胁迫与抗蒸腾剂对喜树几项生理指标及喜树碱含量的影响[J].河南农业大学学报,2002,36(2):138-154.
    [14]冯建灿,郑根宝,何威.抗蒸腾剂在林业上的应用研究进展与展望[J].林业科学研究,2005,18(6):755-760.
    [15]符长焕,李建荣.有机无机复合肥对茭白产量及品质的影响[J].浙江农业科学,2002,4:169-171.
    [16]傅伯仁.黄土高原人工林“三低”原因探析[J].甘肃农业,200,10:58-59.
    [17]傅桦.全球气候变暖的成因与影响[J].首都师范大学学报(自然科学版),2007,28(6):11-21
    [18]高吉寅,胡荣海,路漳,等.水稻等品种苗期抗旱生理指标的探讨[J].中国农业科学,1984,(4):41-45.
    [19]高效钊,高效多元叶面肥料[J].安徽化工,2000,103(2):230-234.
    [20]葛建军,程光明,夏桂平.叶面肥的种类与发展趋势探析[J].现代农业科技,2008,(23):367-368.
    [21]龚明,杜朝昆,计文忠.钙和钙调素对玉米幼苗抗早性的调控[J].西北植物学报,1996,16(3):214-220.
    [22]官智,何延红,王明焱,叶面肥简介[J].云南热作科技,1998,21(2):41-42.
    [23]甘吉生,朱遐龄.抑制蒸腾剂的节水机理及应用技术研究验收评价报告[J].黄腐酸,1996(4):18-31.
    [24]何爽,不同类型抑制蒸腾剂对大豆和冬小麦生长及产量的影响[D],中国农业科学院,2009.
    [25]何威,抗蒸腾剂对女贞、杨树、制槐幼苗生长和几项生理指标影响的研究[D],河南农业大学,2005.
    [26]何为华,黄显淦.施钾对提高酥梨产量及品质的试验[J].土壤肥料,1998,(6):27-28.
    [27]黄享荣,徐建华.叶面肥管理尚有争议[J].农产品市场周刊,2009,(34):52-53.
    [28]黄照愿.配方施肥与叶面施肥[M].北京:金盾出版社,1997:74-75.
    [29]姜中珠,赵雨森,陈祥伟.白桦和真桦光合特性及水分利用效率的比较[J].东北林业大学学报,2009,37(8):11-12.
    [30]景蕊莲.作物抗旱研究的现状与思考[J].干旱地区农业研究,1999,17(2):79-85.
    [31]康绍忠.土壤一植物一大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994:56-60.
    [32]梁月.新型抗蒸腾叶面肥对剌槐、核桃苗木生理活性的影响[D].北京林业大学,2008.
    [33]陆萍.叶面肥在农业中的应用.第八届全国青年土壤暨第三届全国青年植物营养与肥料科学工作者学术讨论会论文集[M].2002:196-199.
    [34]甘吉生,朱遐龄.抑制蒸腾剂的节水机理及应用技术研究验收评价报告[J].黄腐酸,1996(4):18-31.
    [35]甘枝茂,桑广书.关于黄土高原退拼还林(草)问题[J].干旱区资源与环境,2002,16(1):62-65.
    [36]高彦,白海霞.蒸腾抑制剂对组培苗出瓶移栽后成活率的影响[J].植物生理学通讯,1997,33(3):171-173.
    [37]何国振,潘瑞炽.用表面活性剂提高稻苗叶片对6-HA的吸收和利用研究[J].中国水稻科学,1994,8(4):239-241.
    [38]何为华,黄显淦.施钾对提高酥梨产量及品质的试验[J].土壤肥料,1998,(6):27-28.
    [39]贺士元.北京植物志(上、下册)[M].北京:北京出版社,1984.
    [40]洪妍,董铁有,米娜.三槽型批式制取强酸性水设备的结构及参数[J].河南科技大学学报:自然科学版,2005,26(5):95-97.
    [41]侯惠宗.妙峰山乔灌木枝叶检索表[M].北京:科学出版社,1957.
    [42]黄春霞.黄土半干旱区主要造林树种水分生长函数研究[D].北京林业大学,2007.
    [43]黄立华,梁正伟,马红媛.苏打盐碱胁迫对羊草光合蒸腾速率及水分利用效率的影响[J].草业学报,2009,18(5):25-30.
    [44]赖哓绮,黄承玲.氧化还原平衡条件中条件电位的计算[J].赣南师范学院学报,2000(6):65-67.
    [45]李贵宝.叶面肥的种类与功能[J].农资科技,2000,(04):19-20.
    [46]李介生.现代植物生理学[M].北京:高等教育出版社2006,261-263.
    [47]李茂松,李森,张述义.一种新型FA抗蒸腾剂对春玉米生理调节作用的研究[J].中国农业科学,2003,36(11):1266-1271.
    [48]李森.新型FA抗蒸腾剂对冬小麦和春玉米的生理调节作用研究[D],中国农业科学院农业气象研究所,2003.
    [49]李苏红.不同配方氨基酸液肥对烤烟产质量和某些生理特性的影响[D],湖南农业大学,2007.
    [50]李文斌,郭建斌,蒋坤云.抗蒸腾型叶面肥对造林树种蒸腾速率影响的研究[J].水土保持通报2010,第六期.
    [51]李文斌,郭建斌,张旭.抗蒸腾型叶面肥对植物叶水势影响的研究[J].亚热带水土保持,2012,第22卷第3期,11-15.
    [52]李文斌,新型抗蒸腾叶面肥在造林树种上的应用[D],北京林业大学,2011:
    [53]李燕婷,李秀英,肖艳等,叶面肥的营养机理及应用研究进展[J],中国农业科学,2009年第1期.
    [54]梁月.新型抗蒸腾叶面肥对刺槐、核桃苗木生理活性的影响[D].北京林业大学,2008.
    [55]刘颖,基于“3S”技术的鹫峰森林公园立地分类及制图的研究[D],北京林业大学,2009.
    [56]彭孝飞,黄上高原主要造林苗木耗水特性与生长量关系研究[D],北京林业大学,2012.
    [57]师素恩,马宝琨.抗蒸腾剂在苹果试管苗移栽中的应用研究[J].河北农业大学学报,1994,17(3):1-4.
    [58]山仑,黄占斌,张岁歧.节水农业[M].暨南大学出版社,清华大学出版社,2000.
    [59]王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报,2003(10):1632-1636.
    [60]王雄.营养型茶叶专用叶面肥料配制技术研究[D],合肥工业大学,2002.
    [61]王一鸣.我国黄腐酸抗旱节水的研究与应用—从抗旱剂一号到FA早地龙[J].腐植酸,1996,1:35-43.
    [62]王勇.鹫峰国家森林公园土壤系统分类研究[D],北京林业大学,2010.
    [63]王红.水分胁迫下不同浓度保水剂与外源物质的耦合研究.[D],北京林业大学,2010.
    [64]于广武,何长兴,陶国臣等.可溶性叶面肥及其发展趋势—黄萎叶喷剂的研究新进展[J].腐植酸,2006年第3期.
    [65]张宾宾.新型环保型土壤改良剂沙地施用效果研究[D].北京林业大学,2012.
    [66]张习奇,马里超,鲍恩付.氨基酸叶面肥在水稻上的应用[J].安徽农业科学2003,(05):88-92.
    [67]长庆春,浅谈植物的根外营养[J].玉溪师范大学学报,2006,(02),1995,vol.11,4:58-60.
    [68]张福锁,张卫峰,马文奇.中国化肥产业技术与展望[M].北京:化学工业出版社,2007.
    [69]张丽秋.外源钙对马铃薯生长发育和品质的影响[D].石河子大学,2009.
    [70]赵玉宏,薛华.活性钙对脐橙果实品质的影响[J].湖北民族学院学报(自然科学版),2005,(2.):58-63
    [71]张静.叶而肥及其在作物上的应用[J].安徽农学通报,2007,(07):46-48.
    [72]赵贵,刘文杰.浅析叶而肥的施肥原理及特点[J].种植业,2009,(4):19-22
    [73]张静,叶而肥及其在作物上的应用[J].安徽农学通报,2007,13(7):143-144.
    [74]张正斌.植物对环境胁迫的整体抗逆性的若干问题探讨[J].西北农业学报,2000,(3):112-116.
    [75]郑根宝抗蒸腾剂应用于玫瑰切花保鲜的机理研究.[D].河南农业大学,2006.
    [76]周仪、王愈、张述祖等编《植物学》[M],北京师范大学出版社,1988.
    [77]庄舜尧,曹志洪.叶面肥的研究与发展[J].土壤,1998,(05):68-69.
    [78]Bittelli M, Flury M, Campbell GS. Reduction of transpiration through foliar application of chitosan[J]. Agricultural and Forest Meteorology,2001,107:167-175.
    [79]Darlington A, Vishnevetskaia K, Blake T J. Growth enhancement and antitranspirant activity following seed treatment with a derivative of 5-hydroxybenzimidazole (Ambiol) in four drought-stressed agricultural species[J]. Physiological Plantarum,1996,97:217-222.
    [80]David G, Jeff M. ORP measurements in water and wastewater[J].Ultra pure Water Journal,19 93,25 (5):26-31.
    [81]Gaouth A. Chitosan coating to extend the storage life of tomatoes [J]. Hort Science 1992,27 (9):1016-1018.
    [82]Gu S. Effects of antitranspirant and leaching on medium solution osmotic potential, leaf stomatal status,transpiration,Abscisic acid content and plant growth in" Early Girl" tomato plants(Lycopersicon esculentum)[J].Journalof Horticultural Science and Biotechnology,1998, 73(4):473-477.
    [83]Hurd E A. Phenotype and drought to lerance in wheat[J].Agric Meteor,1974,14:39-45
    [84]Kyaw W, Berkowite GA, Henminger M. Antitranspirant-induced increase in leaf water potential increase tuber Calcium and decrease tuber necrosis in water-stressed potato plants[J]. Plant Physiol,1991,96(5):116-120
    [85]Lulakis MD,Petsas SI. Effect of huminc substances from vine-canes mature compost on tomato seedling growth[J]. Bioresource Technology,1995,54(2):179-182
    [86]Marihelen K. Control of Erysiphe cichoracearum on Zinnia elegens with a polymer-based antitranspirant[J].HortScience,1985,20(5):879-881
    [87]Neumann P M, Prinz R.Evaluation of surfactants for use in the spray treatment of iron chassis in citrus trees[J].SciFood Agr.1974,25:221-226
    [88]Neumann P M. Prinz R.Foliar iron sprays potentate's growth of seedlings on iron-media[J].Plant Physio,1975,55:988-990
    [89]Nobel P S. In Patricia Brewer Biophysical Plant Physiology and Ecology[J].W.H. Freeman and Company,1983,96,507.
    [90]Osman A M, Milth or pe F C. Ph otos ynthes is of w heat 1 eaves in relat ionto ag e, illuminat ion and nut rient supply. Ⅱ. Results [J]. Photosynthetica,1997(5):61 -70.
    [91]Paul E, Plissonsaune SM. Process State Evaluation of Automating Oxie2anoxie Activated Sludge Using ORP,pH and DO[J].Wat Sci Tech,1998,38 (3):299-306.
    [92]Peter N, Berkowitz GA, Rabin J. Development of a seeding-applied antitranspirant formulation to enhance water status,growth,and yield of transplanted bell pepper[J]. Journal of the American Society for Horticultural Science,1991,116(3):405-411.
    [93]Robert A.Slesak and Russell D. Briggs, Folia Mass and Nutrition of Abies concolor Christmas Threes following Application of Organic and Inorganic Fertilizer[J], Northern Journal of Applied Forestry; Mar 2010; 27,1.
    [94]Sandler H A. Use of an antitranspirant to minimize winter injury on no flooded cranberry bogs[J]. Horticultural Science,1998,33(4):644-646
    [95]Stedvtop, Katerjin, Puertos-Molina H,et al.Water-use efficiency of sweet sorghum under water stress conditions:Gas exchange investigations at leaf and canopy scales[J]. Field Crops Research, 1997,54:221-234.
    [96]SOBRADO M A. Relation of water transport to leaf gas exchallge properties in three mangrove species[J]. Trees,2000,14:258-262.
    [97]Sun Shoujia, Gu Runze, Cong Richen,etc. Change of trunk sap flow of Ginkgo biloba L. and its response to inhibiting transpiration treatment[J], Higher Education Press and Springer-Verlag 20072(3):316-322.
    [98]Tesha AJ,Kumar D.Efects of fertilizer nitrogen on drought resistance of coffea Arabica[J].Agr Sci,1978,90:625-631.
    [99]Tu Z P, Armitage A M,Vines H M,Influence of an antitranspirant and a hydro gel on net photosynthesis and water loss of Cineraria during water stress[J]. HortScience,1985,20(3): 386-388
    [100]Turkan I, Bor M, Ozdemir F, et al. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P.acutifolius Gray and drought-sensitive P.vulgaris L. subjected to polyethylene glycol mediated water stress[J]. Plant Science,2005,168:223-231.
    [101]Vlessandro roversi. On mineral nut rit ion of hazelnut cv Tonda Genti le del le langhe [J]. L Informatore Agrario2 verona,2001,49:61265.
    [102]Walter B, Batgen D, Patenurg H and Koch W. Das Gartenamt,1974, vol.10:578-581.
    [103]Yamada Y, Jyung W J, Wittwer S H, Bukovac M J. The effects of urea on ion pen-etration through isolated cuticular membranes and ion uptake by leaf cells [J]. Proceedings of the America Society for Horticultural Science,1965,87:429
    [104]Zelitch I, Walker D A. The role of glycolic acid metabolism in the opening of leaf stomata[J]. Plant Physiol,1964,39:856-862.
    [105]Ziv O.Control of Septoria leaf blotch of wheat and powdery mildew of barley with antitransp-irant epidermal coating materials[J],Phytoparasitica,1983,11:33-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700