用户名: 密码: 验证码:
北川县四个树种根系的分布及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北川县几种常见的造林树种:柳杉、厚朴、桤木和楠竹的根系为研究对象,通过野外调查和室内试验相结合的方法,对根系的形态特征及分布情况,单根的抗拉力学特性等进行了研究;定性分析了直径、树种等因素对抗拉强度、最大抗拉力和应力-应变关系的影响。之后选取柳杉、厚朴和桤木的根系,进行重塑土直剪试验,对复合体的剪切特性进行研究分析。
     主要研究成果如下:
     (1)厚朴根系发达,主根不明显斜向生长且分支多,为斜生根型;桤木主根欠发达,侧根很发达,为水平根型;柳杉侧根数量较多,属复合根型;楠竹根系以竹根为主,均匀分布于基径周围。厚朴的总根长最长,其后依次为楠竹、桤木和柳杉:柳杉不同年龄段根系总长度9年生柳杉>6年生>3年生。
     (2)各个树种根系主要分布在距地面0-40cm之间。在土层40cm以下,平均根长减小到总根长的10%以下。用根系长度消弱系数描述根系垂直分布特征较理想。用SkethUp模拟出的根系三维立体图,较好的重现了根系的形态分布情况。
     (3)各树种单根的最大抗拉力随根径的增大而迅速增加,相同直径水平时单根最大抗拉力柳杉>厚朴>桤木>楠竹。不同树种根系的应力应变曲线均为递增曲线,不同的是5mm径级的曲线有较明显的屈服阶段。两个径级下厚朴和桤木的极限延伸率优于柳杉,但是四个树种单根的抗拉强度为:柳杉>桤木>厚朴>楠竹。
     (4)土体中含有根系时能明显提高土体的抗剪强度,且抗剪强度随根系含量的增加而增加。当有根系存在时,能有效的提高边坡中过量的水分对边坡的不利影响,从而提高土体的抗剪强度和边坡的稳定性。基于无限滑动面模型定量的分析,表明林木的存在能有效的增大边坡的稳定系数,进而增强坡体的稳定性。
Taking the roots system of cedar, Magnolia officinalis, alder and bamboo-which were the common specie for afforestation in Beichuan, Sichuan-as research objects, and combineing field investigation with laboratory test, this paper studied the morphology and distribution of root system, and the tensile preperties of a single root; analysed qualitatively the influence of root diameter and species etc. on the tensile strength, the maximum tensile stress and the stress-strain relationship of the root system. Besides, the shear proerties of root-soil composite were studied through the direct sheat test of remolding roots(Japanese cedar, Magnolia officinalis and alder, respectively)-soil composite.
     The main research results are as follows:
     (1) The root system of Magnolia officinalis is developed and oblique root typewith a unconspicuous and obliquely growing main root and many branches; the root system of alder is horizontal root type with a undeveploped main root and developed lateral roots; the root system of Cryptomeria fortunei is compound root type with lots of later roots; the root system of bamboo evenly distributed wihtin the basal diameter. The total root of Cortex Magnoliae officinalisis the longest among the research species, and is followed by bamboo, alder and Cryptomeria japonica; Cryptomeria fortunei at9years old is the longest in total root length and is followed by the different ages which is6years old and3years old.
     (2) The root system of each species is mainly distributed between0to40cm from the ground. The average root length is less than10%of the total root length below the depth of40cm. it is a good method to describe the verticle distribution of root system with the extinction coefficient of root length. The root three-dimensional map by SkethUp can represent the distribution of roots well.
     (3) For each species, the maximum tensile force increases rapidly with the increacement of root diameter, at the same diameter of a single root, the descending order of the maximum tensile force is Cryptomeria, Magnolia, alder and bamboo. The stress-strain relationship of all the trees is increasing curve, while the curve of5mm in diameter is with an obvious phase. The ultimate elongation of Magnolia officinalis and alder is lager than that of cedar at twoo diameter-class, while the descending order of the single root tensile strength of the four species is; Cryptomeria, alder, Magnolia and bamboo.
     (4) Root contained in soil can significantly improve the shear strength of soil, moreover, the shear strength increases with the increasing of root content. The existence of roots can effectively reduce the adverse effect of excess water on the slope, so as to improve the shear strengt of soil and the stability of slope. Based on the quantitative analysis of infinite sliding surface model, it is manifest that forests can effectively increase the coefficient of slope stability and enhance the slope stability.
引文
[1].阿部和时,岩元贤.用树木根系的抗拉强度测定根系固定坡面的作用[J].水土保持科技情报,1992,4:53-57,35.
    [2].艾素云,黄玉源,伍映辉.贵州苏铁根的解剖学研究[J].云南植物研究,2006,28(2):149-156.
    [3].北川羌族自治县人民政府.北川羌族自治县年鉴[M],2003.
    [4].伯姆w.根系研究法[M].北京:科学出版社,1985.
    [5].陈丽华,余新晓,刘秀萍,等.林木根系本构关系[J].山地学报,2007,25(2):224-228.
    [6].陈丽华,余新晓,宋维峰,等.林木根系固土力学机制[M].北京:科学出版社,2008.
    [7].程洪,谢涛,唐春,等.植物根系力学与固土作用机理研究综述[J].水土保持通报,2006,26(1):97-102.
    [8].程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    [9].代全厚,张力,刘艳军,等.嫩江大堤植物根系固土护堤功能研究[J].水土保持通报,1998,18(6):8-11.
    [10].范兴科,蒋定生,赵合理.黄土高原浅层原状土抗剪强度浅析[J].土壤侵蚀与水土保持学报,1997,3(4):69-75.
    [11].封金财,王建华.乔木根系固坡作用机理的研究进展[J].铁道建筑,2004,(3):29-31.
    [12]郭维俊,黄高宝,王芬娥,等.植物根系若干力学问题研究[J].中国农机化,2006,(2):84-88.
    [13].国家质量技术监督局,中华人民共和国建设部.土工试验方法标准(GB/T50123-1999)[S]北京:中国计划出版社,1999:90-107.
    [14].国家质量监督检验检疫总局.金属材料室温拉伸试验方法(GB/T228-2002)[S]北京:中国标准出版社,2002.
    [15].郝彤琦,谢小妍,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学学报,2000,21(4):78-80.
    [16].胡夏嵩,李国荣,朱海丽,等.寒旱环境灌木植物根-土相互作用及其护坡力学效应[J].岩石力学与工程学报,2009,28(3):613-620.
    [17].侯加林,王一鸣,董乔雪,等.虚拟植物生长的研究现状与发展趋势[J].农业机械学报,2004,35(3):159-163.
    [18].蒋坤云,陈丽华,盖小刚,等.华北护坡阔叶树种根系抗拉性能与其微观结构的关系[J].农业工程学报.2013(03).
    [19].解明曙.林木根系固坡力学机制研究[J].水土保持学报,1990,4(3):7-14.
    [20].解明曙.乔灌木根系固坡力学强度的有效范围与最佳组构方式[J].水土保持学报,1990,4(1):17-23.
    [21].李成凯.青藏高原黄土区四种草本植物单根抗拉特性研究[J].中国水土保持,2008,(5):33-35.
    [22].李贺鹏,岳春雷,陈友吾,等.浙南山区6种优势乔木植物根系的力学特性研究[J].浙江林业科技,2010,30(3):6-11.
    [23].李会科,王忠林,贺秀贤,等.地埂花椒林根系分布及力学强度测定[J].水土保持研究,2000,7(1):38-41.
    [24].李宁.螺杆泵转子拉伸成型的技术探索[D].武汉科技大学,2010.
    [25].李鹏,赵忠,李占斌,等.淳化县不同立地上刺槐根系的分布参数[J].南京林业大学学报(自然科学版),2002,26(5):32-36.
    [26].李绍才,孙海龙,杨志荣,等.岩石边坡喷播植草护坡工程的抗侵蚀效应[J].北京林业大学学报,2006,25(1):43-47.
    [27].李勇,徐晓琴,朱显漠,等.黄土高原植物根系强化土壤渗透力的有效性[J].科学通报,1992(4):366-369.
    [28].梁建萍,韩有志.油松人工林根系生物量的研究[J].河南科学,1996,17:77-79.
    [29].刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37.
    [30].刘飞,史承军,陈朝霞,等.北川县擂鼓镇安置区园林景观设计研究[J].园林科技,2009,(4):30-33.
    [31].刘国彬,蒋定生,朱显漠.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报,1996(3):21-28.
    [32].刘秀萍,陈丽华,陈吉虎.刺槐和油松根系密度分布特征研究[J].干旱区研究,2007,24(5):647-651.
    [33].刘秀萍,陈丽华,宋维峰,等.油松根系抗拉应力与应变全曲线试验研究[J].中国水土保持科学,2006,4(2):66-70.
    [34].刘秀萍,陈丽华,宋维峰,等.油松根系形态分布的分形分析研究[J].水土保持通报,2007,27(1):47-54.
    [35].刘秀萍,陈丽华,宋维峰.林木根系与黄上复合体的抗剪强度试验研究[J].北京林业大学学报,2006,28(5):67-72.
    [36].刘秀萍,陈丽华,张心平,等.黄土高原造林边坡应力应变特征及其稳定性分析[J].北林业大学学报,2008,30(5):97-103.
    [37].刘秀萍.林木根系固土有限元数值模拟[D].北京:北京林业大学,2008:41-42.
    [38].吕春娟,陈丽华,周硕,等.不同乔木根系的抗拉力学特征[J].农业工程学报,2011,27(13):329-335.
    [39].罗龙皂,李绍才,孙海龙,等.石质陡边坡构树根系抗拉特性研究[J].中国水土保持,2011,(4):37-40.
    [40].马骏.黄土坡面果粮复合系统果树根系分布与分形特征[D].北京林业大学,2008.
    [41].马世骏.展望90年代的生态学[J].中国科学院院刊,1990,5(1):29-32.
    [42].乔娜,余芹芹,卢海静,等.寒旱环境植物护坡力学效应与根系化学成分响应[J].水土保持研究,2012,19(3):108-113.
    [43].秋林,刘晓东,罗爱玲,等.用L系统描述植物根系并实现其动态可控生长[J].微电子学与计算机,2003,(11):56-59.
    [44].史敏华,王棣,李任敏.石灰岩区封山后山地植被水土保持功能的研究[J].山西林业科技,1994(3):11-14.
    [45].史敏华,王棣,李任敏.太行山石灰岩区主要水保灌木根系分布特征与根抗拉力研究[J].北京林业大学学报,1996,18(S3):34-37.
    [46].宋维峰,陈丽华,刘秀萍.树木根系固土力学机制研究综述[J].浙江林学院学报,2008,25(3):376-381.
    [47].宋维峰.林木根系与均质土间相互物理作用机理研究[D].北京:北京林业大学 报,2006:65-70.
    [48].谭玲玲,蔡霞,胡正海.北柴胡根的发育解剖学研究[J].西北植物学报,2005,25(11):2198-2203.
    [49].王方石.L-系统在植物模拟中的应用[J].北方交通大学学报.1998,6,22(3):45-48
    [50].王礼先.水土保持学.北京:中国林业出版社,1995.6
    [51].王萍花,陈丽华,冀晓东,等.4种常见乔木单根拉伸的应力应变曲线分析[J].水土保持通报,2012,32(3):17-22.
    [52].王琼,宋桂龙,辜再元,等.边坡生态防护中草本植物根系的力学试验研究[C].//2008年全国工程绿化技术交流研讨会论文集.2008:81-89.
    [53].王义琴,张慧娟,白克智,等.分形几何在植物根系研究中的应用[J].自然杂志,1999,21(3):143-145.
    [54].向师庆,赵相华.北京主要造林树种的松系研究[J].北京林学院学报,1981,3(2):19-32.
    [55].肖东升,张涛.边坡土体强度与植被根系作用的研究[J].路基工程,2008(1):135-137.
    [56].谢春华,关文彬,张东升,等.长江上游暗针叶林生态系统主要树种的根系结构与土体稳定性研究[J].水土保持学报,2002,16(2):76-79.
    [57].熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报,2007,18(4):895-904.
    [58].杨维西,黄治江.黄土高原九个水土保持树种根的杭拉力[J].中国水土保持,1988.9:47-49.
    [59].杨维西,赵廷宁,李生智,等.人工刺槐林采伐后根系固土作用的衰退状况[J].水土保持学报,1990,4(1):6-10.
    [60].杨严川,吴永京,王芝芳.土壤—草本植被根系复合体抗水蚀强度与抗剪强度的试验研究团.中国农业大学学报,1996,1(2):31-38.
    [61].野久田捻郎,林拙郎,李晓华.由根系抗拉强度推算根系固坡效果[J].水土保持科技情报,1997,(一):25-25.
    [62].苑淑娟,牛国权,刘静等.瞬时拉力下两个生长期4种植物单根抗拉力与抗拉强度的研究[J].水土保持通报,2009,29(5):22-26.
    [63].张超波.林木根系固土护坡力学基础研究[D].北京林业大学,2011.
    [64].张东升.长江上游暗针叶林林木根系抗拉力学特性研究[D].北京林业大学硕士论文,2002.
    [65].张树兵,王建中.L-系统的植物建模方法改进[J].中国图像图形学报,2000,32(5):457-460.
    [66].张宇清,朱清科,齐实,等.梯田生物埂几种灌木根系的垂直分布特征[J].北京林业大学学报,2006,28(2):34-38.
    [67].赵丽兵,张宝贵.紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J].农业工程学报,2007,23(9)7-12.
    [68].赵忠,李鹏,王乃江.渭北主要造林树种根系抗旱性研究[J].水土保持研究,2000,7(1):92-94.
    [69].钟南,罗锡文,严小龙,等.植物根系生长的三维可视化模拟[J].华中农业大学学报,2005,24(5):516-518.
    [70].周德培,张俊云.植被护坡工程技术阿].北京:人民交通出版社,2003.
    [71].周朔.林木根系拉伸力学特性研究[D].北京林业大学硕士论文,2011.
    [72].周跃,陈晓平,李玉辉,等.云南松侧根对浅层土体的水平牵引效应的初步研究[J].植物生态学报,1999,23(5):458-465.
    [73].周跃,李宏伟,徐强.云南松幼树垂直根的土壤增强作用[J].水土保持学报,2000,14(5):110-113.
    [74].周跃,张军,林锦屏,等.西南地区松属侧根的强度特征对其防护林固土护坡作用的影响[J].生态学杂志,2002,21(6):1-4.
    [75].朱海丽,胡夏嵩,毛小青,等.护坡植物根系力学特性与其解剖结构关系[J].农业工程学报,2009,25(5):40-46.
    [76].朱清科,陈丽华,张东升,等.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报,2002,24(4):64-67.
    [77].朱珊,绍军义.根系黄土抗剪强度的特性[J].青岛建筑工程学院学报,1997,18(1):5-9.
    [78].Cofie P, Koolen A J,2001.Test speed and other factors affecting the measurements of tree root properties used in soil reinforcement models.Soil Till Res63,51-56.
    [79].Endo, T. and Tsuruta, T. (1969) The Effect of Trees Roots Upon the Shearing Strength of Soil. Annual Report of the Hokkaido Branch. Tokyo Forest Experiment Station. Volume 18.
    [80].De Baets S, Poesen J, Reubens B, et al.Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 2008, 305,207-226.
    [81].Dupuy L, Fourcaud T, StokesA,2005a.A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278,119-134.
    [82].Gale M R, Grigal D F,1987.Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17,829-834.
    [83].Greenway D R,1987.Vegetation and slope stability.In:Anderson MG, Richards KS (eds) Slope Stability.Wiley, Chichester,187-230.
    [84].Greenway D. T.1987.Vegetation and slope stability.In Slope Stability.Eds.M G Anderson & K S Richards pp.187-230.John Wiley, New York, USA.
    [85].Lindenmayer A.Mathematical models for cellular interaction indevelopment, Part Ⅰ and Part Ⅱ. Journal of Theoretical Biology,1968,18:280-315.
    [86].Liu J,1994.The effect of dynamic characteristics of beech and larch root strength on trafficability.In:Proceedings of the sixth European ISTVS conference, Vienna Austria, September 28-30,12p.
    [87].Makarova O V, Cofie P, Koolen A J,1998.Axialstress-strain relationships of fine roots of Beech and Larch in loading to failure and in cyclic loading. Soil Till Res 45,175-187.
    [88].Mech R, Prusinkiewicz P.Visual models of plants interacting with their environment [J].Computer Graphics,1996,30(3):397-410.
    [89].Nilaweera N S 1994.Effeets of tree roots on slope stability:the case of Khao Luang Mountain area, So Thailand.Dissert.No.Gt-93-2.
    [90].Nilaweera N S, Nutalaya P,1999.Role of tree roots in slope stabilisation.Bull Eng Geol Environ 57,337-342.
    [91].O.V. Makarova, P. Cofie, A.J. Koolen. Axial stress-strain relationships of fine roots of Beech and Larch in loading to failure and in cyclic loading [J]. Soil & Tillage Research,1998, 45:175-187.
    [92].Operstein V, Frydman S,2000.The influence of vegetation on soil strength.Ground Improve, 81-89.
    [93].Operstein V,Frydman S.The influence of vegetation on soil strength [J]. Ground Improvement,2000,4:81-89.
    [94].P. Cofie, A.J. Koolen, U.D. Perdok. Measurement of stress-strain relationship of beech roots and calculation of the reinforcement effect of tree roots in soil-wheel systems [J]. Soil & Tillage Research,2000,57:1-12.
    [95].Prusinkiewicz P. A.Look at the visual modeling of plant using L-systems. Agronomie,1990, 19:211-224.
    [96].Schiechtl H M,1980.Bioengineering for land reclamation and conservation.University of Alberta Press,Edmonton,Alberta,Canada.
    [97].Stokes A, Sotir R, Chen W, Chestem M,2010.Soil bio-and eco-engineering in China:Past experience and future priorities preface.Ecol Eng 36,247-25.
    [98].Swanson F J, Wanston D N. Complex mass-movement terrains in western Cascade range, Oregon[J].Reviews in Engineering Geology,1977,13:113-124.
    [99].Swanston D N, Soil-water piezometry in a southeast Aaska landslide area:U.S.Department of Agriculture.1967, Forest Service Research Note PNW-68,17p.
    [100].Waldron L J. The shear resistance of root-permeated homogenous and stratified soil [J]. Soil Science Society of America Journal,1977,41:843-849.
    [101].Wu T H, McKinnell W P, Swanston D N. Strength of tree roots and landslides on prince of Wales Island.Alaska.Canadian Geotechnical Journal,1979,16(1),:19-33.
    [102].Wu T H, Watson A,1998.Insitu shear tests of soil blocks with roots. Can Geotech J 35(4), 579-590.
    [103].Zhang C, Chen L, Liu Y, et al.2010.Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength.Eeol Eng36,19-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700