用户名: 密码: 验证码:
潜水层地下水及其营养物质入湖实验与数学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于农业施肥等人类活动的影响,潜水层地下水受到严重污染,通过地下水进入湖泊的营养负荷量显得越来越重要,特别是对湖泊岸边水体的富营养化起到了促进的作用。综合国内外相关内容的调查研究,本文利用室内土槽试验和数学模拟方法,并结合我国浅水湖泊的特点,模拟研究了两种典型潜水含水层中地下水及其营养物质入湖的规律,揭示了渗流速度和营养物质浓度在湖泊岸坡和湖底两个交界面上的分布形式,并将模型初步应用到我国的滇池。
     具体结论如下:
     (1)在总结国内外已有研究的基础上,概化了两种典型含水层—湖泊系统,即小厚度含水层(含水层厚度等于湖泊深度)和大厚度含水层(含水层厚度大于湖泊深度)与湖泊的关系,并对其间的水量和溶质交换机理进行了详细的分析。
     (2)利用土槽试验和MODFLOW模型模拟研究了不同岸坡倾角下地下水入湖时在入湖交界面处的渗流速度分布规律。小厚度含水层地下水主要从靠近湖泊岸边的沿岸带进入湖泊水体,渗流的速度随着离岸距离增大呈指数函数形式递减。大厚度含水层地下水从湖泊岸坡和湖底两个界面进入湖泊,两个界面上渗流速度仍然满足递减的指数函数分布。随着岸坡倾角的增大,从岸坡上渗入的水量逐渐减小,而通过湖底的渗流量逐渐增大。当岸坡倾角很小时,从湖底界面上渗入的水量可以忽略不计。
     (3)试验研究了保守性溶质氯化物在含水层-湖泊系统中的运移规律。结果发现当含水层上游来水中溶质为均匀分布时,在湖泊岸坡界面上的溶质浓度随着岸坡倾角的变化而发生变化,由于渗流路径长短的不同和边壁效应的影响,各点达到稳定的时间不同,溶质入湖的通量主要受渗流量分布的影响。
     (4)试验模拟了氨氮随着降雨等过程下渗到地下水并渗入湖泊的迁移转化规律,并利用MODFLOW模型模拟了经过概化后的非饱和带中硝态氮下渗进入湖泊的迁移过程。结果发现,流域内地表污染源进入地下水体的过程可以简化为连续恒定排放的污染源,非饱和带可以概化为富含营养物质的污染区和传递营养物质的过渡区。地表营养物质入渗后大多滞留在浅层地下水的上部,主要在湖泊的岸边排入水体,在入湖界面上的浓度分布符合递减的一阶指数函数形式。
     (5)将MODFLOW模型应用于滇池流域,得出每年通过东侧和北侧地下水进入湖泊的总水量为6.0×10~6m~3,硝态氮为87.1t,总磷为1.7t。其中东侧和北侧含水层地
Human actives like agricultural fertilization polluted local shallow groundwater quality. The eutrophication process of lake water (especially lakeshore water) would be accelerated because of the great deal of nutrients from shallow aquifers. Based on the investigations about groundwater flow to lake, soil tank experiments and mathematical simulation were done for studying groundwater and its nutrients from two kind typical aquifers into shallow lake. The distribution of seepage and nutrient concentration along transversal profile of lakeshore and lake bottom were discussed. The fluxes of groundwater and nutrients from eastern and northern aquifers entering into Dianchi Lake were obtained.Following results were obtained by experimental and mathematical simulation.(1) Based on the investigations about groundwater flowing into lake, two kinds typical system of aquifer and lake were conceptually summarized, namely the thin aquifer (on the assumption that the thickness of aquifer approximates to the depth of lake) and thick aquifer with lake (on the assumption that the thickness of aquifer is bigger than the depth of lake). The exchange mechanisms of water flow and solute between aquifer and lake were detailed.(2) The seepage velocity through lakeshore and lake bottom interfaces under different lakeshore inclinations were discussed by experiments in soil tank and model simulations using MODFLOW. The seepage flow from thin aquifer caused on a narrow littoral zone on lakeshore interface, and the seepage velocity decreased as a descending exponential function along the transversal profile with offshore distance. However, the seepage flow from thick aquifer caused synchronously on two interfaces of lakeshore and lake bottom, and concentrated at two zones: littoral zone and the joint of lakeshore and lake bottom. The seepage velocity on the two interfaces still satisfied with descending exponential function along the transversal profile. With the increasing of lakeshore inclination, the seepage from lakeshore interface decreased gradually, but increased from lake bottom interface. The seepage from lake bottom interface maybe ignored when the inclination was little.(3) The distribution of chloride concentration on exchange interfaces was studied. When the distribution of chloride in upstream groundwater was uniform, the concentrations on interface were also even if the transport time enough. However, the concentrations were
    decreased with offshore distance before being even. This reduction was due primarily to dispersion effect acting in the final portion of the flow path. Solute concentrations were also more likely to be attenuated with distanced from a shoreline due to the longer flow path.(4) The transport of nitrogen seeped from surface soil to groundwater and lake was experimented in soil column and tank equipments. And the transport of nitrate nitrogen in groundwater entering into lake was simulated by using MODFLOW. Results show that the surface soil pollution maybe regarded as a continued constant pollution source and that the unsaturated soil zone delineated as pollution enriched zone (or layer) and pollution transfer zone (or layer) was reasonable. The nutrient from surface soil with precipitation was resorted in upper aquifer and transport longitudinally with groundwater to lake. As a result, the high concentration nutrient concentrated at littoral zone, and the distribution of nitrate concentration satisfied with a decline exponential function.(5) As an example, the groundwater and its nutrients discharged into Dianchi Lake were calculated by using MODFLOW model. The available evidence indicates that groundwater discharge to the lake occurs primarily along the northern and eastern shorelines, with limited additional discharge to the western shoreline. Groundwater discharge to the lake from the adjacent aquifer system is probably concentrated in the near-shore areas of the lake bottom. The groundwater discharge into Dianchi Lake from northern and eastern aquifers is about 6.0 × 10~6m~3/a, and the nitrate nitrogen and total phosphorus are 87. It/a and 1.7t/a respectively. The half of groundwater and nutrient (50%) discharge into Dianchi Lake concentrated in 8.0m and 4.5m width narrow zone along transversal profile of lakeshore. These nutrients load may accelerate the eutrophication of the lakeshore water in Dianchi Lake.
引文
[1] 蒋火华,吴贞丽,梁德华.世界典型湖泊水质探研[J].世界环境,2000,(4):35-37.
    [2] 谢雄飞,肖锦.水体富营养化问题评述[J].四川环境,2000,19(2):22-25.
    [3] Bartsch A. F. (1972). Nutrients and eutrophication-propects and options for the future. In Nutrients and Eutrophication: The Liniting Nutrients Controversy (ed. G.E.Likens). The American Society of Limnology and Oceanography, Lawrence, Kansas, PP.297-300.
    [4] 李小平.美国湖泊富营养化的研究和治理[J].自然杂志,2002,24(2):63-68.
    [5] UNEP Earthwatch. Chemical Pollution: A Global Review of Eutrophication[J]. World Environment, 1994, (1):63-67.
    [6] 杨红,任志远.中国湖泊的富营养化评价研究[J].陕西师范大学学报,2000,28(4):104-107.
    [7] 刘连成.中国湖泊富营养化的现状分析[J].灾害学,1997,12(3):61-65.
    [8] 黄文钰,吴延根,舒金华.中国主要湖泊水库的水环境问题与防治建议[J].湖泊科学,1998,10(3):83-90.
    [9] 张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002.
    [10] 潘世兵,王忠静,邢卫国.河流—含水层系统数值模拟方法探讨[J].水文,2002,22(4):19-21.
    [11] 王超,李勇,包振琪.污染河道对沿岸地下水环境影响规律研究[J].水科学进展,2002,13(5),Sep.:535-541.
    [12] 姜翠玲,夏自强,刘凌.污灌对奎河两岸土壤和地下水环境要素的影响[J].河海大学学报,1997,25(5):114-116.
    [13] 俞艳荣,李同福.滏阳河污水对沿岸她下水水质影响分析研究[J].水资源保护,1998,(2):39-45.
    [14] 高宗军,高洪阁,李白英.污染河水对地下水化学环境的影响[J].中国地质灾害与防治学报,2002,13(1):89-97.
    [15] 高洪阁,李白英,刘立民,等.在不同地质条件下污染河水对其附近流域地下水化学环境的影响[J].环境工程,2002,20(5):70-73.
    [16] 蒋业放,张兴有.河流与含水层水力耦合模型及其应用[J].地理学报,1999,54(6):526-533.
    [17] Craig T. Simmons, Kumar A. Narayan, Juliette A. Woods, Andrew L. Herczeg, Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia [J], Hydrogeology Journal, 2002, 10: 278-295.
    [18] Lloyd R.Townley, Michael G.Trefry. Surface water-groundwater interaction near shallow circular lakes: Flow geometry in three dimensions[J]. Water Resources Research, 2000, 36(4), 935-949.
    [19] Arthur J. Peter M. Groffman, Kelly Addy, D.Q.Kellogg, Mark Stolt and Adam E.Rosenblatt. Landscape attributes as controls on groundwater nitrate removal capacity of riparian zones[J]. Journal of the American water resources association, 2001, 37(6): 1457-1464.
    [20] 秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].长江流域资源与环境,2002,14(3):193-201.
    [21] 高超,张桃林,吴蔚东.太湖地区农田土壤养分动态及其启示[J].地理科学,2001,21(5):428-432.
    [22] 高超,朱建国,窦贻俭.农业非点源污染对太湖水质的影响:发展态势与研究重点[J].长江流域资源与环境,2002,11(3):260-263.
    [23] 夏立忠,杨林章.太湖流域非点源污染研究与控制[J].长江流域资源与环境,2003,12(1):45-49.
    [24] Fujita, R.M.,T.A.Wheeler, and R.L. Edwards. Assesment of macroalgal nitrogen limitation in a seasonal upwelling region [J]. Ecology, 53,293,1989.
    [25] Hallberg G. R., Nitrates in ground water in lowa, in:Rual Ground Water Contamination, eds.F.M. D'Itri and L.G.Wolfson (Chelsea, Michigan, 1987), 23-68.
    [26] 李世娟,李建民.氮肥损失研究进展[J].农业环境保护,2001,20(5):377-379.
    [27] 赵允格,邵明安.不同施肥条件下农田硝态氮迁移的试验研究[J].农业工程学报,2002,18(4):37-40.
    [28] Nancy N. Rabalais. Nitrogen in Aquatic Ecosystems[J]. Ambio, 2002, 31(2): 102-112.
    [29] Q.Z.geng, G.G.Irard, and E.Ledoux, Modeling of Nitrogen Cycle and Nitrate Transfer in Regional Hydrogeologic Systems[J]. Groundwater, 1996, 34(2):293-304.
    [30] 康德梦,陈立顶.中国环境中氮循环的动态模式[J].环境科学学报,1991,11(2):142-156.
    [31] 熊正琴,邢光熹,沈光裕,等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境,2002,18(2):29-33.
    [32] 邢光熹,施书莲,杜丽娟,等.苏州地区氮污染状况[J].土壤学报,2001,38(4):540-545.
    [33] 陈效民,潘根兴,沈其荣,等.太湖地区农田土壤中硝态氮垂直运移的规律[J].中国环境科学,2001,21(6):481-484.
    [34] 李广贺,张大奕,张旭,郭华明.滇池流域集约化农田区氮素损失研究[J].地学前缘,2005,12,增刊.
    [35] 涂继武.洞庭湖区的区域环境水文地质现状[J].湖南地质,2001,20(3):203-206.
    [36] 王东升.地下淡水演变与水致疾病[J].地球学报,1998,19(4):443-448.
    [37] C.E.Wright. Surface water and groundwater interaction[C]. Paris, United Nations Educational, Scientific and Cultural Organization (UNESCO), 1980.
    [38] Stephen Foster John Chilton, Marcus Moench, Franklin Cardy Manuel Schiffler.农村发展中的地下水问题[R].中国财政经济出版社,2001.
    [39] Walter k. Dodds. Freshwater Ecology: Concepts and Environmental Applications [M]. ACADEMIC Press: New York, 2002: 337-366.
    [40] 罗泽娇,靳孟贵.地下水三氮污染的研究进展[J] 水文地质工程地质,2002,(4):65-69.
    [41] 余德辉,金相灿.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001.
    [42] 朱仲元,莫力庙水库与地下水水量转化关系研究[J].内蒙古水利,1995,2:9-11,21.
    [43] P.W.G.Daldorph,G.E.Spraggs, Dip. Hydrol, H.S.Wheater. Integrated Lake and catchment Phosphorus Model-A Eutrophication Management Tool.I: Model Theory [J]. J.CIWEN, 2001, 15(7-8): 174-181.
    [44] P.W.G.Daldorph, G. E. Spraggs, Dip. Hydrol, H.S.Wheater. Integrated Lake and catchment Phosphorus Model-A Eutrophication Management Tool.Ⅱ:Application to Rutland Water[J]. J.CIWEN, 2001, 15(7-8): 182-189.
    [45] H. L. Ferguson, V.A.Znamensky. Methods of computation of the water balance of large lakes and reservoirs[C]. Paris, United Nations Educational, Scientific and Cultural Organization (UNESCO), 1981.
    [46] Winter, T. C., Groundwater component of lake water and nutrient budgets [J]. Verh, Int.Verein. Limnol, 1978b, 20: 438-444.
    [47] Brian G. Katz, Terrie M.Lee,L.Niel Piummer and Rurybiades Busenberg. Chemical evolution of groundwater near a sinkhole lake, northern Florida 1.Flow patterns, age of groundwater, and influence of lake water leakage [J]. Water Resources Research, 1995, 31(6): 1549-1564.
    [48] Brian G. Katz, Terrie M.Lee, L.Niel Plummer and Rurybiades Busenberg. Chemical evolution of groundwater near a sinkhole lake, northern Florida 2. Chemical patterns, amass transfer modeling, and rates of mass transfer reactions[J]. Water Resources Research, 1995, 31(6): 1565-1584.
    [49] Shaw R. D., J.F.H.Shaw, H. Fricker and E.E.Prepas, An integrated approach to quantify groundwater transport of phosphorus to Narrow Lake, Alberta [J]. Limnol.Oceanogr., 1990, 35: 870-886.
    [50] R.D.Shaw, E.E.Prepas. Groundwater-lake interactions:I.Accuracy of seepage meter estiments of lake seepage[J]. Journal of Hydrology, 1990, (119): 105-120.
    [51] R.D.Shaw, E.E.Prepas. Groundwater-lake interactions:Ⅱ.Nearshore seepage patterns and the contribution of groundwater to lakes in central Alberta[J]. Journal of Hydrology, 1990,(119): 121-136.
    [52] Kawabata,H.,Groundwater flow into lake Biwa,l,Environmental behaviors in lake Biwa and near its Basin,Rep.Environ. Sci. of Sci.Res B2-R-12-1, Ministry of Educ.of Japan, 1978: 24-28.
    [53] Kayane,Ⅰ.Groundwater as a environmental factor, Rep.Environ.Sci.of Sci.Res.B162-S704, Ministry of Educ.of Japan, 1982: 1-6.
    [54] Charles F.Pitz. Moses Lake Total Maximum Daily Load Groundwater Study [R]. Environmental Assessment Program Olympia, Washington, 2003.
    [55] Stauffer R.E., Use of solute tracers released by weathering to estimate groundwater inflow to seepage lakes [J]. Environ. Sci.Technol., 1985, 19, 405-411.
    [56] David P.Krabbenhoft,Carl J.Bowser,Mary P.Anderson,et.al. Estimating groundwater exchange with lakes 1.The Stable Isotope Mass Balance Method[J]. Water Resources Research, 1990, 26(10): 2445-2453.
    [57] David P.Krabbenhoft,Carl J.Bowser,Mary P.Anderson,et.al. Estimating groundwater exchange with lakes 2.Calibration of a Three-Dimensional,Solute Transport Model to a Stable Isotope Plume[J]. Water Resources Research, 1990, 26(10): 2455-2462.
    [58] Cook P G, Solomon D K. Recent advances in dating groundwater:Chlorofluorocarbons, ~3H/~3He and ~(85)Kr [J]. Journal of Hydrology, 1997,191:245-265.
    [59] Cook P G, Solomon D K. Transport of atmospheric trace gases to the water table: Implication for groundwater dating with Chlorofluorocarbons and krypton 85 [J]. Water Resources Research, 1995, 31(2): 263-270.
    [60] Warren W W,Ward E S. Chemical and isotopic methods for quantifying groundwater recharge in a regional, semiarid environment [J]. Groundwater, 1995, 33(3):458-468.
    [61] Shaw T J, Moore W S, Kloepfer J,et al. The flux of barium to the coastal waters of the Southeastern USA: The importance of submarine groundwater discharge [J]. Geochemica et Cosmochimica Acta, 1998, 62(18): 3047-3054.
    [62] Moore W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichment [J]. Natur, 1996, 380(6575): 612-614.
    [63] Moore W S. High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra River during low river discharge suggest a large groundwater source [J]. Earth and Planetary Science Letters, 1997, 150(l-2):141-150.
    [64] Frederick J. Ramsing. Measurement of Groundwater Seepage into Lake Tahoe and Estimation of Nutrient Transport from a Lake Tahoe Watershed [Thesis]. 2000
    [65] Leslie A.DeSimone,Brian L.Howes. Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: A mass balance approach [J]. Water Resource Research, 1998, 34(2): 271-285.
    [66] Simon P.Nield. A framework for quantitative analysis of surface water-groundwater interaction: Flow geometry in a vertical section[J]. Water Resources Research, 1994, 30(8):2461-2475.
    [67] Fellows C.R. and P.L.Brezonik, Seepage flow and into Florida Lakes[J]. Water Resour.Bull. ,1980, 16,635-641.
    [68] V.G. Rumynin, L.N. Sindalovskiy,P.K. Konosavsky,et.aL Study of groundwater contamination by radioactive brine: the Lake Karachai case [J]. Environmental Geology, 2002, 42: 187-198.
    [69] Thomas D.Brock, David Robert Lee, David Janes and David Winek. Groundwater seepage as a nutrient source to a drainage lake: Lake Mendota, Wisconsin [J]. Water Res., 16:1255-1263, 1982.
    [70] Peter K. Weiskel, Brian L. Howes. Differential Transport of Sewage-Drived Nitrogen and Phosphorus through a Coastal Watershed [J]. Environ.Sci.Technol., 1992,26(2):352-360.
    [71] Andrzej Baniukiewicz. Nutrient TMDL for Lake Hunter [R]. Florida Department Of Environmental Protection, 2004.
    [72] Charles F. Pitz, Lake Whatcom Total Maximum Daily Load Groundwater Study[R]. Washington State Department of Ecology, 2004
    [73] Michael E. Mcclain, Jeffrey E.Richey and Tania Pena Pimentel. Groundwater nitrogen dynamics at the terrestrial-lotic interface of a small catchment in the Central Amazon Basin[J]. Biogenchemistry, 1997, 27:113-127.
    [74] 燕华云,贾绍风.青海湖水量平衡分析与水资源优化配置研究[J].湖泊科学,2003,15(1):35-40.
    [75] McBride, M.S.,and H.O.Pfannkuch, The distribution of seepage within lakebeds[J] J.Res.U.S. Geol. Surv., 1975, 3(5): 505-512.
    [76] Cheng X. and M. P. Anderson, Numerical simulation of groundwater interaction with lakes allowing for fluctuating lake levels[J]. Groundwater, 1993, 31:929-933.
    [77] Fukuo Y. Studies on groundwater seepage rate in Lake Biwa[J]. Jap. J. Hydrol.Sci., 21,93-102, 1991.
    [78] Fukuo, Y., and I. Kaihotsu. A theoretical analysis of seepage flow of the confined groundwater into lake bottom with a gentle slope [J]. Water Resour.Res., 1988,24,1949-1953.
    [79] Bradbury, K. R., Hydrologic relation between Green Bay of Lake Michigan and onshore aquifers in Door County, Wisconsin, Ph. D. thesis, 287pp., Univ.of Wis., Madison, 1982.
    [80] Nield S. P., L.R.Townley and D. J. Barr. A framework for quantitative analysis of surface water-groundwater interaction: Flow geometry in a vertical section [J]. Water Resour.Res., 1994,30, 2461-2475.
    [81] Schwartz F. W. and A. S. Crowe, 1980. A deterministic-probabilistic model for contaminant transport: User's manual. U.S.Off.NucI.ReguI.Res.Rep.NUREG/CR-1609.CGS/NR 85U060.
    [82] Cherkauer, D.A.,and R.W.Taylor, The spatially continuous determination of groundwater flow to surface water bodies: Application to the connecting channels between Lakes Huron and Erie[J]. J. Hydrol., 1990, 114, 349-369.
    [83] David C. Gosselin, Mohan J. Khisty. Simulating the influence of two shallow, flow-through lakes on a groundwater system: implications for groundwater mounds and hinge lines [J]. Hydrogeology Journal, 2001, 9:476-486.
    [84] Voorhees M. and J. Rice. Intertrans: A finite difference, three dimensional, solute transport model, Hydrosoft Inc.,Sarasota, Fla., 1987.
    [85] Anderson, M. P., and X. Cheng. Long and short term transience in a groundwater/lake system in Wisconsin, U.S.A. [J]. J.Hydrol., 1993,145:1-18.
    [86] Anderson, M. P., and J.A.Munter, Seasonal reversals of groundwater flow around lakes and the relevance to stagnation points and lake budgets[J]. Water Resour. Res., 1981, 17(4): 1139-1150.
    [87] Erik I. Anderson. Modeling groundwater-surface water interactions using the Dupuit approximation[J]. Advances in Water Resources, 2005, 28:315-327.
    [88] Xiangxue Cheng and Mary P. Anderson. Simulating the influence of lake position on groundwater fluxes [J]. Water Resources Resareh, 1994, 30(7): 2041-2049.
    [89] P. J. Dillon, M. Miller, H.Fallowfield, and J. Hutson. The potential of riverbank filtration for drinking water supplies in relation to microsystems removal in brackish aquifers[J]. J.of Hydro., 266(3-4), 209-221.
    [90] Marc Schallenbergl & Carolyn W. Burns. Nitrogen and Phosphorus Budgets of the Waipori/Waihola Lake-Wetland Complex[R].
    [91] Carroll, J.V., Cusimano, R. F., and Ward, W.J., 2000, Moses Lake Proposed Phosphorus Criterion and Preliminary Load Allocations Based on Historical Review, Washington State Dept. of Ecology, Olympia, WA., Publication No. 00-03-036:51.
    [92] Gunnar Persson. Phosphorus in Tributaries to Lake Malaren, Sweden:Analytical Fractions, Anthropogenic Contribution and Bioavailability [J]. Ambio, 2001, 30(3): 486-495.
    [93] Anthony J. Smith, Lloyd R.Townley. Influence of regional setting on the interaction between shallow lakes and aquifers [J]. Water Resources Research, 2002, 38(9): 1-13.
    [94] C. Ray, T.W. Soong, Y.Q.Lian, and G.S.Roadcap. Effect of flood-induced chemical load on filtrate quality at bank filtration sites [J]. J.of Hydro., 266(3-4): 235-258.
    [95] Eckhard Worch, Thomas Grischek, Hilmar Bornick, and Petra Eppinger. Laboratory tests for simulating attenuation processes of aromatic amines in riverbank filtration [J]. J.of Hydro., 266(3-4), 259-268.
    [96] A.C.Bixio, G.Gambolati, C.Paniconi, et.al. Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone[J]. Environmental Geology, 2002, 42:162-177.
    [97] Payal sampat. Groundwater Quality Deteriorating, Vitalsigns2000[J]. World watch Institute, 2000:124-125.
    [98] Fukuo Y. Studies on the seepage of groundwater from lake bottom surface: Experiment of upward seepage flow in a sand column[J]. J.Hydrol.Sci., 1992, 22: 103-112.
    [99] Fukuo Y., Studies on groundwater seepage in the bottom of Lake Biwa, Rep. Environ.Sci. B289-R-12-2, 1-23, Minist. of Educ.Sci.and Cult., Tokyo, Jpn., 1986.
    [100] 苑莲菊,李振栓,武胜忠,等.工程渗流力学及应用[C].北京:中国建材工业出版社,2001.
    [101] 顾慰慈.渗流计算原理及应用[C].北京:中国建材工业出版社,2000.
    [102] K.M.Hiscock, T.Grischek. Attenuation of groundwater pollution by bank filtration [J]. J.of Hydro., 266(3-4): 139-144.
    [103] Jurgen Schubert. Hydraulic aspects of riverbank filtration-field studies [J]. J.of Hydro., 266(3-4): 145-161.
    [104] Hashem A. Faidi, Luis A. Gaicia and Maurice M.AIbertson. Development of a model for simulation of solute transport in a stream-aquifer system[J]. Environmental Modeling and Assessment, 2002, 7:191-206.
    [105] John A. Downing, Hohn J. Peterka. Relationship of rainfall and lake groundwater seepage [J]. Limnol. Oceanogr., 1978, 23(4):821-825.
    [106] 徐乐昌.地下水模拟常用软件介绍[J].铀矿冶,2002,21(1):33-38.
    [107] Y. W. Jiang, Onyx W. H. Wai. Drying-wetting approach for 3D finite element sigma coordinate model for estuaries with large tidal flats [J]. Advances in Water Resources, 2005, 28:779-792.
    [108] Yi-Chang Lin, Ming-Shien Chang, Miguel A. Median Jr. A methodology for solute transport in unsteady, nonuniform streamflow with subsurface interaction[J]. Advances in Water Resources, 2005, 28:871-883.
    [109] C. Zheng. A modular three-dimensional transport model for simulation of advection, dispersion and chemical reaction of contaminants in groundwater systems[C]. Oklahoma, 1990.
    [110] Maged Hussein, Franklin W. Schwartz. Modeling of flow and contaminant transport in coupled stream-aquifer systems[J]. Journal of Contaminant Hydrology, 2003,65:41-64.
    [111] William G. Gray, Cass T. Miller. Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems:1.Motivation and Overview[J]. Advances in Water Resources, 2005, 28:161-180.
    [112] Rinaldo-Lee, M. B., and M.P.Anderson, High water levels in ground-water dominant lakes—A case study from Northwestern Wisconsin[J]. Ground water, 1980, 18(4), 334-339.
    [113] Frissel M.J., G.J.Kolenbrander, I.Shvytov, and U.F.Vasileu. Systematic comparison of the models described[A]. M.J. Frissel and J.A.Van Veen, Simulation of nitrogen behavior in soil plant systems[C]. Pudoc, Wageningen, The Netherlands, 1981.
    [114] 蒋良文,李宽良,王士天.地下水环境中污染物迁移预测实验数学模型基本方程探讨[J].矿物岩石,1998,18,Supplment:178-181.
    [115] 于乃璓,李宽良,韦漫春等.三氮迁移转化过程中的质量不守恒问题及其数值模拟方法途径[J].成都地质学院学报,1993,20(3):108-115.
    [116] Krabbenhoft, D.P.,C.J.Bowser, M.P. Anderson, and J.W.Valley, Estimating groundwater exchange with lakes, 1, The stable isotope mass balance method[J]. Water Resour. Res., 1990, 26, 2445-2453.
    [117] Jay D A, Greyer W R, Uncles R J, et al. A review of recent development in estuarine scalar flux estimation [J]. Estuarine, 1997, 20(2): 262-280.
    [118] Song-Bae Kim, M.Yavuz Corapcioglu. Contaminant transport in riverbank filtration in the presence of dissolved organic matter and bacteria:a kinetic approach[J]. J.of Hydro., 266(3-4):269-283.
    [119] Hiscock K. M. Review of natural and artificial denitrification of groundwater[J]. WaterResearch, 1991, 25(9): 1099-1111.
    [120] Carl J. Bowser, Mary P. Anderson, et. al. Estimating groundwater Exchange with lakes 1. The Stable Isotope Mass Balance Method [J]. Water Resources Research, 1990, 26(10):2445-2453.
    [121] Scott W. Weeks, Graham C. Sander, Roger D.Braddock and Chris J.Matthews. Saturated and unsaturated water flow in inclined porous media[J]. Environmental Modeling and Assessment, 2004, 9:91-102.
    [122] 刘国东.傍河地下水与河水脱节机理研究[J].长春科技大学学报,1998,28(1).
    [123] 易立新,王广才,车用太.地下水地表水联合模拟的解析单元法理论及应用[J].工程地质学报,2000,8(3):337-341.
    [124] Xunhong Chen. Migration of induced-infiltrated stream water into nearby aquifers due to seasonal ground water withdrawal [J]. Ground Water, 2001, 39(5): 721-728.
    [125] 吴耀国,吴运伟.饱和与非饱和流溶质运移的试验研究与数学模拟[J].勘察科学技术,1998,(5):37-40.
    [126] Lee, D.R.,J.A.Cherry, and J.F.Pickens, Ground water transport of a salt traser through a sandy lakebed[J]. Limnol. Pceanogr., 1980, 25: 45-61.
    [127] Li, L; Lockington, DA; Barry, DA; Parlange, JY; Perrochet, P Confined-unconfined flow in a horizontal confined aquifer, J HYDROL, 271 (1-4): 150-155 FEB 10 2003.
    [128] Li, L; Barry, DA; Stagnitti, F; Parlange, JY Groundwater waves in a coastal aquifer: A new governing equation including vertical effects and capillarity, WATER RESOUR RES, 2000, 36 (2): 411-420.
    [129] Li, L; Barry, DA; Stagnitti, F; Parlange, JY Submarine groundwater discharge and associated chemical input to a coastal sea.
    [130] 张权,邱汉学,祝陈坚.王哥庄湾陆源硝酸盐氮输送通量研究[J].海洋环境科学,2002,21(2):14-18.
    [131] UNEP Earth Watch. Pollution due to agriculture activities [J]. AMBIO, 12-16.
    [132] Downing J. A. and J. J. Peterka, Relationship of rainfall and lake groundwater seepage [J]. Limnol. Oceanogr., 1978, 23:821-825.
    [133] M.Thorsen, J. C. Refsgaard, S. Hansen, E. Pebesma, et.al. Assessment of uncertainty in simulation of notrate leaching to aquifers at catchment scale [J]. J. of Hydrology, 2001, 242:210-227.
    [134] 曲耀光,骆鸿珍.乌鲁木齐河流域地表水与地下水转化及水质演变[J].冰川冻土,1994,16(2):139-146.
    [135] G. H. Garrison and C.R.Glenn, G.M.McMurtry. Measurement of submarine groundwater discharge in Kahana Bay, O'ahu, Hawai'I [J]. Limnol. Oceanogr, 2003, 48(2):920-928.
    [136] Michael N. Beaulac and Kenneth H.Reckhow. An examination of land use-nutrient export relationships [J]. Water resources bulletin, 1982,18(6): 1013-1023.
    [137] 黄绍敏,皇甫湘荣,宝德俊,等.土壤中硝态氮含量的影响因素研究[J].农业环境保护,2001,20(5):351-354.
    [138] 司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化[J].土壤,2000,(4):188-193.
    [139] 王超.污染物在土壤及地下水中迁移转化规律研究.南京:河海大学博士学位论文,1995.
    [140] Sergio E. Serrano. Modeling infiltration with approximate solutions to Richard's Equation[J]. Journal of Hydrologic Engineering, 2004, 9(5):421-432.
    [141] Nick Cartwright, Peter Nielsen, Ling Li. Experimental observations of watertable waves in an unconfined aquifer with a sloping boundary[J]. Advances in Water Resources, 2004, 27:991-1004.
    [142] Sharpley A.N. Depth of surface soil-runoff interaction as affected by rainfall, soil slope, and management [J]. Soil Sci Soc Am J,1985, 49:1010-1015.
    [143] Sharpley A. N. Daniel T.C., Sims T.J.Determining environmentally sound soil phosphorus levers [J]. J. Soil Water Conserv, 1996, 51: 160-166.
    [144] Brookes P. C., Heckrath G.. Losses of phosphorus in drainage water: phosphorus loss from soil to water [M]. New York: CAB International, 1997:353-371.
    [145] Daniel T.C., Sharpley A.N. Agricultural phosphorus and eutrophication: a symposium overview [J]. J. Environ. Qual., 1998, 27:251-257.
    [146] Kerry T.B. MacQuarrie, Edward A.Sudicky. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers I. Model formulation and performance [J]. J. of Contaminant Hydrology, 2001,47: 53-84.
    [147] 王政友.降雨入渗补给地下水机理探讨[J].水文,2003,23(3):34-36.
    [148] Born S. M., S.A.Smith, and D.A. Stephenson. Hydrogeology of glacial-terrain lakes, with management and planning applications [J]. J. Hydrol., 1979, 43:7-43.
    [149] Valentijin R. N. Pauweks, Niko E.C.Verhoest, et.al. Water table profiles and discharges for an inclined ditch-drained aquifer under temporally variable recharge [J]. J. of Irrigation and Drainage Engineering, 2002, 129(2):93-99.
    [150] Nield S.P.,L.R.Townley and D.J.Barr. A framework for quantitative analysis of surface water-groundwater interaction: Flow geometry in a vertical section [J]. Water Resour. Res., 1994,30, 2461-2475.
    [151] 潘乃礼.地下水水质现状和预测评价的理论和方法[M].北京:原子能出版社,1995.
    [152] 黄元仿,李韵珠,陆锦文.土壤-作物系统中氮素行为的模拟[A],李韵珠等,土壤水和养分的有效利用[C].北京:北京农业大学出版社,1994:179-194.
    [153] 陈士平,W.M.Blacklow,Chagan.一个农牧结合生态系统氮循环的动态模拟程序[J].生态学报,1990,10(2):127-132.
    [154] 刘培斌,丁跃元,张瑜芳.田间—维饱和—非饱和土壤中氮素运移与转化的动力学模式研究[J].土壤学报,2000,37(4):490-498.
    [155] 张春辉,裴元生.氨氮在大厚度包气带土层中迁移转化的数学模拟[J].甘肃环境研究与监测,2001,14(1):3-5.
    [156] 董悦安,沈照理,钟佐.农田区地下水氮污染和氮转化的实验研究[J].北京师范大学学报,2001,37(2):199-204.
    [157] 徐志宏,黄天成.地下水中硝酸盐的来源[J].Poultry Digest,1995,(8):24-25.
    [158] 赵林,王榕树,林学.地下水中氮的表现形式及其污染的微生物控制[J].环境科学学报,1999,19(4):433-447.
    [159] 吕耀.农业生态系统中氮素造成的非点源污染[J].农业环境保护,1998,17(1):35-39.
    [160] 崔剑波,庄季屏.田间非饱和流条件下土壤硝态氮运移的模拟[J].应用生态学报,1997,8(1):49-54.
    [161] 张树兰,杨子云,吕殿青.几种土壤剖面的硝化作用及其动力学特征[J].土壤学报,2000,7(3):372-379.
    [162] 任丽萍,宋玉芳,许华夏,等.旱田养分淋溶规律及对地下水影响的研究[J].农业环境保护,2001,20(3):133-136.
    [163] Wang Hongqi. Modeling Nitrogen tranformation and transport in the unsaturated zone[C]. Groundwater and Environment, Seismological Press, 1992,508-512.
    [164] Tanji, K.K.Modeling of the soil nitrogen cycle[A], F.J. Stevenson, Nitrogen agricultural soils[C]. Madison, American Society of Agronomy, 1982:721-722.
    [165] Willigen, P. deand J. J. Neeteson, Comparison of some simulation models for the nitrogen cycle in the soil[J]. Fertilizer Research. 1985, 8: 157-171.
    [166] 高超,张桃林.农业非点源磷污染对水体富营养化的影响及对策[J].湖泊科学1999,11(4),:369-375.
    [167] V.R asiah, J.D.Armour, T.Yamamoto, S. Mahendrarajah and D.H.Heiner. Nitrate dynamics in shallow groundwater and the potential for transport to off-site water bodies[J]. Water, Air and Soil Pollution, 2003, 147:183-202.
    [168] Guildford S. J. and Hecky R. E. (2000). Total nitrogen, total phosphorus and nutrient limitation in lakes and oceans: is there a common relationship? Limnol. Oceanogr. 45, 1213-1223.
    [169] Christensen, T.H., Bierg, P.L., Kjeldsen, P., 2000b, Natural attenuation:a feasible approach to remediation of groundwater pollution at landfill?[J]. GWMR, 2000, 20(1): 69-77.
    [170] Makoto Taniguchi, Yoshiaki Fukuo. An effect of seiche on groundwater seepage rate into Lake Biwa, Japan [J]. Water Resources Research, 1996, 32(2): 333-338.
    [171] 宋学良、吴遇安、蒋志文等.云南中部石灰地区高原湖泊古湖沼学研究[C].昆明,云南科技出版社,1994。
    [172] 蒋亚萍,陈余道.MODFLOW—一套水文地质学实用计算软件[J].广西地质,1999,112(13):75-78.
    [173] Michael G. McDonald and Arlen W. Harbaugh. Electronic Manual for Modflow.Virginia,2000.
    [174] Michael L. Merritt and Leonard F. Konikow. Documentation of a computer program to simulate Lake-Aquifer interaction using the MODFLOW groundwater flow model and the MOC3D solute-transport model [R]. Florida, 2000.
    [175] 魏林宏,束龙仓,郝振纯.地下水流数值模拟的研究现状和发展趋势[J].重庆大学学报,2000,23:50-52.
    [176] 朱玉水,段存俊.MT3D—通用的三维地下水污染物运移数值模型[J].东华理工学院学报,2005,28(1):26-29.
    [177] Zheng C., Wang P. P.. MT3DMS: A modular three dimensional multi-species transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems: documentation and user's guide Contact Report SERDP-99-1,U.S. Army Engineering Research and Development Center, Vicksburg, MS.
    [178] Mark Bakker. Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities[J]. Advances in Water Resources, 2004, 27:497-506.
    [179] Lerner, D. N.and K.T. Papatolios.A simple analytical approach for predicting nitrate concentration in pumped groundwater[J]. Groundwater, 1993, 31 (3):370-375.
    [180] Bernhard Wett, Hannes Jarosch, and Kurt Ingerle. Flood induced infiltration affecting a bank filtrate well at the River Enns, Austria[J]. J.of Hydro., 266(3-4): 222-234.
    [181] Ann Azadpour-keeley, Jack W. Keeley, et.al. Monitored Natural Attentuation of Contaminants in the Subsurface: Process [J]. SPRING, 2001,97-107.
    [182] 刘丽萍.滇池富营养化发展趋势分析及其控制对策[J].云南环境科学,2001,20(增刊):25-27.
    [183] 郭慧光.滇池富营养化及面源问题[J].环境科学学报,1999,12(5):43-44,59.
    [184] 黄发政.昆明盆地的构造格架及第四纪聚煤沉积演化[J].煤田地质与勘探,1984,6:1-9.
    [185] 刘宝,李希,等.昆明盆地晚新生代地质与沉积演化.重庆[C].重庆出版社,1990.
    [186] 郑长苏、吴瑞金.昆明盆地的成因、构造与演化.中国科学南京地理研究所集刊,第3号,1985:1-15.
    [187] 郑丙辉,郅永宽,郑凡东,李子成.滇池流域生态环境动态变化研究,环境科学研究,2003,15(2):16-18,33.
    [188] 刘忠翰,贺彬,王宜明,等.滇池不同流域类型降雨径流对河流氮磷入湖总量的影响.地理研究,2004,23(5):593-604.
    [189] KIM Lee-Hyung, Choi Euiso, Stenstrom Michael K.Sediment characteristics, phosphorus types andphosphorus release rates between river and lakesediments[J]. Chemosphere, 2003, 50(1): 53-61.
    [190] L IJ KL EMA L, KOELMANS A A, PORTIELJ E R. Water quality impacts of sediment pollution and therole of early diagenesis [J]. Water Sci Technol, 1993,28: 1-12.
    [191] PEEN M R, AUER M T, Van Orman E L, et al. Phosphorus diagenesis in lake sediments: investigation using fractionation techniques [J]. Mar FreshwaterRes, 1995, 46:89-99.
    [192] 曲久辉.我国水体复合污染与控制[J].科学对社会的影响,2000,(1):36-40.
    [193] 中国科学研究院.草海底泥污染现状调查与评价[M].北京:中国科学出版社,1997.
    [194] 黄丽娟,常学秀,刘洁,等.滇池水-沉积物界面氮分布特点及其对控制蓝藻水华的意义[J].云南大学学报,2005,27(3):256~260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700