用户名: 密码: 验证码:
改进溶胶-凝胶法和吸附法固定化醇脱氢酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统溶胶-凝胶(sol-gel)法进行酶的固定化具有酶活损失大和传质阻力大的
    缺点。本文以聚乙二醇(PEG)为多功能试剂对传统sol-gel过程进行改进,以提
    高固定化甲醇脱氢酶(ADH)的活性。以PEG为模板剂修饰凝胶,使凝胶的孔径
    由 7.8nm增大到 9.3nm,比表面积也由 463 m2﹒g-1增加到 534m2﹒g-1,底物在
    凝胶孔中的有效扩散系数提高到原来的 1.4 倍。用修饰后的凝胶固定化的ADH
    的活性比传统凝胶固定化的ADH的活性高。此外,利用活化PEG(SC-PEG)为修
    饰剂对ADH进行修饰,以提高ADH在固定化后的活性,ADH的修饰度约 90%。
    对修饰后的ADH进行固定化,ADH的活性比未经修饰的ADH的活性有明显提
    高。由甲醛转化为甲醇的酶促反应比较两条提高酶活途径下的四种固定化的
    ADH的活性:未修饰凝胶固定化修饰ADH(固定化ADHⅢ)活性> 修饰凝胶固
    定化修饰ADH(固定化ADHⅣ)活性> 修饰凝胶固定化未修饰ADH(固定化
    ADHⅡ)活性> 传统固定化方法下的ADH(固定化ADHⅠ)活性。而且固定化
    ADHⅡ、ADHⅢ、ADHⅣ的稳定性均高于固定化ADHⅠ的稳定性。可见凝胶
    的修饰以及ADH的修饰均可提高固定化ADH的活性和稳定性,但是ADH的修饰
    较凝胶的修饰对提高ADH的活性效果明显。
     另外,为了比较吸附法与传统 sol-gel 包埋法固定化 ADH 的优劣,对两种
    方法固定化的 ADH 的活性进行了比较。采用大孔硅胶对 ADH 进行吸附,得到
    吸附动力学曲线和吸附等温线,ADH 在硅胶上的吸附等温线可以用 Langmuir
    方程拟合。并且分析了硅胶孔径对 ADH 吸附量的影响,得到大孔径的硅胶对
    ADH 有着更大吸附量的结论。由甲醛转化为甲醇的酶促反应动力学实验测得的
    反应初速度及拟合得到的米氏常数表明吸附法固定化 ADH 表现出比 sol-gel 法
    固定化 ADH 高的催化活性。
Enzyme immobilization by traditional sol-gel approach suffers from the
    drawbacks of relatively high enzyme activity loss and high mass transfer resistance,
    solutions to this problem have been tentatively exploited herein, PEGs were
    employed as multifunctional additives to enhance immobilized enzyme activities: 1.
    Tetraethylorthosilicate (TEOS) derived gel is modified in the presence of
    polyethylene glycol (PEG, molecular weight 600), the effects of PEG addition to the
    precursor solution on the microstructure of the gel are studied, the size of pores is
    increased in the resultant gels on the bridge-linkage between PEG and precursor,
    thus diffusion rates is comparably increased to1.4 times. 2. PEG Succinimidyl
    Carbonate (SC-PEG, molecular weight 5,000) is used to modify alcohol
    dehydrogenase (ADH) before being immobilized in the gel in order to avoid the
    damage of enzyme in sol-gel process and also improve the properties of gels such as
    hydrophilicity. The activities of diverse immobilized ADH have been investigated by
    the enzymatic reaction of converting formaldehyde into methanol: unmodified gel
    immobilized modified ADH(Immobilized ADHⅢ)>modified gel immobilized
    modified ADH(Immobilized ADHⅣ)>modified gel immobilized unmodified ADH
    ( Immobilized ADH Ⅱ ) > unmodified gel immobilized unmodified ADH
    (ImmobilizedADHⅠ).And the stabilities of immobilizedADHⅡ、ADHⅢ、ADH
    Ⅳ are higher than that of immobilized ADHⅠ. This result indicated that enzyme
    activities after the modification of gel and the modification of ADH respectively
    significantly increased compared to the native immobilized ADH, but modification
    on ADH is more effective.
     In addition, in order to compare the enzyme immobilization differences
    between adsorption immobilization process and sol-gel encapsulation process. ADH
    is respectively immobilized onto macroporous silica carrier by adsorption and into
    microporous silica gel by sol-gel encapsulation. Through the study of adsorption
    kinetics and adsorption equilibrium, the kinetics curve and adsorption isotherm are
    obtained. The adsorption isotherm is fitted by Langmuir equation. The effect of pore
    size on the adsorption capacity is examined. The sol-gel encapsulated ADH is
    prepared with silica matrix. The catalytic activities of the above-mentioned
    
    
    immobilized ADHs towards the conversion of formaldehyde into methanol are
    compared. The initial rates of enzymatic reaction catalyzed by adsorption
    immobilized ADH is higher than that catalyzed by sol-gel encapsulated ADH,
    whereas the Michaelis constants of the former are less than that of the latter. These
    results indicate that the catalytic activity of adsorption immobilized ADH is higher
    than that of sol-gel encapsulated ADH.
引文
参考文献
    [1] 张宇,陈年友,朱龙根. 溶胶-凝胶法固定生物活性物质的研究进展.高等学校化学学
     报,2000,21(5): 675-680
    [2] Carl Kauffmann, Raphi T. Mandelbaum. Entrapment of atrazine chlorohydrolase in sol–gel
     glass matrix.Journal of Biotechnology, 1998,62:169-176
    [3] 吴洪,姜忠义,黄淑芳等.溶胶-凝胶法包埋生物活性分子.现代化工,2002,22(7):60-63
    [4] Braun S, Rappoport S, Zusman R et al. Biochemically active sol-gel glass: the trapping of
     enzymes. J Mater. Lett. 1990, 10(1/2):1-5
    [5] 黄淑芳,姜忠义,吴洪等. 溶胶-凝胶法固定化酶的问题与解决途径. 高分子通报.
     2003,5:28-35
    [6] 王德宪.溶胶-凝胶法的化学原理简述.化学通报,1999(6):35-39
    [7] Livage J. Sol-gel processes . Synthesis and reactivity of solids. 1997, 2:132-138
    [8] 赵传清,姚素薇,张卫国等.多孔TiO2纳米薄膜的制备及PEG对其表面形貌的影响.材料导
     报,2002,16(5):75-76
    [9] Rimple B B, Brinker C J. Aqueous sol-gel process for protein encapsulation.Chem Mater,
     2000,12:2434-2441
    [10] Chia-I Li, Yi-Hua Lin, Cheng-Ling Shih, Jeng-Pyng Tsaur et al. Sol-gel encapsulation of
     lactate dehydroenase for optical sensing of L-lactate. Biosensors &Bioelectronics,
     2002,17:323-330
    [11] Yen Wei, Jigeng Xu, Qiuwei Feng et al. Encapsulation of enzymes in mesoporous host
     materials via the nonsurfactant-templated sol-gel process. Materials Letters, 2000,44:6-11
    [12] 孙继红,张晔,范文浩等.Sol-Gel 技术与纳米材料的化学剪裁.化学进展,1999,11(1):80-85
    [13] 王金忠,赵岩,张彩碚.复合模板下有序介孔TiO2的制备研究.物理化学学
     报,2003,3(14):251-255
    [14] John H. Harreld, Takeo Ebina, Norihiko Tsubo et al. Manipulation of pore size distributions
     in silica and ormosil gels dried under ambient pressure conditions. Journal of
     Non-Crystalline Solids, 2002, 298: 241-251
    [15] 余家国,赵修建,赵青南.光催化多孔TiO2薄膜的表面形貌对亲水性的影响.硅酸盐学
     报,2000,28(3):245-250
    [16] 孙继红,巩雁军,范文浩等 SiO2-PEG凝胶体系织构性能的研究.高等学校化学学
     报,2000,21(1):95-98
    [17] 孙继红,范文浩,徐耀等. PEG分子量和温度对SiO2溶胶及光学增透膜的影响.硅酸盐学
     报,1999,5:3-6
    [18] 孙继红,李志宏,范文浩等. SiO2-PEG溶胶的网络结构与分形特征.化学物理学
     报,1999,12(5):570-573
    [19] 孙继红,巩雁军,范文浩等. SiO2-PEG凝胶体系的热物理化学特征.物理化学学
     报,1999,15(6):517-521
    [20] 孙继红,章斌,范文浩等. SiO2-PEG体系的溶胶-凝胶过程及物化性特性.材料研究学
     报,1999,13(3):301-304
    [21] Grün, Michael, Unger, Klaus K., Matsumoto, Akihiko et al. Novel pathways for the
     54
    
    
    参考文献
     preparation of mesoporous MCM-41 materials: control of porosity and morphology.
     Microporous and Mesoporous Materials, 1999,27(2-3): 207-216
    [22] Nagamine, Shinsuke, Endo, Akira et al Synthesis of submillimeter-thick films of surfactant
     templated mesoporous silica. Microporous and Mesoporous Materials, 2001,43(2): 181-189
    [23] Collinson M M. Recent trends in analtical applications of organically modified silicate
     materials. Trends in analytical chemistry, 2002, 21(1): 30-38
    [24] Pang J B, Qiu K Y, Wei Y. Preparation of mesoporous silica materials with non-surfactant
     hydroxy-carboxylic acid compounds as templates via sol-gel process. J Non-Crysalline
     Solids, 2001,283
    [25] Jie-Bin Pang, Kun-Yuan Qiu, Yen Wei. A novel nonsurfactant pathway to hydrothermally
     stable mesoporous silica materials. Microporous and Mesoporous Materials.2000, 40:
     299-304
    [26] 任春堂.SiO2溶胶粒子聚合行为的调控.山西化工.1999,19(2): 10-11
    [27] 汤加苗,朱从善,夏海平等.PEG对SiO2溶胶-凝胶中颗粒度分布和孔结构的影响.材料研
     究学报.1998,12(1): 79-82
    [28] 宋洪陞,张凤莲,赵东宇等.多孔硅胶表面的化学改性.黑龙江大学自然科学学
     报,1997,14(4):99-102
    [29] 王顺光,古鑫松,袁中一等. BSA 和 PEG 影响固定化辣根过氧化物酶 HRP 在有机相中活
     力.生物化学与生物物理学报,1995,27(4):409-414
    [30] Inada Y, Furukawa M, Sasaki H, et al. Biomedical and biotechnological applications of
     PEG- and EG-modified proteins. Trends Biotechnol, 1995, 13: 86-91
    [31] Ayako Matsushima, Yoh Kodera, Misao Hiroto et al. Bioconjugates of proteins and
     polyethylene glycol: potent tools in biotechnological processes. Journal of Molecular
     Catalysis B: Enzymatic, 1996, 2: 1-17
    [32] Abuchowski A, van Es T, Davis FF, et al. Alteration of immunological properties of bovine
     serum albumin by covalent attachment of poly(ethylene glycol). J Biol Chem, 1977, 252:
     3578-3581
    [33] Abuchowski A, McCoy JR, Davis FF, et al. Effect of covalent attachment of polyethylene
     glycol on im- munogenicity and circulating life of bovine liver catalase. J Biol Chem, 1977,
     252: 3582-3586
    [34] 陶慰孙,李惟, 姜泳明. 蛋白质分子基础. 北京: 高等教育出版社, 1995. 122-157
    [35] Shearwater Polymers, Inc Quarterly Newsletter, Shearwater Polymers Inc. Huntsville, AL,
     USA. 1998. 1-4
    [36] Veronese F M, Morpurgo M. Bioconjugation in Pharmaceutical Chemistry. Inter J
     Pharmaco, 1999, 54: 497-516
    [37] Monfardini C, Schiavon O, Caliceti P, et al. A Branchemonomethoxy-poly(ethylene glycol)
     for Protein Modification. Bioconjugate Chemistry, 1995, 6: 62-69
    [38] 姜忠义,许松伟,高蓉.生物分子化学修饰用聚乙二醇衍生物的合成及应用.高分子通
     报,2002,1:34-40
    [39] 谢芳,朱欣华,邢自力等.药用蛋白质的化学修饰.生命的化学,2002,22(6):544-546
    [40] 姜忠义,高蓉,许松伟等.药物蛋白的聚乙二醇修饰.中国药学杂志,2002,37,6
    [41] 姜忠义,高蓉,王艳强等.蛋白质和多肽药物聚乙二醇化的问题与对策.药学学
     报,2002,37(5):396-400
     55
    
    
    参考文献
    [42] 吴洁,刘景晶,胡卓逸.蛋白质药物的聚乙二醇修饰.药学进展,2002,26(3):146-151
    [43] Stocks SJ, Jones AJ, Ramey CW, et al. A fluorometric assay of the degree of modification of
     protein primary amines with polyethylene glycol. Anal Biochem, 1986, 154: 232
    [44] 李伟军,林炳承,苏志国.聚乙二醇共价修饰药用蛋白质的分析方法.分析化
     学,2001,29(2):228-231
    [45] Hershfield MS, Chaffee S, Koro-Johnson L, et al. Use of site-directed mutagenesis to
     enhance the epitope-shielding effect of covalent modification of proteins with poly(ethylene
     glycol), Proc Natl Acad Sci USA, 1991, 88: 7185-7189
    [46] Zimmerman RJ, Aukerman SL, Katre NV, et al. Schedule dependency of the antitumor
     activity and toxicity of polyethylene glycol-modified Interleukin-2 in murine tumor models.
     Cancer Research, 1989, 49: 6521-6528
    [47] Kuan CT, Wang QC, Pastan I. Pseudomonas exotoxin a mutants repiacement of
     polyethylene glycol in a site-specific manner. J Biol Chem, 1994, 269: 7610-7616
    [48] 王继华,曹淑桂,程玉华.双链聚乙二醇与超氧化物歧化酶共价结合物的理化和免疫学性
     质.生物化学与生物物理进展,1992,19(6):444-448
    [49] 郑宝胜,徐明波,姚志建.蛋白质的聚乙二醇修饰及其在医药研究中的应用.生物化学与生
     物物理进展,1993,20(4):267-270
    [50] Wen Jin, John D. Brennan. Properties and applications of proteins encapsulated within
     sol-gel devived materials. Analytica Chimica Acta.2002, 461: 1-36
    [51] Mattias Persson, Irina Mladenoska, Ernst Wehtje, et al. Preparation of lipases for use in
     organic solvents. Enzyme and Microbial Technology 2002,31: 833-841
    [52] Dalziel K. Acta. Chemica ScandinavicaⅡ[J],1957,10:1706-1723
    [53] Liu D M, Chen I W. Encapsulation of protein molecules in transparent porous silica
     matrices via an aqueous colloidal sol-gel process. Acta Mater,1999,47(18):4535-4544
    [54] 王家芳,章文贡.过渡金属醇盐溶胶-凝胶化学进展.化学世界,2001,1:47-51
    [55] Gill I, Ballesteros A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-
     gel polymers: an efficient and generic approach. J. Am. Chem. Soc., 1998,120:8587-8598
    [56] Yong-Jin Han, Jordan T. Watson, Galen D. Stucky,Alison Butler. Catalytic activity of
     mesoporous silicate-immobilized chloroperoxidase. Journal of Molecular Catalysis B:
     Enzymatic 2002,17:1-8
    [57] 姜忠义,吴洪,许松伟等.溶胶凝胶固定化多酶催化CO2转化为甲醇反应初探.催化学
     报,2002,23(2):162-164
    [58] 黄淑芳,姜忠义,吴洪等. 游离和溶胶-凝胶固定化甲醛脱氢酶酶促反应动力学的研究.
     分子催化. 2003,4:287-291
    [59] 袁勤生,现代酶学,上海:华东理工大学出版社,2001,19-72
    [60] Dalziel K., Initial steady state velocities in the evaluation of enzyme-coenzyme-substrate
     reaction mechanisms, Acta chemica scandinavica, 1957, 11: 1706-723
    [61] Dalziel K., Interpretation of Inhibition kinetics of coenzyme-substrate reactions, and the
     role of Zine in alcohol dehydrogenases, Nature, 1963, 197(2): 462-463
    [62] Dalziel K., The purification of nicotinamide adenine dinucleotide and the kinetic effects of
     nucleotide impurities, The Journal of Biological Chemistry, 1963, 238(4): 1538-1543
    [63] Dalziel K., Kinetic studies of liver alcohol dehydrogenase and pH effects with coenzyme
     preparations of high purity, The Journal of Biological Chemistry, 1963, 238(8): 2850-2858
     56
    
    
    参考文献
    [64] Qianyao, Sun, Theo P.M.Beelen, and Rutger A.van Santen. PEG-Mediated Silica Pore
     Formation Monitored in Situ by USAXS and SAXS:Systems with Properties Resembling
     Diatomaceous Silica. J.Phys. Chem.B, 2002,106:11539-11548
    [65] 符连社,张洪杰,邵华等.溶胶-凝胶法及其在生物材料方面的应用.化学通报,1998,
     12:26-31
    [66] Jiaguo Yu, Xiujian Zhao, Qingnan Zhao, et al. Preparation and characterization of
     super-hydrophilic porous TiO2 coating films. Materials Chemistry and Physics.2001,68:
     253-259
    [67] 余家国,赵修建,赵青南.光催化多孔TiO2薄膜的表面形貌对亲水性的影响.硅酸盐学
     报,2000,28(3):245-250
    [68] Thomas J. Horr, John Ralston, Roger St.C. Smart. The use of contact angle measurements to
     quantify the adsorption density and thickness of organic molecules on hydrophilic surfaces.
     Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 97: 183-196
    [69] Yao Q, Yabuki S, Mizutani F. Preparation of a carbon paste/alcohol dehydrogenase
     electrode using polyethylene glycol-modified enzyme and oil-soluble mediator. Sensors and
     Actuators B 2000,65:147-149
    [70] Reetz M T, Zonta A, Simpelkamp J. Efficient immobilization of lipases by entrapment in
     hydrophobic sol-gel materials. Biotechnology and Bioengineering, 1996,49:527-534
    [71] B.Lillis, C. Grogan, H. Berney et al. Lane.Investigation into immobilization of lactate
     oxidase to improve stability. Sensors and Actuators B, 2000, 68:109-114
    [72] 戴华成,梁小勇,李仁利等.多聚乙二醇化蒜酶的特性研究.华中科技大学学
     报,2002,31(1):24-26
    [73] Christine Besson, Guy Favre-Bonvin, Ciaran O’Fagain et al. Chemical derivatives of
     Pseudomonas aeruginosa elastase showing increased stability. Enzyme and Microbial
     Technology, 1995,17: 877-881
    [74] Zhen Yang, Michael Domach, Robert Auger et al. Polyethylene glycol-induced stabilization
     of subtilisin. Enzyme and Microbial Technology, 1996,18: 82-89
    [75] 母敬郁,孙立群,张培因等.应用活化 mPEG5000 修饰 HCG 及活性研究.中国生物制品学
     杂志,1995,8(2):52-55
    [76] Yoshihiko Murakami, Ryotaro Hoshi, Akira Hirata. Charaterization of polymer-enzyme
     complex as a novel biocatalyst for nonaqueous enzymology. Journal of Molecular Catalysis
     B: Enzymatic, 2003,22:79-88
    [77] 赵彦兵,杨亚江.聚皂凝胶对蛋白质分子的吸附与释放. 生物物理学
     报,2000,16(2);218-224
    [78] 周笑鹏. 蛋白质离子交换平衡及动力学理论研究. 硕士学位论文, 天津大学,2003
    [79] 陈捷. 蛋白质的疏水性吸附平衡模型及动力学研究, 天津大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700