用户名: 密码: 验证码:
液相色谱及其质谱联用技术在水稻内源活性物质定量分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内源活性物质是植物体内本来存在的或者自身生命活动产生、参与各种生命活动的物质。如何准确快速的定性和定量分析这些内源活性物质,是研究植物内源活性物质的生理功能的重要环节。本论文运用高效液相色谱和电喷雾串联质谱等技术,建立了快速定量分析水稻中尼克酰胺、细胞分裂素、单糖等内源活性物质的方法,这些新发展的定性定量分析方法,对于准确了解这些物质的各种生命活动具有重要意义,具体分为三部分:
     一,运用高效液相色谱—电喷雾质谱联用技术,采用选择离子和三级质谱首次建立了水稻组织中尼克酰胺的快速定量方法。样品采用温水提取30分钟,离心,上清液直接进行LC-MS分析。通过对色谱条件和质谱条件的优化,利用反相色谱柱的粗分离和离子阱多级质谱的定性定量优势,测定了水稻中内源NA含量,其线性范围为0.127-65 ng/20μL,检测限为3.175 ng/mL。该方法去除了繁琐的衍生步骤,具有操作简单,分析快速,分辨率和灵敏度高的优点。
     二,采用二维高效液相色谱方法,运用中心切割技术,构建了一种新的定量分析玉米素的串联柱模式二维液相色谱定量方法。水稻样品通过简单的80%甲醇水萃取,提取液直接进入一维离子交换色谱柱进行初级分离,利用六通阀将含目标组分切换至二维反相色谱柱进行第二维的分离分析,测定了水稻组织内玉米素的含量,其线性范围为0.0537-27.5 ng,检测限为0.026 ng。二维高效液相色谱定量方法具有纯化能力强,重复性好及操作简单等优势。
     三,应用高效液相色谱—蒸发光检测技术新建立了水稻中三种游离糖—葡萄糖、果糖和蔗糖的定量分析方法。水稻样品通过简单的80%乙醇水萃取,氯仿异戊醇纯化步骤后,直接进行液相分离和蒸发光检测,测定了三种糖的含量。葡萄糖、果糖和蔗糖的线性范围分别为0.44-5.275、0.228-5.5和0.422-10.15μg/μL,检测限分别为0.11、0.114和0.212μg/μL。
Plant endogenous coustituents are important physiolygical compounds in plant life cycle.It is essential to quatify and quantify the endogenous constituents in fresh plant tissues.This paper arms to develope some rapid and efficient methods for quatification analyses of some endogenous constistuents,such as nicotianamine, zeatin,glucose,fructose and sucrose.The new methods for separation and determination are significant of plant life activities.It includes three parts as follow:
     In the first chapter,a new method for separation and determination of nicotianamine was developed by HPLC-ESI/MS.The fress rice tissues was extracted with ddH_2O at 80℃for 30min and then to centrifigate.The supernatant was separated directed by a reverse phase column,and then the effusion was analyzed by ESI-MS.The linear range is 0.127-65 ng/20μL,and the limite of detection at three times signal to noise(LOD,3*S/N)is 3.175 ng/mL.
     In the sencond chapter,the zeatin in rice was analyzed for the first time by 2D-HPLC and using "Heart-cutting" mode.The rice sample extracting with 80% methanol-H_2O was separated primarily in the first dimension,then the aimed part of first dimension run is introduced to separate futher into the second dimension by switching a six port valve.The linear range is 0.0537-27.5 ng,and the LOD(3*S/N) is 0.026 ng.The aavantages of 2D-HPLC are high purification potential, reproducibility,and unattended operation.
     The third chapter,a useful HPLC-ELSD method for quatification analyses of sugars-glucose,fructose and sucrose was estabilished.Before analyzed by HPLC-ELSD,the sample first was extracted by 80%ethanol-H_2O at 90℃for 40min and purified by chloroform-Isoamylol(24:1).The linear range of glucose,fructose and sucrose is 0.44-5.275、0.228-5.5 and 0.422-10.15μg/μL,and the LOD(3*S/N)is 0.11、0.114 and 0.212μg/μL.
引文
[1]王镜岩等,生物化学,北京:科学出版社,2001.
    [2]Giddings JC.Sample dimensionality:a predictor of order-disorder in component peak distribution in multidimensional separation.J Chromatogr A,1995,703,3.
    [3]CORTES H J.Multidimensional Chromatography Techniques an Applications[M].New York:Marcel Dekker.1990.1.
    [4]Giddings J.C.Two-dimensional separation:concept and promise.Anal Chem.1984,56,1258.
    [5]Unger KK,Racaityte K,Wagner K,et al.Is multidimensional high performance liquid chromatography(HPLC)an alternative in protein analysis to 2D Gel electrophoresis? J High Resol Chromatogr,2000,23:259.
    [6]Murphy R.E.,Schure M.R.,Foley J.E,Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography.,Anal Chem.,1998,70,1585.
    [7]Sweeney A.P.,Shalhker R.A.,Development of a two-dimensional liquid chromatography system with trapping and sample enrichment capabilities.J Chromatogr A,2002,968,41.
    [8]Bushey MM,Jorgenson JW.Automated instrumentation for comprehensive two dimentional high performance liquid chromatography of proteins.Anal Chem,1990,62,161.
    [9]王智聪,张庆合等,二维液相色谱切换技术及其应用.分析化学.2005,33,722.
    [10]汪正范,杨树民等.色谱联用技术.北京:化学工业出版社,2001.
    [11]詹尔亮,朱育芬等.苎麻中游离单糖的液相色谱-质谱联用分析.分析化学,1993,21,689.
    [12]王兆基,何绍基等.液相色谱质谱联用法测定乌头属药材及中成药中乌头类生物碱含量.分析化学研究报告,2001,29,391.
    [13]Lu Dinggiang,Wei Ping et.al.High peiformance liquid chromatography electrospray ionization mass spectrometic analysis of bilobalide and ginkgolides in Ginkgobilobal leaves.J.Chinese Pharmacgutical Sciences,2002,11,26.
    [1]Schmidt W. Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci, 2003,8, 188.
    [2]Romheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 1986, 80, 175.
    [3]Curie C, Panaviene Z, Loulergue C, et al. Maize yellow stripel encodes a membrane protein directly involved in Fe(III) uptake. Nature, 2001,409, 346.
    [4]Higuchi K, Kanazawa K, Nishizawa N.K, et al. Purification and characterization of nicotianamine synthase from Fe-deficient barley roots. Plant and Soil, 1994, 165, 173.
    [5]Kristensen I, Larsen PO. Azetidine-2-carboxylic acid derivatives from seeds of Fagus silvatica L. and a revised structure for nicotianamine. Phytochmistry. 1974, 13, 2791.
    [6]Inoue H, Higuchi K, Takahashi M, et al. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J, 2003,36, 366.
    [7]Ling HQ, Koch G, Baumlein H, et al. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthases. Proc Nat Acad Sci USA, 1999, 96, 7098.
    [8]Mizuno D, Higuchi K, Sakamoto T, et al. Three nicotianamine synthase genes isolated from Maize are differentially regulated by iron nutritional status. Plant Physiol, 2003, 132, 1989.
    [9]Suzuki K, Higuchi K, Nakanishi H, Nishizawa NK, Mori S. Cloning of nicotianamine synthase gene from Arabidopsis. Soil Sci Plant Nutr, 1999,45,993.
    [10]Noma M, Moguchi M. Occurrence of nicotianamine in higher plants. Phytochemistry, 1976, 15, 1701.
    [11]Rudolph A, Becker R, Scholz G, et al. The occurrence of the amino acid nicotianamine in plants and microorganisms:a re-investigation. Biochem. Physiol.Pflanzen.,1985, 180, 557.
    [12]Curie C, Briat JF. Iron transport and signaling in plants. Annu Rev Plant Biol, 2003, 54, 183.
    [13]Douchkov D, Nowara D, Zierold U, et al. Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ, 2005, 28, 365.
    
    [14]Takahashi M, Terada Y, Nakai I, et al. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell, 2003, 15, 1263.
    [15]Y. Ishida, T. Fujita, K. Asai. New detection and separation method for amino acids by high-performance liquid chromatography. J.Chromatogr.A. 1981, 204, 143.
    [16]Kawai S, Sato Y, Takagi S. Separation and determination of mugineic acid and its analogues by high-performance liquid chromatography. J.Chromatogr.A. 1987, 391, 325.
    [17]Whral MS, Heller LI, Norvell WA, et al. Reversed-phase liquid chromatographic determination of phytometallophores from Strategy II Fe-uptake species by 9-fluorenylmethyl chloroformate fluorescence. J.Chromatogr.A, 2002,942, 177.
    [18]Howe JA, Choi YH, Loeppert RH, et al. Column chromatography and verification of phytosiderophores by phenylisothiocyanate derivatization and UV detection. J.Chromatogr.A. 1999, 841, 155.
    [19]N von Wiren, S Klair, S Bansal, et al. Nicotianamine Chelates Both FeIII and FeII. Implications for Metal Transport in Plants. Plant Physiol, 1999, 119, 1107.
    [20]N von Wiren, H Khodr, RC Hider. Hydroxylated Phytosiderophore Species Possess an Enhanced Chelate Stability and Affinity for Iron(III). Plant Physiol, 2000, 124, 1149.
    [21]V Vacchina, S Mari, P Czernic, et al. Speciation of Nickel in a Hyperaccumulating Plant by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry and Electrospray MS/MS Assisted by Cloning Using Yeast Complementation. Anal.Chem. 2003, 75, 2740.
    [22]D Schaumloffel, L Ouerdane, B Bouyssiere, et al. Speciation analysis of nickel in the latex of a hyperaccumulating tree Sebertia acuminata by HPLC and CZE with ICP MS and electrospray MS-MS detection. J.Anal.At.Spectrom. 2003, 18, 120.
    [23]Collins RN, Separation of low-molecular mass organic acid-metal complexes by high-performance liquid chromatography. J. Chromatogr. A, 2004, 1059, 1.
    [24]M Gledhill, Electrospray ionisation-mass spectrometry of hydroxamate siderophores. Analyst, 2001, 126, 1359.
    [25]. Spasojevic, H. Boukhalfa, R.D. Stevens, et al, Aqueous Solution Speciation of Fe(III) Complexes with Dihydroxamate Siderophores Alcaligin and Rhodotorulic Acid and Synthetic Analogues Using Electrospray Ionization Mass Spectrometry. Inorg. Chem. 2001,40, 49.
    
    [26]Niubert H, Hider RC, Cowan DA. Speciation of Fe (III)-chelate complexes by electrospray ionization ion trap and laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 1556.
    [27]Budimir N, Fournier F, Bailly T, et al. Study of metal complexes of a tripodal hydroxypyridinone ligand by electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1822.
    [28]Galatin CL, Turecek F. In Electrospray Ionization Mass Spactrometry, Cole RB(ed). John Wiley: New York, 1997,527.
    [29]Rosenberg E. The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis. J.Chromatogr A, 2003, 1000, 841.
    [30]Weber M, Harada E, Vess C, et al. Comparative microarray analysis of Arabidopsis thaliana and Aratidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J., 2004,37, 269.
    [1]王忠.植物生理学(农学、园艺、植保、土壤等专业用)[M].北京:中国农业出版社,1999.
    [2]Zazimalova E,Kaminek M,Biezinova A,et al.Control of cytokinin biosynthesis and metabolism.In:Libbenga,K.R.,Hall,M.A.,Hooykaas,P.(Eds.),Biochemistry and Molecular Biology of Plant Hormones,Ser.New Comprehensive Biochemistry.Elsevier,Amsterdam,1999,141.
    [3]B Dauphin-Guerin,G Teller,B Durand.Different endogenous cytokinins between male and female Mercurialis annua L.Planta,1980,148,124.
    [4]增田芳雄,胜见允行等.辽宁铁岭农学院《植物激素》翻译小组译.植物激素[M].北京:科学出版社,1972.
    [5]Morits RO,et al.Rapid identification of cytokinins by an immunological method.Plant Physiol.1991,95,1156.
    [6]A Szekacs,G Hegedtus,I T6bias,et al.lmmunoassays for plant cytokinins as tools for the assessment of environmental stress and disease resistance.Anal.Chim.Acta 421,2000,135.
    [7]Jing Zhao,Gang Li,Guo-Xiang Yi,et al.Comparison between conventional indirect competitive enzyme-linked immunosorbent assay(icELISA)and simplified icELISA for small molecules.Anal.Chim.Acta.2006,571,79.
    [8]CC Chou,WS Chen,KL Huang,et al.Changes in cytokinin levels of Phalaenopsis leaves at high temperature.Plant Physiol Biochem.2000,38,309.
    [9]C Chen,in:HF Linskens,JF Jackson(Eds.),High Performance Liquid Chromatography in Plant Sciences,Springer,Berlin,1987,23.
    [10]P Bartak,P Bednar,Z Stransky,,et al.Determination of dissociation constants of cytokinins by capillary zone electrophoresis.J Chromatogr.A,2000,878,249.
    [11]P BartOk,D Pechova,P Tarkowski,et al.Determination of the first dissociation constant of 6-benzylaminopurine:A comparison of methods.Anal.Chim.Acta,2000,421,221.
    [12]P Bartak,J Sevcik,T Adam,et al.Study of cytokinin separation using capillary electrophoresis with cyclodextrin additives.J Chromatogr.A,1998,818,231.
    [13]V Pacakova,K Stulik,V Vlasaikova,et al.Capillary zone electrophoretic determination of ionic impurities in silicone products used for electronic applications.J Chromatogr.A,1997,764,337.
    [14]A Gomez-Gomar,E Ortega,C Caivet,et al.Simultaneous separation of the enantiomers of cizolirtine and its degradation products by capillary electrophoresis.J Chromatogr A,2002,945, 257.
    [15]Mok, DWS, Mok, MC. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001,52,89.
    [16]R Horgan, IM Scott, in: L. Rivier, A. Crozier (Eds.), Principles and Practice of Plant Hormone Analysis, Academic Press, London, 1987, Chapter 5, 303.
    [17]MS McDonald, RO Morris, in: A. Crozier, J.R. Hillman(Eds.), Methods in Enzymology, Vol. 110, Cambridge Unilevelversity Press, Cambridge, 1985, 347.
    [18]P Redig, T Schmulling, H Van Onckelen. Analysis of Cytokinin Metabolism in ipt Transgenic Tobacco by Liquid Chromatography-Tandem Mass Spectrometry. Plant Physiol. 1996, 112, 141.
    [19]GM Banowetz, in: D.W.S. Mok, M.C. Mok (Eds.), Cytokinins: Chemistry, Activity and Function, CRC Press, Boca. Raton, 1994, Chapter 23, 305.
    [20]Edurne Baroja-Fernandez, et al. Aromatic cytokinins in micropropagated potato plants. Plant Physiol and Bioch, 2002, 40, 217.
    [21]Crozier A.In Rivier L et al(eds), Principles and practice of Plant Hormone Analysis. Academic Press. 1987, 1, 1.
    [22]Birkemeyer C, Kolasa A, Kopka J. Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of major phytohormones. J Chromatogr A. 2003, 993, 89.
    [23]Schmelz EA, Engelberth J, Tumlinson JH, et al. The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J, 2004, 39, 790.
    [24]Liya Ge, Jean Wan Hong Yong, Swee Ngin Tan, et al. Analysis of some cytokinins in coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography after solid-phase extraction. J Chromatogr A, 2004, 1048, 119.
    [25]PI Dobrev, M Kaminek, Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A, 2002, 950,21.
    [26]P.I. Dobrev, L. Havlicek, M. Vagner, J. Malbeck, M. Kaminek. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A, 2005, 1075, 159.
    [27] 王立,汪正范等.色谱分析样品处理.北京:化学工业出版社,2001,5.
    [1]王镜岩等,生物化学,北京:科学出版社,2001.
    [2]MOTTRAM,Meat DS.Volatile compounds in foods and beverages.Ed.H.Maarse.New York:Marcel Dekker.1991.107.
    [3]张玉奎,现代生物样品分离分析方法,北京:科学出版社,2003.
    [4]石瑞,单糖的分析方法及进展,四川食品与发酵,1997,1,29.
    [5]Michel A,Linda JF.Postcolumn derivatization method for determination of reducing and phosphorylated sugars in chicken by high performance liquid hromatography.J Agric Food Chem.2002,50,2760.
    [6]WANG Jing(王静),WANG Qing(王晴),XIANG Wen-sheng(向文胜).Application of hromatography to the analysis of carbohydrates(色谱法在糖类化合物分析中的应用).Chin J Anal Chem(分析化学).2001,29,22.
    [7]Wight AW,Niekerk PJ.A sensitive and selective method for the determination of reducing sugars and sucrose in food and plant material by high performance liquid chromatography.Food Chem,1983,10,211.
    [8]Wim JBW,John HMH,Chyis D,et al.HPLC detection of soluble carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus.J Agric Food Chem,2000,48,287.
    [9]Giuseppe Z,Lorenza C,Vincenzo G.Determination of organic acids,sugars,diacetyl,and acetoin in cheese by high-performance liquid chromatography.J Agric Food Chem,2001,49,2722
    [10]张惟杰等,糖复合物生化研究技术,杭州:浙江大学出版社,1999,48.
    [11]MAO Qing-wen(茅庆文),ZHU Shu-tao(朱叔韬).Capilary zone electrophoresis(CZE)of pyridylamino derivatives of monosaccharides(毛细管电沪技术对单糖氨基吡啶衍生物的检测)。Chin J Chromatogr(色谱),1994,12,194.
    [12]ZHANG Li(张利),CHEN Zhen-zhen(陈蓁蓁),WANG Yan(王燕),et al.Analysis of saccharides by capilary electrophoresis(糖类物质的毛细管电泳分析).Chem Res Appl(化学研究与应用),2003,15,607.
    [13]J Guo-hui(贾国惠).Analysis of saccharides by capiRary electrophoresis(糖类的高效毛细管电泳分析).Chin Hosp Pharm J(中国医院药学杂志),2003,23,492.
    [15]XU Ban-cai(徐宝才),XIAO Gang(肖刚),DING Xiao-lin(丁霄霖).Chromatographic analysis of soluble carbohydrates and D-Chiro-inositol in uckwheat seeds(色谱法分析检测苦籽粒中的可溶糖).Chin J Chromatogr(色谱),2003,21,410.
    [16]HUANG Xue-song(黄雪松).Determination of acetate monosaccharides and amino- saccharices formed in aqueous phase by gas chromatography(单糖与糖胺的水相乙酰化及其气相色谱测定).Chin J Chromatogr(色谱).2003,21,527.
    [17]REN Qing(任清),ZHANGYang(张阳).Determination of sugaral-cohol in lens of diabetes rats by derivation-capillary gas chromatography(衍生化毛细管气相色谱法测定糖尿前不见古人大鼠眼球晶体中糖醇含量).Chin J Anal Chem(分析化学),2003,31,111.
    [18]胡亚男,王义明,罗国安.质谱在糖分析中的应用,药学学报,2000,35,397.
    [19]XU Xiu-zhu(徐秀珠),XU Gen-liang(徐根良).Analysis of sugars and sugar alcohols by high performance liquid chromatography(糖和糖醇的高效液相色谱分析).Chin J Anal Chem(分析化学),1999,27,54.
    [20]San chez-Mata MC,Camara-Hurtado M,Diez-Marques C.Identification and quantification of soluble sugars in green beans by HPLC.Eur Food Res Technol,2002,214,254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700