用户名: 密码: 验证码:
煤最短自然发火期测试及煤堆自燃防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤自燃火灾严重威胁着煤炭生产和储运的安全,给煤炭产业带来极大的安全隐患。为有效的防治煤炭自燃,研究煤炭自燃特性,确定煤最短自然发火期,并提出合理的煤自燃防治技术是非常有必要的。
     准确测定煤自燃过程中的基本参数是进行自然发火规律研究的前提。本文依据传热学、传质学及渗流力学理论,建立了一整套煤低温氧化过程中主要参数测试的理论方法及相关实验系统,包括煤体氧化放热强度、导热系数、氧气扩散系数、渗透系数、耗氧速率及活化能等参数。其中,自行设计组建的煤氧化放热强度测试实验系统,实现了快速准确测定的目标。利用实验系统准确测定了各参数,分析了粒度、温度、煤变质程度等因素对上述参数的影响,并给出了影响函数,为不同条件下煤自燃特性研究提供了基础。
     以绝热圆柱形煤柱为物理模型,建立了煤实验条件下最短自然发火期计算模型。利用实测的煤自燃基本参数,通过解算分析各影响因素与自然发火期的正交关系,准确测定了煤最短自然发火期。结果基本与煤体自然发火实际情况一致,验证了测试结果的准确性。该方法耗时短,适用于大批量煤样测试的要求。
     建立了煤堆二维空间自热升温数学模型,采用FLUENT软件进行了数值解算,研究了煤堆的自热氧化规律,模拟所需参数均为实验测得;结果揭示在自热过程中气流均从煤堆下部流入,上部流出,并掌握了煤堆内部高温点分布规律;在模拟结果的基础上提出了合理的抑制煤堆自燃新方法——煤堆下部表面覆盖细煤预防自燃。
     为考察细煤覆盖煤堆下部表面抑制自燃效果,对细煤覆盖煤堆进行了数值模拟。模拟分析了细煤覆盖煤堆内部的气体渗流及氧气分布规律,通过与原煤堆比较分析,综合考察了细煤覆盖对煤堆自热规律的影响。同时建立了煤堆升温实验台,对覆盖不同厚度细煤煤堆沿水平方向的空气扩散和沿竖直方向的空气热对流的二维空间传热、传质规律进行了实验研究。实验与数值分析结果表明覆盖细煤阻碍了煤堆内部的氧气补充,从而有效的抑制了煤堆自燃。
     最后,将细煤覆盖煤堆自燃抑制方法应用到现场进行了大型煤堆试验,成功抑制了神华最易自燃煤堆的发火。没有覆盖细煤的煤堆在很短的时间内(18 d)即发生了自燃,而覆盖1 m厚细煤的煤堆历时123 d最高温度仅为59.9℃。并得出了煤堆高温区域移动规律,分析了环境温度及大气风速对煤堆自燃的影响。
     该论文有图79幅,表23个,参考文献137篇。
Spontaneous combustion exists in the process of production and transportation commonly. It is a great hidden danger in coal industry. In order to control coal spontaneous combustion effectively, it is necessary to study the characteristics, forecast the shortest period and develop appropriate control technology of coal spontaneous combustion.
     Accurately measuring basic parameters of coal spontaneous combustion is the precondition to study the regulation of coal spontaneous combustion. According to the theories of heat transfer, mass transfer and seepage mechanics, a set of method and test system of main parameters measurement in the process of coal oxidation at low temperature was developed. The parameters include coal oxidative heat release intensity, heat conductivity, oxygen diffusion coefficient, and filtration coefficient. Moreover, we established the experimental system to measure heat release intensity of coal spontaneous combustion. The system can measure fastly and accurately. Using the measured parameters, the effect of size, temperature and metamorphic grade of coal on those parameters is analyzed. Moreover, the effect functions are also established and it is the base of studying the characteristics of coal spontaneous combustion at different conditions.
     Based on accurately measured basic parameters of coal spontaneous combustion, a 2D mathematical model of adiabatic coal column to calculate the shortest experimental spontaneous combustion period of coal is developed. Through analyzing the orthogonality relationship of spontaneous combustion period and effect factors, the shortest experimental spontaneous combustion period of coal can be accurately measured. The result is fit for the real performance and the accuracy of the result can be indicadited. The method cosumes less time and is capable of measuring mass coal samples.
     A 2D numerical model of auto thermal of coal stockpile is developed. The model is calculated by FLUENT to study the regulation of auto thermal of coal stockpile. The data of numerical simulation is measured by experiments. The result shows that air flows into the stockpile from the bottom and out of from the top. Moreover, the distribution of high temperature dot also can be found out. Based on the simulation result, a new appropriate spontaneous combustion control method of coal stockpile, paving fine coal on the surface of the bottom part of stockpile, is developed.
     In order to study the effect of above method, we make a numerical simulation of coal stockpile covered with fine coal. The numerical simulation analyzes the gas seepage and oxygen distributive regulation inside the coal stockpile covered with fine coal. Compared with coal stockpile without fine coal, the effect of the method can be analyzed comprehensively. At the same time, a coal stockpile temperature rising experimental table is developed. Experimental study of 2D heat and mass transfer regulation of horizontal air diffusion and vertical heat convection of coal stockpile covered with different fine coal in thickness. The experimental and numerical analysis result shows that fine coal covered can prevent oxygen supply to the coal stockpile, so spontaneous combustion can be controlled.
     Finally, using the control method of covering fine coal on coal stockpile in the field test, the spontaneous combustion of Shenhua coal is controlled. The coal stockpile without fine coal covered can ignite in 18 days. However, the temperature of coal stockpile can only reach 59.9℃during 123 days if it covered with 1 m fine coal. In addition, analyzing the effect of environmental temperature, air flow and sunshine irradiation, the moving regulation of high temperature section of coal stockpile can be found by the field test.
     79figs., 23tabs., 137refs.
引文
[1]《煤矿安全生产十一五规划》.国家安全生产监督管理总局,2006.
    [2]李学诚.中国煤矿安全大全[M].北京:煤炭工业出版社,1998.
    [3]董希琳,陈长江等.煤炭自燃阻化文献综述[J].消防科学与技术,2002,3(2):28-31.
    [4]李崇山.矿井煤层自然发火的自燃临界性条件[J].山东煤炭科技,2000(增刊),115-117.
    [5]黄福昌,崔洪义,王振平等.兖州矿区矿井通风安全技术[M].北京:煤炭工业出版社,2001.
    [6]秦波涛,王德明.矿井防灭火技术现状及研究进展[J].中国安全科学学报,2007,17(12):80-85.
    [7] Kuchta JM, Rowe VR, Burgess DS. Spontaneous combustion susceptibility of US coals[M]. RI 8474. US Bureau of Mines, 1980.
    [8] Cliff D, Rowlands D, Sleeman J. Spontaneous combustion in Australia underground coal mines[M]. Queensland, Australia: SIMTARS, 1996.
    [9] Gouws MJ, Knoetze TP. Coal self-heating and explosibility[J]. J S Afr Inst Min Metall, 1995: 37-43.
    [10] Jones RE, Townend DTA. Mechanism of the oxidation of coal[J]. Nature, 1945,155:424-425.
    [11] Jones RE, Townend DTA. The oxidation of coal[J]. J Soc Chem Ind, 1949,68:197-201.
    [12]邓军,张燕妮,徐通模等.煤自然发火期预测模型研究[J].煤炭学报,2004, 29(5):568-571.
    [13]张国枢.煤层自燃发火期的估算方法及其延长途径[J].煤矿安全,1990,6:61-63.
    [14] James B. Stott,Benjamin J. Harris and Philip J. Hansen. A‘full-scale’laboratory test for the spontaneous heating of coal[J]. FUEL, 1987, 66:1012.
    [15] J.B.Stott. Proc. 21st Int. Conf. Safety in mines Res. Inst. Australia,1985:521-527.
    [16] J.B.Stott, B.J.Harris, P.J.Hansen and A.R.van Gameren.绝热量热器测量氧化空气中湿煤的计算机模拟以及用2m绝热容器所作的实验研究[J].第二十二届国际采矿安全会议论文集.北京:煤炭工业出版社,1987:429-434.
    [17] X.D. Chen. On the mathematical modeling of the transient process of spontaneous heating in a moist Coal pile[J]. Combustion and Flame, 1992, 90:114-120.
    [18] X.D.Chen. and J.B.Stott. Oxidation rate of coals as measure from one-dimensional spontaneous heating[J], Combustion and Flame, 1997(109):111-114.
    [19] Fehmi Akgün and Ahemet Arisoy. Effect of particle size on the spontaneous heating of a Coal pile. Combustion and Flame. 1994(99):137-146.
    [20] Smith,A.C.,Miron,Y.,Lazzara,CP..Large-scale studies on spontaneous combustion of coal[R].US Bureau of Mines,Report of Investigation,1991.346.
    [21] Cliiff D.,Davis R.,Bennet A.,Galvin G.,&Clarkson F..Large scale laboratory testing ofthe spontaneous combustibility of Australia coals[R].In Queensland Mining Industry Health & Safety conferenc,Bresbance, Australia:Queensland miningcouncil. 1998.175-179.
    [22] V. Fierro, J.L. Miranda, C. Romero, J.M. Andre′s, A. Arriaga, D. Schmal, G.H. Visser. Prevention of spontaneous combustion in Coal pile Experimental results in coal storage yard[J]. Fuel Processing Technology, 1999(59):23–34.
    [23]吴晓光.煤自然发火实验台温度场数值模拟研究[D].西安:西安科技大学,2005:19-20.
    [24]徐精彩,薛韩玲,文虎等.煤氧复合热效应的影响因素分析[J].中国安全科学学报,2001,11(2):31-36.
    [25]邓军,徐精彩,张迎弟等.煤最短自然发火期实验及数值分析[J].煤炭学报,1996,24(3):274-278.
    [26]文虎.煤自燃全过程实验模拟及高温区域动态变化规律的研究[J].煤炭学报,2004,29(6):689-693.
    [27]李仁发,沈洪远,年晓红.基于物理仿真的煤炭自然发火研究[J].系统仿真学报,2001,13(2):231-233.
    [28]张国枢,戴广龙,王卫平.煤炭自燃模拟实验装置设计与研制[J].淮南工业学院学报,1999,19(4):11-13.
    [29]卡连金И?B.煤的自燃及其预测[A].煤炭工业部科技情报所译.煤层内因火灾防灭火技术[C].北京:煤炭工业出版社,1984:132-147.
    [30]余明高,王清安,范维澄等.煤层自然发火期预测的研究[J].中国矿业大学学报,2001,30(4):384-387.
    [31]余明高,黄之聪,岳超平.煤最短自然发火期解算数学模型[J].煤炭学报,2001,26(5):516-519.
    [32]邓军,文虎,徐精彩.煤自然发火预测理论及技术[M].西安:陕西科学技术出版社,2001年10月第1版.
    [33]徐精彩,许满贵,邓军等.基于煤氧复合过程分析的自然发火期预测技术研究[J].火灾科学,2000,9(3):22-26.
    [34] Btooks Kevin, Svanas Nicoloas, Glasser et al. Critical temperatures of some Turkish coals due to spontaneous combustion[J ]. Journal of Mines, Metals & Fuels, 1988, 36 (9): 434-436.
    [35]邓军,张燕妮,徐通模等.煤自然发火期预测模型研究[J].煤炭学报,2004,29(5):568-571.
    [36]刘剑,陈文胜,齐庆杰.基于活化能指标的煤的自然发火期研究[J].辽宁工程技术大学学报,2006,25(2):161-163.
    [37]陆卫东,王继仁,单亚飞等.基于L-MBP神经网络的煤自然发火期预测[J].辽宁工程技术大学学报,2006,25(6):815-818.
    [38]叶振兴,戴广龙.煤堆最短自然发火期解算数学模型[J].能源技术与管理,2004年第1期.
    [39]徐精彩,文虎,葛岭梅等.松散煤体低温氧化放热强度的测定和计算[J].煤炭学报,2000,25(4):387-390.
    [40]徐精彩,张辛亥,文虎等.煤氧复合过程及放热强度测算方法[J].中国矿业大学学报,2000,29(3):253-257.
    [41] John N. Carras and Brian C. Young. Self-heating of coal and related materials: models, application andtest methods. Prog. Energy Gombust. Sci. 1994, 20:1-15.
    [42]刘永军、南照东.限制性条件下药物对细菌抑制作用微量量热法研究[J],生物工程学报,1996,12(1):60–64.
    [43]刘华姬、于丽、张洪林. CTAB形成胶束的热力学性质的微量量热法研究[J],曲阜师范大学学报,2002,1(1):66–68.
    [44]何启林,王德明. TG-DTA-FTIR技术对煤氧化过程的规律性研究[J].煤炭学报,2005,30(1):53-56.
    [45]陆伟,王德明,戴光龙等.参比氧化法研究煤低温氧化特性[J].辽宁工程技术大学学报. 2007.26(1):21-24.
    [46]陈亚平,徐礼华.储煤场煤垛温度预报的仿真模型与计算[J].东南大学学报,1997,3(2):107-112.
    [47]刘剑,王继仁,孙宝铮.煤的活化能理论研究[J].煤炭学报,1999,24(3):316-320.
    [48] Wiwik Sujanti, Dong-ke zhang, Xiao dong chen, Low-temperature oxidation of coal studied using wire-mesh reactors with both steady-state and transient methods[J]. Combustion and Flame, 1999,117:646-651.
    [49]李增华等.煤炭自燃特性研究的加速量热法[J].中国矿业大学学报,2003,32(6):612-614.
    [50]李文,李保庆.用热重技术研究煤焦的燃烧特性[J].煤炭转换,1996,19(3).
    [51]魏兴海,顾永达.TG-DSC法研究煤焦的燃烧[J],煤炭学报,1994,19(4):39-44.
    [52] FEHMI AKGüN, AHMET ARISOY, Effect of particle size on the spontaneous heating of on Coal pile[J], Combustion and Flame, 1994, 99: 137-146.
    [53] Tevrucht M.L.E, Griffiths P.R., Energy & Fuel[J], Fuel, 1989, (3): 522.
    [54] Kelemen, S.R. etl, Oxidation Kinetics of Lllinois No.6 Coals in Air Between 295 and 398K[J], Energy & Fuels, 1989, 3(4): 498-505.
    [55] Kelemen, S.R. etl, Oxidation Kinetics of Wyoming Powder River Basin coal in O2 between 295 and 398K[J], Energy & Fuels, 1990, 4(2): 165-171.
    [56] Martin, Ronald R. etl, Sequential Derivation and the SIMS Imaging of Coal[J], Energy Sources, 1989, 11(1): 1-8.
    [57] Martin, R.R. etl, SIMS imaging in the analysis of chemically altered coal surfaces[J], Energy Source, 1989, 11(1): 105-112.
    [58] Jung Doo Kyun, A study on the Autoignition characteristics of polyunethame foam[J], 2003 International on Fire Science and Fire-Protection Engineering Proceedings, 136-140.
    [59] Lijing GAO etl, Study on spontaneous ignition of meat bone meal[J], 2003 International on Fire Science and Fire-Protection Engineering Proceedings, 141-144.
    [60]刘旭光,李保庆.DAEM模型研究大同煤及其半焦的气化动力学[J],燃料化学学报,2000,28(4):289-293.
    [61] Michael J Gouws. Techniques Developed at the University of the Witwaersrand to Assess the Liability of Coal to Self-heatv [J]. Journal of the Mine Ventilation Society of South Africa, 1992, 127-132.
    [62]陈清华,张国枢,唐明云等.松散煤体导热系数测定方法[J].煤矿安全,2007,4:25-27.
    [63]彭担任.煤和岩石的导热性能[J].江苏煤炭,1993,2:5-7.
    [64]赵为平,沈晶.堆积煤等效导热系数的实验测定[J].黑龙江电力技术,1997,19(2):72-74.
    [65]岳宁芳.松散煤体导热系数的分析[J].矿业安全与环保,2006,33(3):26-28.
    [66]李建伟,葛岭梅,徐精彩等.松散煤体导热系数测定实验[J].辽宁技术工程大学学报,2004,23(1):5-8.
    [67]唐明云,张国枢,张朝举等.平行热线法测定松散煤体导热系数试[J].矿业安全与环保,2006,33(5):13-16.
    [68]何刚,张国枢,陈清华.热线法测松散煤体变导热系数[J].煤矿安全,2007,6:19-21.
    [69]汤其建,张国枢,陈清华.松散煤体导热系数影响因素分析[J].江西煤炭科技,2006,4:24-26.
    [70] Carras JN, Young BC. Self-heating of coal and related materials: models, application and test methods. Prog Energy Combust Sci 1994, 20:1-15.
    [71]翟云芳.渗流力学[M].北京:石油工业出版社,1999:10-11.
    [72]康天合,靳钟铭,赵阳升.煤体渗流特性的模糊数学分类方法及其应用[J].阜新矿业学院学报,1994,13(3):8-13.
    [73]马光第,赵阳升,段康廉等.煤体渗流性及其应用的研究[J].山西矿业学院学报,1990,8(3):145-155.
    [74]林伯泉,周世宁.煤体瓦斯渗流率的实验研究[J].中国矿业学院学报,1987,1:21-28.
    [75]罗新荣.煤层瓦斯运移物理模拟与理论分析[J].中国矿业大学学报,1991,20(3):55-61.
    [76]徐精彩.空气在煤堆中的渗流规律探讨[J].西安矿业学院学报,1995,15(4):289-293.
    [77]刘艳华,徐精彩,贺敦良.空气在破碎煤体中的流动特性[J].陕西煤炭技术,1991,2:20-22.
    [78]邓军,徐精彩,文虎等.综放面巷道松散煤体氧气浓度分布规律研究[J].西安科技学院学报,1999,19(增刊),5-8.
    [79]梁运涛,罗海珠.不同粒度松散煤体的氧扩散特性实验研究[J].煤炭学报,2003,28(5):470-472.
    [80]桂来保,罗海珠,梁运涛.松散煤体氧自由扩散特性的定量分析[J].安徽理工大学学报(自然科学版),2004,24(1):12-14.
    [81]邓军,徐精彩,李莉.松散煤体中氧气扩散系数的实验研究[J].中国矿业大学学报,2003,32(2):145-147.
    [82]王振平,文虎,黄福昌.松散煤体中的氧气扩散模型及数值分析[J].煤炭学报,2002,27(3):229-232.
    [83]张瑞新,谢和平.煤堆自然发火的实验研究[J].煤炭学报,2001,26(4):168-171.
    [84]张瑞新,谢和平,谢之康.露天煤体自然发火的试验研究[J].中国矿业大学学报,2000,29(4):235-238.
    [85]李树刚,徐精彩.地面储煤堆自燃规律及测试方法[J].西安矿业学院学报,1994,14(4):299-303.
    [86]徐礼华,卢山.煤垛温度分布的研究[J].能源研究与利用,1991,1:27-35.
    [87] Fierro V,Miranda J L,Romero C,Andres J M,Arriaga A,Schmal D.Model predictions and experimental results on self-heating prevention of stockpiled coals.Fuel 80(2001): 125-134.
    [88]董希琳,田丽.湿煤堆自热过程的非稳态数学模拟[J].中国安全科学学报,1996,6:9-3,.
    [89]卢山,孙培雷.煤堆自燃的理论与计算[J].工业锅炉,2004,4:26-29.
    [90]谢之康,张瑞新,蒋曙光等.露天煤矿煤炭自燃进程的数学模型[J].中国矿业大学学报,1996,9:25-3.
    [91]丁红玉,张辉.抑制煤堆自燃的新方法的理论与实验研究[J].电力科学与工程,2003,(4):1-4.
    [92]李舒伶,高建科.煤矸石自然发火数学模型在红阳三矿新矸石山自燃防治中的应用[J].中国安全科学学报,2003,13(2):25-27.
    [93] F.Akgun, R.H.Essenhigh. Self-ignition charactersics of Coal pile:theoretical prediction from a two-dimensional unsteady-state model. Fuel 80(2001):409-415.
    [94] M.Krajciova, L.Jelemensky.etc. Journal of loss prevention in the process industries, 2004,17: 205-216.
    [95] Ashley Hull, Jennifer L. Lanthier and Pradeep K.Agarwal. The role of the diffusion of oxygen in the ignition of a Coal pile in confined storage. Fuel Vol.76 No.10.pp.975-983.1997.
    [96] Srinivasan Krishnaswamy, Pradeep K, Agarwal and Robert D.Gum. Low-temperature oxidation of coal 3. Modelling spontaneous combustion in Coal pile. Fuel Vol.75.No.3.pp.353-362.1996.
    [97]谢之康等.煤堆自燃防治的分层局部堵漏法[J].煤矿安全,1994.6.
    [98]肖辉,杜翠凤.新型高聚物煤自燃阻化剂的试验研究[J].安全与环境学报,2006,6(1):46-48.
    [99]李满花.预防储煤厂储煤堆自燃措施[J].山西焦煤科技,2004.11.
    [100]刘清龙等.用台阶式插管定量注水防治露天煤堆自燃[J].煤矿安全,2000.6.
    [101]李元章.露天煤堆自燃原因分析及其防止措施[J].锅炉压力容器安全技术,2000,2:13-14.
    [102]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社.
    [103]邓军,徐精彩,李莉等.不同氧气浓度煤样耗氧特性实验研究[J].湘潭矿业学院学报,2001,16(2):12~14.
    [104]徐精彩.煤自燃危险区域判定理论[M].北京:煤炭工业出版社,2001.
    [105]李汝辉.传质学基础[M].北京航空学院出版社,1987.9.
    [106]文虎.煤自燃过程的数值模拟[D].西安科技大学,2003.6.
    [107]翟云芳.渗流力学[M].北京:石油工业出版社,1999:10-11.
    [108]葛家理.现代油藏渗流力学原理[M].北京:石油工业出版社,2003.2.
    [109]严荣林,钱国胤.煤的分子结构与煤氧化自燃的气体产物[J].煤炭学报,1995,20:58–63.
    [110]陆伟,王德明,仲晓星等.基于活化能的煤自燃倾向性研究[J].中国矿业大学学报,2006,35(2):201-205.
    [111]王继仁,邓存宝,单亚飞等.煤自燃倾向性新分类方法[J].煤炭学报,2008,33(1):47-50.
    [112]刘剑,陈文胜,齐庆杰.基于活化能指标煤的自燃倾向性研究[J].煤炭学报,2005,30(1):68-70.
    [113] Banerjel S C. Spontaneous combustion of coal and mine fires[M]. A.A.Balkoma, Rotferdam, 1985.
    [114]王海桥.煤炭中水分对自燃的影响分析[J].中州煤炭,1994,1:14-15.
    [115]王德明.矿井火灾学[M].江苏徐州:中国矿业大学出版社,2008.
    [116]王启杰.对流传热传质分析[M].西安:西安交通大学出版社,1996.
    [117] Frank P Incropera, Dewitt. Introduction to Heat Transfer[M], New York: School of Mechanical Engineering Purdue University, 1985.
    [118]陈才华,廖传华.多孔介质干燥过程的水分蒸发强度计算[J].机电信息,2006,6(23):28-31.
    [119]杨金忠,蔡树英.土壤中水、汽、热运动的藕合模型和蒸发模拟[J].武汉水利电力学院学报,1989,22(4):35-44.
    [120]周光炯等.流体力学(第二版)[M].北京:高等教育出版社,2000.
    [121]陈贵林,刘恒昆.对矿井火风压的认识及近似计算[J].煤炭技术,2002,21(6):28-30.
    [122]柏发松.采空区流场的动力相似特性及应用研究[J].焦作工学院学报,1997,16(3):68-78.
    [123]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,2002.
    [124]路长等.煤的受热氧化及其对物理吸附氧气的影响[J].煤炭学报,2008,33(9):1025-1029.
    [125]达式奎.洞道式水产品烘干房的热量衡算[J].水产学报,1980,4(3):241-247.
    [126]邓军,徐精彩,张迎弟等.煤最短自然发火期实验及数值分析[J].煤炭学报,1999,24(3):274-278.
    [127]李宗翔.纵放沿空巷周围煤体自燃升温过程的数值模拟[J].煤炭学报,2004,29(1):61-65.
    [128]霍光云.燃烧与传热工程计算图表[M].天津:天津科学技术出版社,1984.
    [129] X.D.Chen. On the fundamentals of diffusive self-heating in water containing combustible materials[J].Chemical Engineering and Processing. 1998(37):367-378.
    [130] M.Krajciova, L. Jelemensky, M.Kisa, J.Markos. Model predictions on self-heating and prevention of stockpiled coals[J]. Journal of Loss Prevention in the Process Industries, 2004(17):205-216.
    [131] Peter Nordon. Model for the self-heating reaction of coal and char[J]. Fuel, 1979, 58:456.
    [132] Kevin Brooks, Nicoloas Svanas and David Glasser. Evaluating the risk of spontaneous combustion in Coal pile[J].Fuel,1988,67:651-56.
    [133] D. Schmall, J.M.Duyzer and J.W. van Heuven. A model for the spontaneous heating of coal[J]. Fuel, 1985,64:963-72.
    [134] Kevin Brooks, Nicoloas Svanas and David Glasser. A simplified model of spontaneous combustion in Coal pile[J].Fuel,1986,65:1035-1041.
    [135] A.C.Mcintosh, A Semenov approach to the modeling of thermal runaway of damp combustible material, IMA J. APPL.Math. 1993,51:217.
    [136] Dick Schmal, Jan. H. Duyzer, Jan Willem van Heuven. A model for the spontaneous heating of coal[J].Fuel. 1985,64:963.
    [137] FIERRO V, MIRANDA J L, ROMERO C, et al. Model predictions and experimental results on self-heating prevention of stockpiled coals[J]. Fuel, 2001, 80, 125-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700