用户名: 密码: 验证码:
层板发汗冷却理论分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层板发汗冷却概念提出后的四十多年以来,已有数百种层板装置问世。层板装置是指将若干蚀刻有流动通道的金属或非金属薄片按预定的结构形式叠放,借助扩散焊或其他成型工艺,形成的一种装置。层板技术具有热防护能力强、精确分流、设计和制作灵活、便于自动化生产等优势,目前随着激光光刻技术、尤其是随着抗腐蚀的金属层板蚀刻与扩散焊技术的发展而呈现出了极大的活力。在典型层板发汗冷却装置应用于液体火箭发动机推力室热防护研究工作的带动下,层板技术应用于流体流动控制和燃料发汗喷注等方面的研究也在迅速发展。如在整个层板式流体混合器的内壁上通过相邻的层板微小缝隙,将不同的流体以交替形式实施交错分层发汗喷注,利用层板的控制流道来控制各部位的发汗喷注流强,使得各缝隙层的不同流体交错排列吹出,实现小容腔混合均匀,并可根据需要实现所期望的混合温度和压强。近二十年来,层板技术的理论研究也有一些进展,这些研究工作基本上都是围绕同一种流动介质的层板发汗冷却而开展,对不同的流体的层板交错发汗混合、发汗喷注暂未涉足,这方面的研究工作迫切需要着手开展,因此,本文对层板发汗冷却理论进行了深入研究,针对层板交错发汗孔隙与缝隙结构进行了初步的探讨,并开展了层板微小缝隙交错分层发汗喷注装置的应用研究。
     本文主要开展了以下几个方面的研究工作:
     (1)对典型层板发汗冷却技术及相关理论、国内外层板装置研究进展和层板制作经验进行了总结。回顾了国内外对层板发汗冷却技术的研究工作,对层板发汗冷却等典型层板装置以及层板式混合器、高速船推进装置等国内外新型层板装置进行了介绍,并对层板装置的制作工艺进行了简述。
     (2)对典型层板发汗冷却结构壁内流道流动与传热特性的研究。基于高温宏观尺度理论,建立了典型层板发汗冷却散布流道的高温传热模型,研究了求解结构层板温度和散布流道发汗介质温度的解析方法,得出了层板材料的导热系数、冷却剂参数、壁面热流流强、散布流道几何参数与结构层板温度以及热浸深度之间的关系;给出了壁内层板控制流道一般设计方法,探讨了控制流道以及主通道等流道的流阻特性。
     (3)基于微观尺度理论数值分析了散布流道的传热特性。以不可压缩流体或可压缩流体的N-S方程及能量方程为基础,采用考虑与近壁面流体速度梯度相关的滑移边界条件,以及与近壁面流体温度梯度相关的温度跳跃边界条件进行流动与传热计算,建立了微尺度计算模型,得到了结构层板与微小通道内的温度分布趋势,并与基于宏观尺度理论得到的分析结论进行了对比。
     (4)对层板交错孔隙珠状发汗的蒸发与燃烧速率进行了分析。应用双球坐标系解析计算了层板孔隙发汗结构出口处珠状发汗介质的蒸发、燃烧问题,探讨了在层板发汗孔隙密集结构中,发汗液珠的蒸发、燃烧速率与发汗孔隙相邻距离、孔隙大小以及环境温度、发汗介质的物性等之间的关系,得到两个相互作用的任意大小发汗液珠的分子扩散组分分布解析解,计算了发汗液珠在不同条件下的蒸发和燃烧速率变化规律。
     (5)研究了层板交错分层发汗缝隙结构中的发汗介质流动和燃烧特性,为指导相关的混合器和燃烧装置方面的设计工作提供理论基础和设计参考。为探讨层板微缝交错发汗喷注混合和燃烧机理,选用不同种流体作为发汗介质,经过层板微缝交错发汗喷注结构后进行混合或燃烧,建立了流体混合或燃烧的层板交错发汗缝隙结构的计算模型,得到了层板交错发汗缝隙结构内发汗流体的流动、组分分布、温度分布、表面的火焰特性、壁面热流流强等特征。
     (6)对典型层板发汗冷却的结构层板进行热力耦合特性研究及试验验证。针对结构层板的热皱损问题,对层板温度、板厚、缝隙宽度与挠曲临界压应力的关系做出了计算分析。采用伽辽金法通过一个严格满足几何边界条件和静力边界条件的屈曲试函数得到了散布流动区层板非均匀受热皱损的解析解;采用有限元法对不同厚度层板的受热变形及小扰动作用下的稳定性、对不同散布流道的高度以及不同夹筋条宽度条件下的层板受热变形等进行了分析;通过由薄膜加热片、V型槽夹具等构成的热皱损试验验证系统对层板热皱损静力分析方法进行了验证。
     (7)进行了层板发汗冷却分析方法的应用探讨。针对层板发汗冷却装置由许多相同或相似结构组成的特殊性,采用层板发汗冷却单元参数变量化的方法进行自动化设计;基于层板发汗冷却技术,将层板交错孔隙珠状发汗特性分析以及层板分层交错发汗缝隙结构分析等在流体混合机理研究以及交错发汗喷注燃烧研究中进行了应用,对层板式交错发汗混合与燃烧装置的研究提供了设计依据与理论支撑。
In the forty years after the concept of platelet transpiration cooling has been introduced, hundreds of platelet devices were invented and adapted. Platelet devices are fabricated by stacking several metallic or non-metallic thin sheets, which are etched with flow passages, into predetermined configuration along with the means of diffusion welding or other molding techniques. The platelet technology has the advantages of high capability of thermal controlling, accurate distributaries, flexible design and fabrication, and convenient for automation in production. And today, it presents extreme vitality because of the development of laser etching, in particular, etching to the corrosion-proofed metal platelet, and technique of diffusion welding. Along with the progress of the thermal protection research of liquid rocket engine chamber, with the adoption of typical platelet diffusion transpiration cooling device, the researches of platelet technology used for fluid flow controlling and fuel transpiration injection are improved further. Take a platelet-style fluid mixer as an example, various fluids flow in from adjacent minute slots of platelet structural wall in turn to realize cross-bedded transpiration injection, metering passages are used to control the flux of those fluids to ensure the process of cross-bedded inflow fluids, then even mixture mixes in small chamber which desired temperature and pressure are is achievable. In the recent two decades, the studies of platelet technology are advanced, however, they are focusing on one fluid mediator only to research the platelet transpiration cooling. Therefore, the researches of platelet cross-bedded transpiration mixing and transpiration injection about different fluids are hardly to be taken and they are waiting to be developed in desperation. Hence, this dissertation takes profound research of the theory of the platelet transpiration cooling, discusses elementarily on the configuration of gaps or slots in the cross-bedded platelet transpiration injection and makes applied research on the minute slots cross-bedded transpiration injection devices.
     Furthermore, the treatise includes some main researches as follows.
     1. Summary of the technique and relevant theories of typical platelet transpiration cooling, progress of domestic and foreign research of platelet devices and the experiences of fabricating platelets. It reviews domestic and foreign researches on platelet transpiration cooling technique, introduces late-model platelet devices in our motherland and overseas, such as typical platelet transpiration cooling devices, platelet style mixture and high speed propulsions, and also briefly describes craftwork of platelet devices.
     2. Study on the thermal transferring feature and fluid flow in passages on inner wall of typical platelet transpiration cooling devices. On the basis of macro-scale theory and the establishment of high temperature thermal transferring model in a typical transpiration cooling device with distributed passages, there are some researches have been done, such as figuring out resolutions to obtain and analyze the temperature of structural platelet and injecting fluid from distributed passages; finding out the relationship among coefficient of thermal conductivity, perimeter of coolant, flux of thermal flow of inner walls, geometric perimeter of distributed passages, structural platelet temperature and depth of hot dip; showing up some designing methods of platelet metering passages and discussing flow resistance character of passages just as metering passages and main passages.
     3. Analyzing thermal transferring character of distributed passages according to micro-scale theory. Along with the N-S equation and energy equation, micro-scale calculating model for flow and thermal transferring is set up with adoption of shifting edge condition relevant to the speed gradient of close-to-wall fluid and temperature varying edge condition relevant to the temperature gradient of close-to-wall fluid. Under all these, temperature distributing momentum in structural platelets and minute passages are measurable. On the other hand, the same issues are also taking under macro-scale theory, and comparing the outcomes with the ones from prior analysis.
     4. Taking analysis on the evaporation and combustion rate of hemispherical droplet of cross-bedded platelet transpiration. By utilizing the bispherical coordinates, the evaporation and combustion questions of hemispherical mediators in the outlet of a hole structure platelet transpiration are solved; the relationships among the evaporation and combustion rate of a hemispherical transpiration in a intensive hole structure platelet and the distance of adjacent holes, size of holes, environmental temperature and transpiration mediators are discussed, analytic solution of molecular diffusion of arbitrary hemispherical droplet are obtained, and the evaporation ratio, combustion rate and change momentum of hemispherical droplet transpiration are accounted under various conditions.
     5. Doing the study of the character of transpiration mediator flow and combustion in cross-bedded platelet transpiration slot structure, and providing theoretic base and design sample for conducting design of relevant mixture and combustion devices. For discussing the mixing and combustion of cross-bedded minute slot platelet transpiration injection, different fluids are chosen, as transpiration fluids, going through the cross-bedded minute slot platelet transpiration injection device to complete thorough mixing and combustion. With the help of setting up a typical cross-bedded minute slot platelet transpiration model, analysis of fluid mixture and combustion are obtainable, as well as the distribution of transpiration fluid constituents, distribution of temperature and fluid flux of inner wall in such a device.
     6. Thermodynamic coupling researches are carrying on towards sheets in distribution passages of platelet transpiration cooling. As for the thermal wrinkling issues of platelets, the relationships between each of three figures, which are temperature of platelets, thickness of sheets, and width of minute slots, are comparing with the deflexed critical compressive stresses. Analytic solution of unevenly thermal wrinkling issues of platelets in distributed flowing region is gained by using Galerkin method and bulking trial function, which satisfies the need of geometric boundary condition and static boundary condition rigorously. Analysis of the distortion and the stability under minor disturbing forces of be-heated platelets in various thicknesses; the height of different distributing passages; and be-heated platelet distortion under the condition of many diverse widths of rip strips are obtained by the use of finite-element method. The static analyzing method of platelet thermal wrinkling is testified through platelet thermal wrinkling experimental verification system, which is composed of heating-up membranes and clamp apparatus with V-shape vessels.
     7. Progressing discussion on application of analytic methods of platelet transpiration cooling. With the consideration of the special composition of many identical and similar structures of the construction of the platelet transpiration cooling device, automatic designing researches with perimeter variation methods are taking on platelet transpiration cooling units. Basing on the theory of platelet transpiration cooling, the analysis of cross-bedded platelet hemispherical droplets transpiration and of fluid mixture flow and combustion of cross-bedded platelet transpiration with minute slot structure are used in the studies of fluid mixing mechanism and cross-bedded transpiration injection combustion. And then, design considerations and theory foundations are obtained for the research on the cross-bedded minute slot platelet mixing and combustion devices.
引文
[1] Mueggenburg H H, Obrien C J. Pioneering high pressure rocketry - a short biography of rudi beichel[R]. AIAA Paper 93-1941
    [2] Kuntz R J, Blubaugh A L. Transpiration-cooled devices[P]. U.S. Patent 3,585,800
    [3]张峰,刘伟强.层板发汗冷却在液体火箭发动机中的应用与发展综述[J].火箭推进,2007(6)
    [4] Robbers B A, Anderson B J, Hayes W A, et al. Platelet devices-limited only by one’s imagination[R]. AIAA Paper 2006-4542
    [5] Mueggenburg H H, Hidahl J W, et al. Platelet actively cooled thermal management devices [R]. AIAA Paper 92-3127
    [6] Morford S A. Durability flame stabilizing fuel injector with impingement and transpiration cooled tip[P]. USA Patent: 6,178,752, January 30, 2001
    [7] Chevalier, Alain, Bouchez, et al. Fuel-injecting apparatus for ramjet engine cooled by transpiration[P]. USA Patent: 6,164,061, Dec. 2000
    [8] Sieger S A, Rob D H. Platelet-cooled plasma torch electrode. AIAA-1995-1987
    [9] Hewitt R A. Rocket engine chamber with layered internal wall channels[P]. U.S. Patent 7,343,732. 2008
    [10] Beebe, Kenneth W. Transpiration cooled throat section for low nox combustor and related process[P]. USA Patent: 5,127,221, July 7, 1992
    [11]姜培学,任泽霈,张左璠等.液体火箭发动机推力室发汗冷却传热过程的数值模拟(Ⅰ)数理模型[J].推进技术,1999,20(3)
    [12]刘伟强.液体推进剂火箭发动机推力室层板发汗冷却研究[D].国防科技大学博士学位论文,1999
    [13] Anthony F. Rocket chamber and method of making[P]. U.S. Patent 3,910,039
    [14] Nearly D A, Reider S B. Evaluation of laminated porous wall materials for combustion liner cooling[J]. Transactions of the ASME, Journal of Engineering for Power, 102:268-276
    [15] Wassel A B, Bhangu J K. The development and application of improved combustor wall cooling techniques[C]. ASME-80GT-66, 1980
    [16] Blubaugh A L, Zisk E J. Demonstration of an advanced transpiration cooled thrust chamber[R]. AD385085.
    [17] Laotz R J. Transpiration cooling washer assembly[P]. U.S. Patent 3,925,983
    [18] Stechman C, Krismer D, Fumihiro U. Off-limit testing of the model R-4D (490N) bipropellant rocket engine[R]. AIAA Paper 2004-3694
    [19] Bumb A, Hawk C W. History of staged combustion cycle development[R]. AIAA Paper 93-1939
    [20] Ananth R, Ndubizu C C, Tatem P A. A numerical model for the development of a boundary layer diffusion flame a porous plate[R]. ADA389659, 2001
    [21] Keener D N. Investigation of boundary layer and performance effect of transpiration cooling through a porous plate in a rocket nozzle[R]. ADA 289393,1994
    [22]肖映果,张峰,刘伟强.层板发汗冷却微小通道的传热研究[C].第13届全国高校工程热物理年会论文集,西安,2007
    [23]杨卫华.层板发汗冷却技术基础理论及应用研究[D].上海交通大学博士学位论文,2003
    [24]刘伟强,孙文胜,张峰等.发汗冷却层板结构的受热皱损分析[J].航空学报,2006(2)
    [25]张峰,刘伟强.液体火箭发动机层板发汗冷却结构的非均匀受热皱损分析[J].航空学报,2007(1)
    [26] Froning H D. Rudi Beichel's unique dual fuel/dual expander reusable rocket engine[R]. AIAA Paper 96-3178
    [27] Johnston L M, Perkins L A, Deniston C L, et al. Advanced main combustion chamber structural jacket strength analysis[R]. AIAA Paper 93-1395
    [28] Lepsch R A, Stanley D O. Application of dual-fuel propulsion to a single stage vehicle[R]. AIAA Paper 93-2275
    [29] Lepsch R A. Dual-fuel propulsion in single-stage advanced manned launch system vehicle[J]. Journal of Spacecraft and Rockets, 1995,32(3):417-425
    [30] May L R, Burkhardt W M. Transpiration cooled throat for hydrocarbon propellant rocket engine[R]. NASA technical report. Dec.,1991
    [31]李军,董志锐,林宇震等.多斜孔气膜冷却壁表面换热系数实验研究[J].推进技术,2001,21(5):45-48
    [32]蔡卫军,宋晓伟,刘松龄.侧壁有出流孔的通道流场实验研究[J].推进技术,2003,24:337-340
    [33]郁新华.层板冷却特性的研究[D].西安:西北工业大学博士学位论文,2001
    [34]郁新华,董志锐,刘松龄等.层板模型流阻特性的研究[J].推进技术,2000,21(4):47~50
    [35]郁新华,全栋梁,许都纯,刘松龄.层板结构内部换热特性的研究[J].航空学报,2003,24(5):405-410
    [36]全栋梁.层板叶片冷却特性的研究[D].西安:西北工业大学博士学位论文,2005
    [37]全栋梁,郁新华,刘松龄等.层板冷却结构流阻特性的实验与数值模拟[J].推进技术,2003,24(5):425-428
    [38]全栋梁,李江海,刘松铃.雪花型层板结构冷却特性的数值模拟研究[J].热科学与技术,2004,3(1):55-59
    [39]孙昌林,层板冷却结构内部流阻与换热特性研究[D].西安:西北工业大学硕士学位论文,2001
    [40]李江海,层板冷却特性的研究[D].西安:西北工业大学硕士学位论文,2005
    [41]张魏,朱惠人.层板结构冷却机理的数值模拟研究[J].机械设计与制造, 2006,(09)
    [42]陶智,魏豪杰,丁水汀,邓宏武,徐国强,林宇震.典型层板冷却结构中流体流阻与换热特性的实验[J].航空动力学报,2007(02)
    [43]陶智,吕东,丁水汀,徐国强.扰流柱直径对倾斜出气孔层板内流动和换热影响的数值研究[J].航空动力学报,2007(04)
    [44]牛禄.液体火箭发动机层板再生冷却技术研究[D].上海交通大学博士学位论文,2002
    [45]杨卫华,程惠尔,王平阳,吴利俊.推力室喉部层板发汗冷却段的结构设计分析[J].推进技术,2004,25(4):316-319
    [46] Yang W H, Cheng H, Cai A. Experimental study for flow characteristics of adjustment channel in platelet thrust chamber[R]. AIAA Paper 2002-3705
    [47]田伟学.液体火箭发动机层板推力室发汗冷却数值分析及实验研究[D].上海:上海交通大学硕士学位论文,2000
    [48]吴慧英,程惠尔,牛禄.层板发汗冷却推力室壁温的数值模拟[J].工程热物理学报,2001,22(1):104-106
    [49]刘伟强,陈启智,吴宝元.典型结构的层板发汗冷却推力室传热特性的推算方法[J].推进技术,1998.19(6):15-19
    [50] Liu W Q, Chen X H, Ma D Y, et al. Liu W Q. Thermal analysis of multipurpose rocket propulsion system[R]. AIAA Paper 96-3215
    [51] Liu W Q, Chen Q Z. Recession analysis for carbon-carbon composite nozzle of liquid propellant rocket engine[R]. AIAA Paper 96-3214
    [52] Liu W Q, Chen Q Z. The effect of transpiration cooling with liquid oxygen on the flow field[R]. AIAA Paper 98-3515
    [53] Liu W Q, Chen Q Z. Transpiration cooling of rocket thrust chamber with liquid oxygen[R]. AIAA Paper 98-0890
    [54] Liu W Q,Gao C Q,Zhang F, et al. Numerical study of heat transfer and thermo-soakback in orbit control rocket engine[C]. International Symposium on Space Propulsion, Shanghai, Aug. 2004
    [55]石少平,陆政林,庄逢辰.层板式喷往器在空间飞行器发动机中的应用综述[J].中国空间科学技术,1994(1):33-37
    [56]刘伟强,张峰,张擘毅,肖映果.流体混合器[P].中国专利:ZL 200410046605.0
    [57]刘伟强,张峰,张擘毅.高速船推进器[P].中国专利:ZL 200610031747.9
    [58]甘明.发散冷却基础问题研究[D].合肥:中国科学技术大学硕士学位论文,2007
    [59]姜培学,余磊,任泽霈.变物性与热辐射对发汗冷却过程的影响规律研究[J].航空动力学报,2004,19(2):184-190
    [60]郭志辉,曹永,黄勇.侧向互击型层板喷注单元的喷雾特性[J].航空动力学报, 2005(2)
    [61]杨立军,胡泽保,蔡国飙等.溅板型层板喷注单元流星及雾化特性实验研究[J].推进技术,2002,23(5):410-414
    [62]张纯良,张振鹏,袁军娅等.发汗冷却喷管在火箭发动机上的应用[J].上海航天,2002(2):8-12
    [63]刘松平,郭恩明,谢凯文,侯冠群.钛合金扩散焊中紧贴型缺陷的超声波检测[J].无损检测,2004,26(2):62-65
    [64]赵渠森,赵攀峰.真空辅助成型技术(一)[J].高科技纤维与应用,2002,27(3):22-27
    [65]易树平,哈津,林利红等.分层实体制造中金属分层板结合的新方法[J].重庆大学学报(自然科学版),2002.25(2):2-4
    [66] Smelser, Jerry W. NLS propulsion - government view[R]. AIAA Paper 92-3279
    [67] Otsu H, Fujita K, Ito T. Application of the transpiration cooling method for reentry vehicles[R]. AIAA-2007-1209
    [68] Dujarric C, Ramusat G. European technology development efforts in preparation for a next generation launcher[R]. AIAA Paper 2003-4484
    [69]沈赤兵,陆政林.相似理论在层板式喷注器试验研究中的应用[J].推进技术,1995(1):58~62
    [70]石少平,陆政林,庄逢辰.层板式喷注器在空间飞行器发动机中的应用综述[J].中国空间科学技术,1994(1):33-37
    [71] Mueggenburg H H. Platelet injector design and development history[C]. AIAA/SAE/ASME ASEE 27th Joint Propulsion Con., 1991
    [72] Botz R J. Development of platelet micro-orifice injector[C]. 35th IAF Cong., 1984
    [73] Rosenberg S, Schoenman L A. New generation of high performance engine for spacecraft propulsion[C]. AIAA/SAE/ASMR/ASEE 27th Joint Propulsion Cong.,1991
    [74]杨立军,胡泽保,蔡国飙,张振鹏.溅板型层板喷注单元流星及雾化特性实验研究[J].推进技术,2002,23(5):410~414
    [75] Thinh N, William A H, Timothy O M, Eric M V. Fabrication of a liquid rocketcombustion chamber liner of advanced copper alloy GRCop-84 via formed platelet liner technology[R]. AIAA Paper 2006-5192
    [76] Elam S K, Hayes W A. Subscale hot-fire testing of a formed platelet liner[R]. AIAA Paper 93-1827
    [77] Greisen D A, Raghuraman P. Hydraulic characterization of formed platelet combustion chamber liners[R]. AIAA-1994-3104
    [78] Elam S K, Hayes W A. Subscale hot-fire testing of a formed platelet liner[R]. AIAA-1993-1827
    [79] Burkhardt W M, Tobin S E, Mueggenburg H H. Formed platelet liner concept for regeneratively cooled chambers[R]. AIAA-1990-2117
    [80] Haidn O, Greuel D, Herbertz A, Ortelt M, Hald H. Transpiration cooling applied to c/c liners of cryogenic liquid rocket engines[R]. AIAA-2004-3682
    [81] Greisen D A, Raghuraman P. Hydraulic characterization of formed platelet combustion chamber liners[R]. AIAA Paper 94-3104
    [82] Burkhardt W M, Hayes W. A formed platelets for low cost regeneratively cooled rocket combustion chambers[R]. AIAA-1992-3526
    [83]彭英利,马承愚.超临界流体技术应用手册[M].北京:化学工业出版社,2005:238-242
    [84] Ahluwalia K S, Foster W. Internal platelet heat source and method of use in a supercritical water oxidation reactor[P]. U.S. Patent:5,571,424
    [85]刘敬海.激光器件与技术[M].北京:北京理工大学出版社,1995:306-310
    [86] Hook D L, Engler, T J. High energy DF chemical laser gain generator and related method for its fabrication[P]. U.S.Patent:6,813,304
    [87]隋智通.燃料电池及其应用[M].北京:冶金工业出版社,2004:1-23
    [88] Reginald G, Mueggenburg H H, Hodge R. Fuel cell platelet separators having coordinate features[P]. USA Patent:6,051,331
    [89]吴宝元.层板发汗冷却的应用及其冷却特性分析[R].航天工业总公司第十一研究所内部报告,1996
    [90]卡扎柯夫.材料的扩散焊接(何康生孙国俊译)[M].北京:国防工业出版社1982
    [91]顾钰熹.特种工程材料焊接[M].沈阳:辽宁科学技术出版社,1998
    [92] John F, Addom, et al. Method of making composite ultra-thin metal platelet having precity controlled pattern of flow passages therein[P]. USA Patent: 3,413,704
    [93]宁建华.层板式喷注器光刻工艺[J].航天工艺,2002(1):18~20
    [94]宁建华,雷娟萍.光刻技术在整体式层板催化剂床研究中的应用[J].火箭推进,2006(06)
    [95]美国金属学会编.金属材料加工处理新技术(姚守堪,于云源译)[M].上海:上海科学技术出版社,1982
    [96] Nguyentat T. Diffusion bonding-an advanced material process for aerospace technology. Web document published at http://www.vacets.org
    [97]郑远谋.爆炸焊接和金属复合材料及其工程应用[M].长沙:中南大学出版社,2002
    [98] Valler H W. Performance of a transpiration-regenerative cooled rocket thrust chamber[R]. NASA CR 159742, N80-14189
    [99] John E T, et al. Transpiration and film cooling of liquid rocket nozzles[R]. AD 486409
    [100] Thompson E, Kolonay R, Eastep F. Investigating control surface reversal using velocity transpiration enabled euler flow solver[R]. AIAA-2008-2007
    [101] Patil S, Ng T, Patel M. Trajectory control of a small caliber projectile using active transpiration[R]. AIAA-2007-3811
    [102] Foreest A V, Gülhan A, Esser B, Sippel M, Ambrosius B, Sudmeijer K. Transpiration cooling using liquid water[R]. AIAA-2007-4034
    [103] Kyo D S, Sang H C, Stephen J S. Transpiration cooling experiment for scramjet engine combustion chamber by high heat fluxes[J]. Journal of Propulsion and Power, 2006, 0748-4658 vol.22 no.1 (96-102)
    [104]杨学实等.带烧蚀发汗冷却控制研究的特点[J].系统工程与电子技术. 1997(2)
    [105]杨学实编著.变域传热发汗控制理论[M].北京:北京大学出版社,2002
    [106] Kacynski K J, et al. The prediction of performance and heat transfer in hydrogen /oxygen rocket engines with transpiration cooling , film cooling, and high area ratios. AIAA Paper 94-2757
    [107] Rubesin M W. An analytical estimation of the effect of transpiration cooling on the heat transfer and skin friction characteristics of a compressible, turbulent boundary layer. NACA TN-3341
    [108] H. W. Valler. Performance of a transpiration-regenerative cooled rocket thrust chamber. NASA CR 159742 ,N80-14189
    [109] J. A. Landis. et al. Numerical study of transpiration cooled rocket nozzle. AIAA Paper 96-2580
    [110]钱滨江等.简明传热手册[M].北京:高等教育出版社,1983
    [111] Dieter K H, et al. Modern engineering of design of liquid propellant rocket engines[M]. Published by AIAA, Washington D.C. 1992
    [112] D K休泽耳等著.液体推进剂火箭发动机设计(赵元修等译) [M].北京:国防工业出版社,1973
    [113] H W Valler. Performance of a transpiration-regenerative cooled rocket thrust chamber[R]. NASA CR 159742, N80-14189
    [114] Powars C A. Surface roughness effect on re-entry heating[J]. Aerothem Technical Memorandum TM-71-10, July 1971
    [115] Bartle E R, Leadon B M. The effectiveness as a universal measure of mass transfer cooling for a turbulent boundary layer[C]. Proceeding of the HTFMI, Stanford, California,1962
    [116] Keener D N, Bowersox J R, Bowman J. The effects of transpiration cooling on nozzle heat transfer and performance at low blowing ratios[R]. AIAA Paper 1995-2497
    [117] Landis J A, et al. Numerical study of transpiration cooled rocket nozzle[R]. AIAA Paper 1996-2580
    [118] Zhang F, Xie Z B, Liu W Q. Principle and mixing calculation analysis for the new style platelet fluid mixer[C]. The Program of 1st Sino-Japanese Conference on Polymerization Reaction Engineering and Mixing Technology, 2005
    [119]华绍曾,杨学宁.实用流体阻力手册[M].国防工业出版社,1985:172-174
    [120]马庆芳编.实用热物理性质手册[M].北京:中国农业机械出版社,1986
    [121]刘静.微米/纳米尺度传热学[M].北京:科学出版社,2003
    [122]过增元.国际传热研究前沿——微细尺度传热[J].力学进展.2000.30(1)
    [123] Zhang Wei. Probing heat transfer, fluid flow and micro structural evolution during fusion welding of alloys[D]. The Pennsylvania State University, Aug. 2004
    [124] Alexeenko A A. Modeling of micro scale gas flows using the direct simulation monte carlo method [D]. The Pennsylvania State University, Dec. 2003
    [125]肖映果.高温高压燃气壁面层板微小冷却通道的传热计算与分析[D].国防科技大学硕士学位论文,2005
    [126] Heyes D M. The liquid state-applications of molecular simulations[M]. John Wiley & Sons, 1998
    [127]朱恂.速度滑移及温度跳跃区微尺度通道内的流动与换热[D].重庆:重庆大学博士学位论文,2002
    [128]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2002:25-26
    [129]帕坦卡.传热与流体流动的数值计算(张政译)[M].北京:科学出版社,1984
    [130] Siebenhaar A, Leonard J R. Thrust cell technology for modular engines[R]. AIAA 93-2561
    [131]张峰,刘伟强.层板发汗孔隙两个任意尺寸珠状发汗的蒸发与燃烧速率分析[J].航空学报,2007(增)
    [132] Law C K. Recent advances in droplet vaporization and combustion[J]. Prog. Engergy Combust. Sci, Vol.8, 1982:171-201
    [133] Twardus E M, Brzustowski T A. The interaction between two burning fueldroplets[J]. Archiwum Termodynamiki i Spalania, P-olish Academy of Science, Vol.8, 1977:347-358
    [134] Brzustowski T A, Twardus E M, Wojcicky S, Sobiesiak A. Interaction of two burning fuel droplets of arbitrary size[J]. American institute of Aeronautics and Astronautics Journal, Vol.17, 1979:1234-1242
    [135]王补宣.工程传热传质学(下)[M].北京:科学出版社,1998:408-420
    [136] Moon P, Spencer D E. Field theory handbook[M]. NewYork: Springer, 1971:110-113
    [137]周力行.燃烧理论和化学流体力学[M].北京:科学出版社,1986
    [138]童景山,李敬.流体热物理性质的计算[M].北京:清华大学出版社,1982
    [139] Spalding D B.燃烧与传质(常弘哲等译)[M].北京:国防工业出版社,1984:74-80
    [140] Kanury A M.燃烧导论(庄逢辰等译)[M].湖南长沙:国防科技大学出版社,1981:118-132
    [141] Blubaugh A L, Labotz R J. Liquid rocket demonstration of an advanced transpiration- cooled thrust chamber[R]. AD 380029 Dec. 1967
    [142] Brahmi L, Vietoris T, Joulain P, David L, Torero J L. The effect of fuel injection on a laminar flame established on perpendicular fuel and oxidizer streams[J]. Combustion and Flame, January 1999
    [143]董智广,吴晋湘,董智慧,刘志凯.大加速度场中层流扩散火焰流场的数值计算[J].热能动力工程. 19(3),2004
    [144]阎小俊.预混层流火焰的计算模型和实验研究[D].西安交通大学博士学位论文,1999
    [145]蔡卫军,宋晓伟,刘松龄等.侧壁有出流孔的通道流场数值模拟[J].航空动力学报,2004,19(1)
    [146] Ramagopal A, Patricia A T, Ghuka C N. A Model for the development of a boundary layer diffusion flame over a porous plate[R]. NRL/MR/618301-8547.
    [147]同济大学等编.燃气燃烧与应用[M].北京:中国建筑工业出版社,2000
    [148]张斌全编著.燃烧理论基础[M].北京:北京航空航天大学出版社,1990
    [149] Penner S S. Chemistry problems in jet propulsion[M]. New York: Pergamon Press, 1957
    [150]童景山编著.流体的热物理性质[M].北京:中国石化出版社,1996
    [151]庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995
    [152]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002
    [153]陶文铨,何雅玲.对流换热及其强化的理论与实验研究最新进展[M].北京:高等教育出版社,2005
    [154]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001(第二版)
    [155]张勇健,张峰,刘伟强. 1Cr18Ni9Ti在高温水蒸气中的氧化特征[J].石油化工与腐蚀,2007(1)
    [156]刘伟强,陈启智,吴宝元.典型结构的层板发汗冷却推力室传热特性的推算方法[J],推进技术,1998,19(6):15-19
    [157]铁摩辛科S,沃诺斯基S.板壳理论[M].北京:科学出版社,1977:534-538
    [158]王俊奎,张志民编.钣壳的弯曲与稳定[M].北京:国防工业出版社,1980:263-267
    [159] Zhang F, Liu W Q. Analysis for non-uniform thermal wrinkling in transpiration cooling formed platelets for lre[C]. In: Proceedings of the Fifth Postgraduate Academic Annual Meeting of the National University of Defense Technology,Hunan,2005
    [160]吴连元.板壳理论[M].上海:上海交通大学出版社,1989:79-84
    [161]皮克纳D,伯恩斯坦I M.不锈钢手册[M].顾守仁译.北京:机械工业出版社,1987:715-721
    [162] Zhang F, Liu W Q. Analysis for Sheet's Thermal Buckling in PTMD[J]. Mechanics Research Communications.(审稿中)
    [163]梁士红,张耀宗,高颖颖.基于SolidWorks的变量化设计及其实现方法[J].机床与液压,2006(3):81-82
    [164] SolidWorks公司. SolidWorks2007高级设计.人民邮电出版社. 2008
    [165]肖映果,孙文胜,刘伟强.流体静态混合器的应用和新发展.现代化工,2005,7(25增刊):279-281
    [166]张家荣,赵廷元编.工程常用物质的热物理性质手册[M].北京:新时代出版社,1987
    [167]周继珠,刘伟强,王中伟编.工程热力学[M].长沙:国防科技大学出版社,1999
    [168] H Richter, et. al. A graphical user interface for modeling, simulation and control design of a propellant mixer[J]. New Technology Item Ssc-00213-1. NASA Tech Briefs, 2004
    [169] H Richter, F. Figueroa. A matlab-based graphical user interface for simulation and control design of a hydrogen mixer[R].AIAA-2004-4174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700