用户名: 密码: 验证码:
狭长空间纵向通风条件下细水雾抑制油池火的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道类狭长空间建筑的日益发展在给日常生活带来便利的同时也给火灾防治带来了许多新的问题。同时,随着科技的进步,社会对狭长空间火灾的防治提出了更高的要求。细水雾灭火技术由于清洁、高效、对人员和设备安全、用水量少等诸多优点而备受青睐,并且近年来在交通隧道及电缆隧道等狭长空间中逐步得到推广应用,而狭长空间通风条件下细水雾灭火的相关研究相对滞后。为此,本文选取纵向通风这一狭长空间的典型通风方式,通过实验模拟和理论分析,就狭长空间纵向通风条件下细水雾抑制油池火的机理开展较为系统的研究。
     为方便实验研究工作的开展,首先建立了小尺度狭长空间模拟实验台,并对实验台的气流分布特性进行了测量校正。通过三维LDV/APV系统对静止无风条件下的细水雾雾场进行测量,并利用DPIV技术对纵向通风条件下的细水雾雾场特性进行了实验测量,基于以上实验数据对狭长空间内纵向通风对细水雾雾场的影响进行了理论分析。
     参考前人的工作,对现有小型燃烧风洞进行了改造,并在风洞内较为细致地开展了纵向通风条件下油池火燃烧特性的实验研究。从能量守恒的角度出发,对纵向通风条件下典型液体燃料池火的燃烧过程进行对比研究,给出了各燃料池火燃烧速率随纵向通风风速的变化规律,并对通风加速各燃料池火燃烧速率的加速效应进行了分析。在风洞内开展了不同辐射强度下酒精的蒸发速率受纵向通风风速影响的实验研究,对不同纵向通风风速条件下酒精池火的热反馈特性进行了实验测量,并在此基础上探讨纵向通风对酒精池火燃烧速率的影响机理。
     在无细水雾作用条件下临界纵向抑制风速预测模型的基础上,从火灾区能量守恒出发,建立了细水雾作用下临界纵向抑制风速的预测模型。在狭长空间模拟实验台上分别开展了细水雾施加前后临界纵向抑制风速的实验研究。将未施加细水雾时的测量结果与前人预测模型的预测值进行了对比,并根据测量结果对未施加时临界纵向抑制风速预测模型中的系数进行了拟合,在此基础上结合细水雾作用下临界纵向抑制风速的测量结果及纵向通风条件下细水雾雾场在烟气层内吸热的计算结果对本文细水雾作用下临界纵向抑制风速预测模型的准确性进行了验证。开展了不同位置施加细水雾时临界纵向抑制风速的实验研究,根据实验结果分析了细水雾施加位置对临界纵向抑制风速的影响,并对细水雾影响临界纵向抑制风速的机理进行了探讨。
     利用狭长空间模拟实验台,较为细致地开展了纵向通风条件下细水雾抑制正庚烷池火的模拟实验。通过改变油池火预燃时间、细水雾工作压力、细水雾施加位置以及纵向通风风速,研究了细水雾在不同纵向通风风速下的灭火有效性,分析了纵向通风对细水雾灭火性能的影响。结合纵向通风条件下油池周围细水雾雾场的测量结果、不同风速条件下灭火时燃油温度、火源周围烟气浓度的测量结果以及灭火过程中火焰的形态,对纵向通风条件下细水雾抑制熄灭正庚烷池火的因素进行了探讨,揭示了纵向通风条件下细水雾抑制正庚烷池火的机理。
The increasing development of the buildings of long and narrow space, like tunnels, brings lots of new problems to the fire protection with the convenience brought to daily life. Meanwhile, with the development of science and technology, the higher requirement for protecting the long and narrow space from fire is put forward by society. Water mist is used widely for suppressing fires in the long and narrow space like traffic tunnels and cable tunnels, due to no pollution, high fire extinguishing effectiveness, safety to human and equipment, less water consumption, etc. However, the study on fire suppression with water mist on the condition of ventilation in long and narrow space is lagging behind. Therefore, the longitudinal ventilation, a typical ventilation mode of long and narrow space, is chosen in the paper. And the mechanism of liquid pool fire suppression with water mist on the condition of longitudinal ventilation in the long and narrow space is investigated systematically.
     A small-scale experimental bench of long and narrow space, whose dimension is 5.5m X 0.9m X 0.6m, was established. And the airflow distribution characteristics was measured and then corrected. The water mist field measurement was performed through three-dimensional LDV/APV system and DPIV technology on the windless and longitudinal ventilation condition, respectively. Then longitudinal ventilation's influence on the water mist field was analyzed theoretically based on the above experimental results.
     Available small wind tunnel for combustion was modified, and the experimental study on the combustible characteristics of liquid pool fire on the condition of longitudinal ventilation was closely performed in the wind tunnel. According to the conservation of energy, the combustion processes of different typical liquid pool fires on the condition of longitudinal ventilation were compared and the rule of their burning rates'changes with longitudinal wind velocities was proposed and the ventilation's acceleration effect on their burning rates was analyzed. The experimental study on longitudinal wind velocities'influence on the ethanol evaporation rates on the different conditions of radiation intensity in the wind tunnel was performed, and the experimental measurement of thermal feedback characteristics on the different conditions of ventilation velocities was carried out, and based on which, the mechanism of longitudinal wind velocities'influence on the burning rates of ethanol pool fires was discussed.
     Based on the model for predicting the critical ventilation velocity on the condition of no water mist and the conservation of energy in the field of fire, the critical prediction model on the condition of water mist was established. The experimental study on critical ventilation velocities with or without applying water mist in the long and narrow space was carried out. And the results without water mist was compared with the value predicted based on the previous predict models, and the coefficient in the model for predicting the critical ventilation velocity without water mist was fitted according to the measurement results. On this basis, the accuracy of the model for predicting the critical ventilation velocity with water mist was verified by combining the measured critital longitudinal ventilation velocity and the heat-absorbing calculated value by water mist. We still performed the experimental study on critical ventilation velocities on the condition of different positions where water mist was sprayed, and analyzed the positions' influence on the critical longitudinal ventilation velocity according to the experimental results, and discussed the mechanism of the water mist's influence on the critical longitudinal ventilation velocity.
     Experiments of n-heptanes pool fire suppression with water mist on the condition of longitudinal ventilation was performed closely using the simulated test bench of long and narrow space. The extinguishing effectiveness with water mist on the different conditions of longitudinal ventilation velocity was studied by way of changes of oil pool fire's pre-ignition time, working pressure for water mist, the position where the water mist was sprayed and longitudinal ventilation velocity. And the longitudinal ventilation velocity's influence on the extinguishing performance with water mist was discussed. Then,the factors of fire suppression with water mist on the condition of longitudinal ventilation were studied by combining the results of the water mist field measurement on the condition of longitudinal ventilation, the fuels' temperature on the different condition of wind speed, the results of smoke concentration around the fire and the fire morphology in the extinguishing process, thereby the mechanism of wate mist suppressing n-heptane pool fire was revealed.
引文
[1]新华网.我国铁路、公路隧道总长度居世界第一[EB/OL]. http://news.xinhuanet.com/zhengfu/2002-12/13/content 659177.htm,2002.
    [2]唐倩,庞奇志,王超.电缆沟火灾事故分析及预防措施[J].工业安全与环保,2008,34(1):53-55
    [3]洪丽娟,刘传聚.隧道火灾研究现状综述[J].地下空间与工程学报,2005,1(1):149-155.
    [4]A.Leitner. The fire catastrophe in the Tauern Tunnel:experience and conclusions for the Austrian guidelines[J]. Tunnelling and Underground Space Technology,2001(16):217-223.
    [5]R.O. Carvel. Fire size in tunnels[D]. Riccarton:Heriot-Watt University,2004.
    [6]陈宜吉等.隧道列车火灾案例及预防[M].北京:中国铁道出版社,1998.
    [7]张硕生,张庆明,毛朝君.隧道防火保护的现状及发展趋势[J].消防技术与产品信息,2003(07):6-9.
    [8]A.N. Beard, R.O. Carvel. The handbook of tunnel fire safety[M]. London:Thomas Telford Publishing,2005.
    [9]王永宏.隧道与火灾[J].消防技术与产品信息,2004(10):10-14.
    [10]周旭,赵明华,刘义虎.长大隧道火灾与防治设计研究[J].中南公路工程,2002,27(4):87-90.
    [11]杨瑞新,陈雪峰.高等级公路长隧道火灾特点及消防设计初探[J].消防科学与技术,2002(5):50-52.
    [12]刘衍,吴建星.电缆隧道火灾有效灭火技术试验研究[J].中国安全科学学报,2008,18(9):88-92.
    [13]张霄,刘凯.浅析地下电缆隧道火灾的扑救[J].广西民族大学学报(自然科学版),2006(9)Z1:19-21
    [14]Anders Lonnermark, Haukur Ingason. Gas temperatures in heavy goods vehicle fires in tunnels[J]. Fire Safety Journal,2005,40(6):506-527.
    [15]Furitsu Yasuda, Koichi Ono, Takayoshi Otsuka. Fire protection for TBM shield tunnel lining[J]. Tunnelling and Underground Space Technology,2004,19(4-5):317.
    [16]R. Besserre, P. Delort. Recent studies prove that the main cause of death during urban fires is poisoning by smoke[J]. Urgences Medicales,1997(16):77-80.
    [17]A.P. Chen. Characteristics of subway fire and its prevention and control[C]. Proceeding of 1st International Symposium of Safety Science and Technology, Beijing, China,1998:592-598.
    [18]Yasushi Oka, Craham T. Atkinson. Control of smoke flow in tunnel fires[J]. Fire Safety Journal,1995,25(4):305-322.
    [19]O. Vauquelin, Y. Wu. Influence of tunnel width on longitudinal smoke control[J]. Fire Safety Journal,2006,41(6):420-426.
    [20]W.K. Chow, K.Y. Wong, W.Y. Chung. Longitudinal ventilation for smoke control in a tilted tunnel by scale modeling[J]. Tunnelling and Underground Space Technology,2010, 25(2):122-128.
    [21]L.H. Cheng, T.H. Ueng, C.W. Liu. Simulation of ventilation and fire in the underground facilities[J]. Fire Safety Journal,2001,36(6):597-619.
    [22]洪丽娟.地铁区间隧道纵向射流通风系统特性的研究[D].同济大学博士学位论文,2005.
    [23]梁园.组合通风方式越江隧道火灾的数值模拟[D].西南交通大学硕士学位论文,2007.
    [24]张光鹏.公路隧道双向换气式纵向通风研究[D].西南交通大学博士学位论文·2008.
    [25]王遇川.地铁区间隧道事故通风高速射流的试验研究[D].同济大学硕士学位论文,2005.
    [26]中华人民共和国铁道部,《铁路隧道运营通风设计规范》(TB10068-2000)[M].北京:中国铁道出版社,2001.
    [27]唐有能,谢丽霖,方正,阙思思.自动喷水灭火系统在隧道中的应用与发展趋势[J].中
    国给水排水。2007,23(18):1-4。
    [28]范维澄.火灾科学的新理论及洁净、智能防灭火技术[C].香山科学会议第83次学术讨论会主题评述报告,1997:28-3 1.
    [29]J.R. Mawhinney, G.G. Back. Water mist fire suppression systems[M]. Fire Protection Handbook, National Fire Protection Association, UK,2000.
    [30]Liao Guangxuan, Huang Xin, Cong Beihua, et al. Progress in water mist fire suppression technology [J].中国利·学技术大学学报,2006,36(1):9-19.
    [31]Z.G. Liu, A.K. Kim. A review of water mist suppression technology:fundamental studies[J]. Journal of Fire Protection Engineering,2000,10(3):32-50.
    [32]Z.G. Liu, A.K. Kim, J.Z. Su. A review of water mist suppression technology:Part II application studies[J]. Journal of Fire Protection Engineering,2001,11(1):164-193.
    [33]R. Maegerle. Fire protection systems for traffic tunnels under test[C]. The 12th International Conference on Automatic Fire Detection, USA, Mar.25-28,2001.
    [34]M. Tuomisaari. Water mist fire suppression systems concepts for roadway tunnels[C]. International Symposium on Catastrophic Tunnel Fires, Sweden, Nov.2003.
    [35]M. Hainzl, G. Reichsthaler. Fire fighting system for tunnels-A report about the practical experience with our water mist tunnel system[C]. A International conference of tunnel safety and ventilation, Austria, Apr.2002.
    [36]FOGTEC Brandschutz GmbH & Co. KG. Protection of tunnels[EB/OL]. http://www.fogtec-international.com/en water mist/multimedia/downloads/brochures/gb tun nel.pdf
    [37]虞利强,黄鹏,丛北华,韩新.电缆隧道中细水雾灭火系统的试验评价与优化设计[J].武警学院学报,2008,24(10):23-26.
    [38]吴春荣,黄鑫,李海峰.细水雾灭火系统在电缆隧道中的应用研究[J].消防科学与技术,2008,27(9):662-665.
    [39]P. Joulain. Behavior of pool fires:state of the art and new insights[C]. The 27th Symposium on Combustion, The Combustion Institute, Pittsburgh, USA,1998.
    [40]V.I. Blinov, G.N. Khudiakov. Certain laws governing diffusive burning of liquid[J]. Academiia Nank, SSSR Doklady,1957:1094-1098.
    [41]P. Joulain. Convection and radiative transport in pool and wall fires:20 years of research in poitiers[J]. Fire Safety Journal,1996,26(2):99-149.
    [42]Hottel H.C. Review of "Certain laws governing diffusive burning of liquid"[J]. Fire Research Abstract and Reviews,1959,1:41-44.
    [43]D.S. Burgess, A. Strasser, J. Grumer. Diffusive burning of liquid fuels in open trays[J]. Fire Research Abstract and Reviews,1961,3(3):177.
    [44]0. Megret,0. Vauquelin. A model to evaluate tunnel fire characteristics[J]. Fire Safety Journal,2000,34(4):393-401.
    [45]V.I. Blinov, G.N. Khudiakov. Diffusion burning of liquids[R]. U.S. Army Translation, NTIS No.AD296762,1961.
    [46]J.R. Welker, O.A. Pipkin, C.M. Sliepcevich. The effect of wind on flames[J]. Fire Technology, 1965,1(2):122-129.
    [47]J.R. Welker, C.M. Sliepcevich. Bending of wind-blown flames from liquid pools[J]. Fire Technology,1966,2(2):127-135.
    [48]E.L. Capener, R.S. Alger. Characterization and suppression of aircraft fuel fires[C]. Presented at Western States Section Meeting of the Combustion Institute, Monterey, CA,1972.
    [49]V.B. Apte, A.R. Green, J.H. an Kent. Pool fire plume flow in a large-scale wind tunnel[C]. in: Proceedings of the Third International Symposium on Fire Safety Science, Elsevier, London, 1991:425-434.
    [50]S.S. Yang, S.C. Kim, H.S. Ryou. An experimental study on the effect of longitudinal ventilation on the variation of burning rate in tunnel fires[J]. Tunnel and Underground Space, Journal of Korean Society for Rock Mechanics,2005,15(1):55-60.
    [51]S.S. Yang, H.S. Ryou, Y.K. Choi, et al. An experimental study on the effect of ventilation velocity on the burning rate in longitudinal ventilation tunnel fires[J]. Korean Journal of Air Conditioning and Refrigeration Engineering,2005,17(10):914-921.
    [52]J.S. Roh, S.S. Yang, H.S. Ryou, etc. An experimental study on the effect of ventilation velocity on burning rate in tunnel fires-heptanes pool fire case[J]. Building and Environment,2008,43(7):1225-1231.
    [53]J.S. Roh, S.S. Yang, H.S. Ryou. Experiments on critical velocity and burning rate in pool fire during longitudinal ventilation[J]. Journal of Fire Science,2007,25(2):161-176.
    [54]Joshua A.R. Woods, Brian A.Fleck, Larry W.Kostiuk. Effects of transverse air flow on burning rates of rectangular methanol pool fires[J]. Combustion and Flame,2006,146(1-2):379-390.
    [55]L.H. Hu, S. Liu, W. Peng, R. Huo. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in wind tunnel[J]. Journal of Hazardous Materials,2009,169(1-3):972-979.
    [56]R.O. Carvel, A.N. Beard, P.W. Jowitt. The influence of longitudinal ventilation systems on fires in tunnels[J]. Tunnelling and Underground Space Technology,2001,16(1):3-21.
    [57]P.H. Thomas. The movement of smoke in horizontal passages against an air flow. Fire Research Station Note No.723, September 1968.
    [58]P.H. Thomas. Movement of smoke in horizontal corridors against an air flow[J]. The Institute of fire Engineers Quarterly,1970,30(77):45-53.
    [59]P.L. Hinkley. The flow of hot gases along an enclosed shopping mall. A tentative theory. Fire Research Note No 807, March 1970.
    [60]AJM. Heselden. Studies of fire and smoke behavior relevant to tunnels[C]. Proceedings of the Second International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, Cambridge, BHRA, paper J1,1976.
    [61]Calvin K. Lee, Robert F. Chaiken, Joseph M. Singer. Interaction between duct fires and ventilation flow:an experimental study[J]. Combustion Science and Technology,1979, 20:59-72.
    [62]N.H. Danziger, Kennedy WD. Longitudinal ventilation analysis for the glenwood canyon tunnels[C]. Proceedings of the Fourth International Symposium Aerodynamics and Ventilation of Vehicle Tunnels,1982, P.169-186.
    [63]Yasushi Oka, Graham T. Atkinson. Control of smoke flow in tunnel fires[J]. Fire Safety Journal,1995,25(4):305-322.
    [64]C.C. Wang, J.D. Wargo. Experimental study of thermally generated reverse stratified layers in a fire tunnel[J].1986,66(2):171-180.
    [65]GT. Atkinson, Y. Wu. Smoke control in sloping tunnel[J]. Fire Safety Journal,1996, 27(4):335-341.
    [66]Y. Wu, M.Z.A. Bakar. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity[J]. Fire Safety Journal,2000,35(4):363-390.
    [67]卢平,丛北华,廖光煊等.纵向通风水平隧道火灾烟气流动特性研究[J].中国工程科学,2004,6(10):59-64.
    [68]胡隆华.隧道火灾烟气蔓延的热物理特性研究[D].中国科学技术大学博士学位论文,2006.
    [69]G.G. Back. An overview of water mist fire suppression system technology[C]. Proceedings of Halon Options Technical Working Conference, Albuquerque, NM,1994:327.
    [70]J.S. Pepi. Performance evaluation of a low pressure water mist system in a marine machinery space with open doorway[C]. Proceedings of Halon Options Technical Working Conference, Albuquerque, NM,1995:423-447.
    [71]J.S. Pepi. Advances in the technology of intermediate pressure water mist systems for the protection of flammable liquid hazards[C]. Proceedings of Halon Options Technical Working Conference, Albuquerque, NM,1998:417-425.
    [72]E.A. Ural, R.G. Bill. Fire suppression performance testing of water mist systems for combustion turbine enclosures[C]. Proceedings of Halon Options Technical Working Conference, Albuquerque, NM,1995:449.
    [73]Z.G. Liu, A.K. Kim, J.Z. Su. Examination of performance of water mist fire suppression systems under ventilation conditions[J]. Journal of Fire Protection Engineering,2001, 11(3):164-193.
    [74]A.K. Kim, Z.G. Liu. Fire suppression performance of water mist under ventilation and cycling discharge conditions[C]. The 2nd International Water Mist Conference, Amsterdam, Netherlands, Apr.2002:61-76.
    [75]L.M. Yuan, C.P. Lazzara. The effects of ventilation and preborn time on water mist extinguishing of diesel fuel pool fires[J]. Journal of Fire Science,2004,22(5):379-404.
    [76]D. Scott. Will water mist improve fire safety? World Tunnelling,2001,14(8):384-385.
    [77]A.W. Brandt. Large scale fire testing of the effect of Marioff corporation Oy's HI-FOG system in ventilated tunnels[R]. SINTEF, NBL, F05108-restricted,2005.
    [78]T. Lemaire, Y. Kenyon. Large scale fire tests in the second Benelux tunnel[J]. Fire Technology,2006,42(4):329-350.
    [79]G. Heskestad. Scaling the interaction of water sprays and flames[J]. Fire Safety Journal,2002, 37(6):535-548.
    [80]G. Heskestad. Extinction of gas and liquid pool fires with water sprays[J]. Fire Safety Journal, 2003,38(4):301-317.
    [81]R. Amano, Y. Izushi, H. Kurioka, T. Tsuruda, et al. Fire experiments for a road tunnel-water screen as partitioning technology[C]. In:Proceedings of the 8th International Symposium on Fire Safety Science, Beijing, China, Sep.2005.
    [82]S.K. Ray, R.P. Singh. Effects of water mist on open fire-a model study[J]. Mining Technology:IMM Transactions section A,2005,114(1):1-12.
    [83]Haukur Ingason. Model scale tunnel tests with water spray[J]. Fire Safety Journal,2008, 43(7):512-528.
    [84]朱伟,陈吕义.通风条件下细水雾灭火的临界水流率[J].燃烧科学与技术,2008,14(5):412-416.
    [85]朱伟.狭长空间纵向通风条件下细水雾抑制火灾的模拟研究[D].中国科学技术大学博士学位论文,2006.
    [1]Hong Huang, Ryozo Ooka, Naian Liu, et al. Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions[J]. Fire Safety Journal,2009,44(3)311-321.
    [2]L.H.Hu, S.Liu, W.Peng, et al. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in a wind tunnel[J]. Journal of Hazardous Materials,2009,169(1-3):972-979.
    [3]Joshua A.R. Woods, Brian A.Fleck, Larry W.Kostiuk. Effects of transverse air flow on burning rates of rectangular methanol pool fires[J]. Combustion and Flame,2006,146(1-2):379-390.
    [4]Jae Seong Roh, Seung Shin Yang, Hong Sun Ryou,et al. An experimental study on the effect of ventilation velocity on burning rate in tunnel fires-heptanes pool fire case[J]. Building and Environment,2008,43(7):1225-1231.
    [5]夏保祥,程崇国.三车道大断面公路隧道研究现状综述[J].地下空间,2002,22(4):360-366.
    [6]廖光煊,王喜世,秦俊.热灾害实验诊断方法[M].中国科学技术大学出版社,合肥,2003.
    [7]颜事龙,刘峰,薛里,岳中文.DPIV技术在爆炸水雾粒度测试中的应用[J].煤炭学报,2008,33(6):652-656.
    [8]王喜世.基于数字粒子成像的细水雾全场诊断方法[D].中国科学技术大学博士学位论文,2001.
    [1]黄鑫.气泡雾化细水雾灭火有效性模拟研究[D].中国科学技术大学博士学位论文,2007.
    [2]王喜世.基于数字粒子成像的细水雾全场诊断方法[D].中国科学技术大学博士学位论文,2001.
    [3]秦俊,廖光煊,王喜世等.激光多普勒细水雾雾场特性实验研究[J].激光技术,2001,25(4):297-301.
    [4]秦俊,廖光煊,王喜世等.细水雾流场三维LDV测量[J].量子电子学报,2001,18(3):281-284.
    [5]廖光煊,黄鑫,丛北华等.细水雾灭火技术研究进展[J].中国科学技术大学学报,2006,36(1):9-19.
    [6]朱迎春,刘暄亚,陆守香等.管式燃烧器烧嘴上方细水雾雾场特性的LDV/APV实验研究[J].火灾科学,2006,15(1):21-25.
    [7]颜事龙,刘峰,薛里,岳中文.DPIV技术在爆炸水雾粒度测试中的应用[J].煤炭学报,2008,33(6):652-656.
    [8]王喜世,伍小平,廖光煊.扩展的DPIV方法及其在雾滴粒径测量中的应用[J].科学通报,2002,47(4):260-264.
    [9]王喜世,伍小平,廖光煊等.基于数字粒子图像的细水雾全场速度测量[J].实验力学,2003,18(1):6-11.
    [10]WANG Xishi, WU Xiaoping, LIAO Guangxuan. A method of extending DPIV and its application in spray droplet size measurements[J]. Chinese Science Bulletin, 2002,47(12):1045-1049.
    [11]WANG Xishi, LIAO Guangxuan, QIN Jun, FAN Weicheng. Experimental study on the effectiveness of the extinction of a pool fire with water mist[J]. Journal of Fire Sciences, 2002,20(4):279-295.
    [12]Liu,Z., Kim,A.K. A review of water mist fire suppression systems-fundamental studies[J]. Journal of Fire Pretection Enginrreing,2000,10(3):32-50.
    [13]Mawhinney,J.R., Back.GG Bridging the gap between theory & practice:protecting flammable liquid hazards using water mist fire suppression systems[C]. Fire Suppression and Detection Research Application Symposium, Orlando, Florida,1998.
    [14]姚斌.细水雾与扩散火焰相互作用的模拟研究[D].中国科学技术大学博士学位论文,1999.
    [15]A. Jones, P.F. Nolan. Discussions on the use of fine water sprays or mists for fire suppression[J]. Journal of Loss Prevention in the Process Industries,1995,8(1):17-22.
    [16]NFPA750. Standard for the installation of water mist fire suppression systems[S].1996 Edition National Fire Protection Association, Quincy,2000.
    [17]廖光煊,王喜世,秦俊.热灾害实验诊断方法[M].合肥中国科学技术大学出版社,2003.
    [18]邓丽颖,刘春嵘.DPTV算法的精度分析[J].液压与气动,2007(12):20-22.
    [19]康琦,申功炘.全场测速技术进展[J].力学进展,1997,27(1):106-120.
    [20]Sparks, G.W., Ezekiel, S. Laser streak velocimetry for two-dimensional flows in gases[J]. AIAA Journal,1977,15(1):110-113.
    [21]杜大军,沈宪章,邱道尹等.二元多项式法在烧结机尾断面图像校正中的运用[J].中原工学院学报,2004,15(3):40-42.
    [22]翁文国,廖光煊,王喜世.基于互相关的DPIV图像诊断方法研究[J].实验力学,1999,14(3):323-329.
    [23]Willert C.E., Gharib M. Digital particle image velocimetry[J]. Experiments in Fluids, 1991,10:181-193.
    [24]王延颋,张永明,廖光煊.DPIV的FFT互相关算法[J].中国科学技术大学学报,1999,29(3):316-321.
    [25]胡立顺,王兴军,高邈.压力式喷嘴雾化过程气液穿质性能[J].化工学报,2008,59(11):2734-2740.
    [1]Y. Wu, M.Z.A. Bakar. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity[J]. Fire Safety Journal,2000,35(4):363-390.
    [2]W.K. Chow, K.Y. Wong, W.Y. Chung. Longitudinal ventilation for smoke control in a tilted tunnel by scale modeling[J]. Tunnelling and Underground Space Technology,2010, 25(2):122-128.
    [3]V.I. Blinov, G.N. Khudiakov. Diffusion burning of liquids[R]. U.S. Army Translation, NTIS No. AD296762,1961.
    [4]E.L. Capener, R.S. Alger. Characterization and suppression of aircraft fuel fires[C]. Presented at Western States Section Meeting of the Combustion Institute, Monterey, CA,1972.
    [5]V.B. Apte, A.R. Green, J.H. an Kent. Pool fire plume flow in a large-scale wind tunnel[C]. in: Proceedings of the Third International Symposium on Fire Safety Science, Elsevier, London, 1991:425-434.
    [6]S.S. Yang, S.C. Kim, H.S. Ryou. An experimental study on the effect of longitudinal ventilation on the variation of burning rate in tunnel fires[J]. Tunnel and Underground Space, Journal of Korean Society for Rock Mechanics,2005,15(1):55-60.
    [7]S.S. Yang, H.S. Ryou, Y.K. Choi, et al. An experimental study on the effect of ventilation velocity on the burning rate in longitudinal ventilation tunnel fires[J]. Korean Journal of Air Conditioning and Refrigeration Engineering,2005,17(10):914-921.
    [8]Joshua A.R. Woods, Brian A.Fleck, Larry W.Kostiuk. Effects of transverse air flow on burning rates of rectangular methanol pool fires[J]. Combustion and Flame,2006,146(1-2):379-390.
    [9]霍然,胡源,李元洲.建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社,1999.
    [10]A. Hamins, S.J. Fischer, T. Kashiwagi, M.E. Klassen, J.P. Gore. Heat feedback to the fuel surface in pool fires[J]. Combustion Science and Technology,1994,97(1-3):37-62.
    [11]J.M. Chatris, J. Quintela, J. Folch, et al. Experimental study of burning rate in hydrocarbon pool fires[J]. Combustion and Flame,2001,126(1-2):1373-1383.
    [12]易亮,霍然等.柴油油池火功率特性[J].燃烧科学与技术,2006,12(2):164-168.
    [13]康泉胜.小尺度油池火非稳态燃烧特性及热反馈研究[D].中国科学技术大学博士学位论文,2009.
    [14]彭伟.公路隧道火灾中纵向风对燃烧及烟气流动影响的研究[D].中国科学技术大学博士学位论文,2008.
    [15]F. Nielsen, E. Olsen, A. Fredenslund. Prediction of Isothernal evaporation rates of pure volatile organic compounds in occupational environments-A theoretical approach based on laminar boundary layer theory [J]. The Annals of Occupational Hygiene,1995,39(4):497-511.
    [16]张洪流.化工原理(下册)[M].上海:华东理工大学出版社,2006.
    [17]D. Mackey, R.S. Matsugu. Evaporation rates of liquid hydrocarbon spills on land and water[J]. The Canada Journal of Chemical Engineering,1973,51(8):434-439.
    [1]Hitoshi Kurioka, Yasushi Oka, Hiroomi Satoh, Osami Sugawa. Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J]. Fire Safety Journal,2003, 38(4):435-452.
    [2]Y. Wu, M.Z.A. Bakar. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity[J]. Fire Safety Journal,2000,35(4):363-390.
    [3]Yasushi Oka, Graham T. Atkinson. Control of smoke flow in tunnel fires[J]. Fire Safety Journal, 1995,25(4):305-322.
    [4]L.H. Hu, W. Peng, R. Huo. Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel[J]. Journal of Hazardous Materials,2008, 150(1):68-75.
    [5]Yang Hui, Jia Li, Yang Lixin. Numerical analysis of tunnel thermal plume control using longitudinal ventilation[J]. Fire Safety Journal,2009,44(8):1067-1077.
    [6]O. Vauquelin. Parametrical study of the back flow occurrence in case of a buoyant release into a rectangular channel[J]. Experimental Thermal and Fluid Science,2005,29(6):725-731.
    [7]P.H. Thomas. The movement of smoke in horizontal passages against an air flow. Fire Research Station Note No.723, September 1968.
    [8]P.H. Thomas. Movement of smoke in horizontal corridors against an air flow[J]. The Institute of fire Engineers Quarterly,1970,30(77):45-53.
    [9]P.L. Hinkley. The flow of hot gases along an enclosed shopping mall. A tentative theory. Fire Research Note No 807, March 1970.
    [10]AJM. Heselden. Studies of fire and smoke behavior relevant to tunnels[C]. Proceedings of the Second International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, Cambridge, BHRA, paper Jl,1976.
    [11]Calvin K. Lee, Robert F. Chaiken, Joseph M. Singer. Interaction between duct fires and ventilation flow:an experimental study[J], Combustion Science and Technology,1979, 20:59-72.
    [12]N.H. Danziger, Kennedy WD. Longitudinal ventilation analysis for the glenwood canyon tunnels[C]. Proceedings of the Fourth International Symposium Aerodynamics and Ventilation of Vehicle Tunnels,1982, P.169-186.
    [13]葛新石,叶宏译.传热和传质基本原理(原著第6版)[M].化学工业出版社,2007.
    [14]范维澄,王清安,姜冯辉,周建军.火灾学简明教程[M].中国科学技术大学出版社,1995.
    [15]Jae Seong Roh, Seung Shin Yang, Hong Sun Ryou, et al. An experimental study on the effect of ventilation velocity on burning rate in tunnel fires-heptane pool fire case[J]. Building and Environment,2008,43(7):1225-1231.
    [16]黄鑫,刘江虹,廖光煊,陆强.细水雾扑灭油池火的临界条件[J].燃烧科学与技术,2006,12(4):323-328.
    [17]蒋勇,朱宁,陈军,范维澄.喷雾过程液滴蒸发计算研究[J].火灾科学,2001,10(1):20-23.
    [18]卢江,余敏, 陶乐仁等.水滴蒸发的理论分析与蒸发时间的研究[J].上海理工大学学报,2003,25(1):36-44.
    [19]Bjame Paulsen, Goran Holmstedt, Tommy Hertzberg. The physics behind water mist systems[C]. Proc. IWMA conference 2004,6-8 Oct., Rome, Italy.
    [20]傅维镳,张永廉,王清安.燃烧学[M].高等教育出版社,1989.
    [1]廖光煊,黄鑫,丛北华,秦俊等.细水雾灭火技术研究进展[J].中国科学技术大学学报,2006,36(1):9-19.
    [2]Wang Xishi, Liao Guangxuan, Yao Bin, et al. Preliminary study on the interaction of water mist with pool fires[J]. Journal of Fire Sciences,2001,19(1):45-61.
    [3]Wang Xishi, Liao Guangxuan, Qin Jun, Fan Weicheng. Experimental study on effectiveness of a pool fire with water mist[J]. Journal of Fire Sciences,2002,20(4):279-295.
    [4]R. Wighus. An empirical model for extinguishment of enclosed fires with water mist[R]. SINTEF Report, No. STF22A98848,1998.
    [5]G. Heskestad. Scaling the interaction of water sprays and flames[J]. Fire Safety Journal,2002, 37(6):535-548.
    [6]D. Scott. Will water mist improve fire safety? [J] World Tunneling,2001,14(8):384-385.
    [7]P. Stahl. Customized fire safety concept for underground transportation facilities[C]. The 5th Conference of Fire Safety Concept for Tunnels, Dublin, Ireland, May,2004.
    [8]朱伟.狭长空间纵向通风条件下细水雾抑制火灾的模拟研究[D].中国科学技术大学博士学位论文,2006.
    [9]Haukur Ingason. Model scale tunnel tests with water spray [J]. Fire Safety Joumal,2008,43(7):512-528.
    [10]Mawhinney J.R, Dlugogorski B.Z, Kim A. K. A closer look at the extinguishing properties of water mist[A]. Fire Safety Science-Proceedings of the Fourth International Symposium[C]. Ottawa Canada,1994,47-60.
    [11]Jackson C. Boilover[J]. Industrial Fire World,2000,15(3):26-35.
    [12]陆强,李钙,廖光煊等.油池火中细水雾强化火焰现象的研究[J].中国工程科学,2006,8(7):78~82.
    [13]Liu Zhigang, Andrew K.Kim. A review of the research and application of water mist fire suppression systems-fundamental studies [J]. Journal of Fire Protection Engineering, 2000,10(3):32-50.
    [14]陆强.细水雾与油火的相互作用研究[D].中国科学技术大学博士学位论文,2005.
    [15]黄鑫.气泡雾化细水雾灭火有效性模拟研究[D].中国科学技术大学博士学位论文,2007.
    [16]J. Richard, J.P. Garo, J.M. Souil, et al. Addition of a water mist on a small-scale liquid pool fire:effect on radiant heat transfer at the surface[C]. Proceedings of the Combustion Institute, 2002,29:377-384.
    [17]Myung Bae Kim, Yong Jae Jang, Jin Kook Kim. Burning rate of a pool fire with downward-directed sprays[J]. Fire Safety Journal,1996,27(l):37-48.
    [18]Hsiang-Cheng Kung, John P. Hill. Extinction of wood crib and pallet fires[J]. Combustion and Flame,1975,24:305-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700