用户名: 密码: 验证码:
蒸汽动力系统优化设计与运行集成建模及求解策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过程工业蒸汽动力系统是过程工业的重要组成部分,它的安全、稳定运行是企业安全、稳定、长周期运行的基础。蒸汽动力系统的设计水平、运行和控制性能对过程工业的能量利用率和经济性具有重要影响,研究蒸汽动力系统设计、运行、控制各层次的集成建模优化对于指导蒸汽动力系统全面优化具有重要意义。
     (1)本文在总结前人在蒸汽动力系统优化的工作成果的基础上,针对蒸汽动力系统的特点,将过程能量系统多层次集成建模的思想应用到蒸汽动力系统,阐述蒸汽动力系统的物理结构、流结构、功能层次结构模型,对蒸汽动力系统中包括锅炉、汽轮机、燃气轮机、余热锅炉等主要设备建立适用于集成优化求解的数学模型。
     (2)在研究蒸汽动力系统最优设计和优化运行模型的基础上,建立蒸汽动力系统设计和运行同步优化的多周期集成模型,模型综合考虑了设计阶段投资折旧费用函数的非线性、各设备运行过程中的启停费用、锅炉效率的变化以及汽轮机做功过程的非线性等因素。
     (3)随着周期和设备的增多,蒸汽动力系统多周期最优设计与运行集成模型的求解更加困难,传统的各种求解算法均不能有效的求解。本文对遗传算法基本原理、优缺点等进行了讨论,针对蒸汽动力系统集成模型自身的多周期和非线性的特点,提出了改进的遗传算法,改进后的遗传算法在初始解群的生成、约束条件的处理、遗传算子等方面都做了相应的改进,并引入了边界搜索的方法来优化搜索路径。改进后的遗传算法更加简单实用,能够快速求得最优解。
     (4)采用改进的遗传算法分别对蒸汽动力系统优化调度算例和设计与运行同步优化算例进行计算,并将优化调度算例结果与不考虑锅炉效率变化和汽轮机做功非线性的优化调度线性模型计算结果进行了比较,比较结果表明蒸汽动力系统优化调度过程中考虑锅炉效率的变化和汽轮机做功的非线性因素是非常有必要的;利用线性规划软件LINGO5.0对中石油某炼化公司蒸汽动力系统运行计划进行了优化,得到了令人满意的优化运行计划。通过以上优化计算,证明了本文提出的蒸汽动力系统集成模型及求解策略的有效性和实用性。
Steam power system is an important part of the process industry, whose secure and steady operation is the foundation of security, stabilization and long period operation for the whole corporation. The design, operation and control of steam power system affect the effective utilization of energy and economic performance in the process industry. Therefore, the study on the design, operation and control is very important to direct the general optimization of steam power system.
    (1) In the dissertation, the literature about optimal design, optimal operation and optimal control of steam power system were summarized. The physical structure, flow structure and hierarchical structure of steam power system were expatiated. Besides, the performance models of boiler, steam turbine, gas turbine, steam converter valve and heat recovery steam generator (HRSG) were gotten.
    (2) Based on the design model and operation model of steam power system, the integrated model of design level and operation level was constructed according to the integrated modeling theory. In this model, the non-linear performance of equipment investment cost, the changes of boiler efficiency and the non-linear performance of steam turbine working were considered. Besides, the cost of changeover between periods of operation was considered in the model.
    (3) In the model mentioned above, the possible combination dimensions of the system will show exponential growth with the number of unit and periods. Usual algorithm cannot solve the problem effectively. In order to overcome this difficulty, the improved genetic algorithm was introduced. The improved genetic algorithm was improved on many aspects and it was much more simple than before. Using this method to solve the multi-period MINLP problem, the optimal result could be achieved within reasonable time.
    (4) Based on the integrated modeling theory, two examples were studied. One was the short-term optimal multi-period operational planning problem. The other was the simultaneous optimization of the design and operation for a steam power system. Two MINLP models were constructed and solved by the improved genetic algorithm, which indicated that the integrated model and solving strategy were effective. In the last part of the dissertation, a MILP optimal operational planning model was constructed and solved by LINGO5.0 for an actual steam power system. The satisfying one-year operational planning of the steam power system was gotten, which testified that the integrated model was practicable.
引文
[1] 詹华,姚士洪.对我国能源现状及未来发展的几点思考.能源工程,2003,(3):01-04
    [2] 华贲 等.国家重点基础研究发展规划项目《高效节能的关键科学问题》建议书,2000年
    [3] 华贲.世纪之交中国炼油工业的节能问题.炼油设计,2000,30(12):01-05
    [4] Nishio M.,Itoh J.,Shiroko K.,Umeda T. A thermodynamic approach to steam-power system design. Ind. Eng. Chem. Process Des. Dev, 1980,19(2):306-312
    [5] Nishio M.,Shiroko K.,Umeda T.Optimal use of steam and power in chemical plants. Ind. Engng Chem. Process Des. Dev, 1982,21(4):640-646
    [6] Chou, Shih. A thermodynamic approach to the design and synthesis of plant utility systems. Ind. Engng Chem. Res.,1987,26(6):1100-1108
    [7] Linnhoff, Marsland. User Guide on Process Integration for the Efficient Use of Energy. Comput. Chem. Engng, 1982,18:456-462
    [8] Dhole, Linnhoff. Total site targets for fuel, co-generation, emissions and cooling. Comput. Chem. Engng, 1993,17(suppl):101-109
    [9] Papoulias, Grossmann. A structural optimisation approach in process synthesis—Ⅰ: utility systems. Comput. Chem. Engng, 1983, 19:481-488
    [10] Petroulas T., Reklaitis G.V. Computer-aided synthesis and design of plant utility systems. A. I. Ch.E. J, 1984, 30:69-77
    [11] Colmenares T.R.,Seider W.D. Synthesis of utility systems integrated with chemical processes. Ind. Engng Chem. Process Des. Dev, 1989, 28:84-93
    [12] Maia L.O.A., Vidal de Carvalho L.A.,Qassim R.Y. Synthesis of utility systems by simulated annealing. Comput. Chem. Engng, 1995,19(4):481-488
    [13] Nath. Optimum dispatching of plant utility systems: To minimise cost and local NOx emissions. Proceeding of the 1992 Industrial Power conference. 1992
    [14] Yokoyama, Matsumoto. Optimal Sizing of a Gas Turbine Cogeneration Plant in Consideration of its Operational Strategy. TransASME of Engineering for Gas Turbines and power, 1994
    [15] Wellons, Laird. On-line Power plant Optimisation improves Texas Refiner's Bottom line. Oil & Gas Journal, May 16, 1994
    [16] Morrow. A Simple Linear Model for Optimal Distribution of loads in a Group of Extraction Turbo-Alternators. I Mech E Conference Publications, Plymouth, 1977
    [17] Mavromatis S.P., Kokossis A.C. Hardware composites: A new conceptual tool for the analysis and optimisation of steam turbine networks in chemical process industries—Part Ⅰ: principles and construction procedure. Chem. Engng. Sci, 1998,53(7):1405-1434
    [18] Mavromatis S.P., Kokossis A.C. Hardware composites: A new conceptual tool for the analysis and optimisation of steam turbine networks in chemical process industries—Part Ⅰ: principles and construction
    
    procedure. Chem. Engng. Sci, 1998,53(7):1435-1461
    [19] Strouvalis A.M.,Mavromatis S.P., Kokossis A.C. Conceptual optimisation of utility networks using hardware and comprehensive hardware composites. Computers & Chemial Engineering, 1998,22(22):S175-S182
    [20] Strouvatis A.M., Heckl I., Friedler F., Kokossis A.C. Customized solvers for the operational planning and scheduling of utility systems. Comput. Chem. Engng 2000,24:487-493
    [21] Strouvalis A.M., Heckl I., Friedler F., Kokossis A.C. An accelerated branch-and-bound algorithm for assignment problems of utility systems. Comput. Chem. Engng, 2002,26:617 -630
    [22] Iyer R.R.,Grossmann I.E. Optimal multiperiod operational planning for utility systems. Comput. Chem. Engng, 1997,21(8):787-800
    [23] Iyer R.R.,Grossmann I.E. Synthesis and operational planning of utility systems for multiperiod operation. Comput. Chem. Engng, 1998,22(7-8):979-993
    [24] Francisco A.P.O.,Matos H.A. Multiperiod synthesis and operational planning of utility systems with environmental concerns. Comput. Chem. Engng 2004,28:745 - 753
    [25] Chi-Wai Hui, Yukikazu Natori. An industrial application using mixed-integer programming technique:a multiperiod utility system model. Comput. Chem. Engng, 1996,20(Supplement 2):1577-1582
    [26] 李定凯等.石化企业蒸汽动力系统与供热系统新建及工作方案的优化.石油化工,1997,26:238-244
    [27] 陈元鹏,蒋楚生,郑丹星.大型乙烯企业总能系统的研究-Ⅱ.石油化工,1992,21(3):183-187
    [28] 沈幼庭,袁小雄,石维谭.应用数学模型确定炼油厂蒸汽动力系统最优改造方案.石油化工,1992,21(7):455
    [29] 赵士杭.石油化工厂的蒸汽动力系统设计.热能动力工程.1994,9(1):27-31
    [30] 赵士杭,于万纪.蒸汽系统的设计.石油炼制与化工,1994,25(10):1-7
    [31] 尹洪超.过程系统能量综合方法的研究:[学位论文],大连:大连理工大学,1996
    [32] 张健,陈丙珍,胡山鹰.系统化的基于动力模块的公用工程综合方法.石油化工,2001,30(5):388-393
    [33] 吕泽华 等.乙烯装置蒸汽系统的优化.石油炼制与化工,2001,32(10):49-52
    [34] 张国喜,华责,刘金平.石化企业蒸汽动力系统的多工况操作优化.石油炼制与化工,2001,32(5):42-46
    [35] 刘金平.过程工业蒸汽动力系统集成建模理论及其应用的研究.[学位论文]:广州,华南理工大学,2002
    [36] 吕泽华.热电联供背压汽轮机调节系统数学模型与动态特性.汽轮机技术,1995,37(5):277-283
    [37] 吕泽华,黄志明.蒸汽管道的传递函数及工程应用.清华大学学报(自然科学版),1997,37(2):103-107
    
    
    [38] 贺阿特 等.蒸汽动力系统可调节分析.热能动力工程,2000,15(3):226-228
    [39] 张卓理.大化肥蒸汽管网优化控制.兰化科技,1998,16(3):182-185
    [40] 华贲,周章玉,杨少华.21世纪流程工业的综合集成.制造业自动化,1999,21(12):299-304
    [41] 杨少华,华贲.过程系统工程发展的思考.系统辩证学学报,2000,8(1):81-85
    [42] 罗向龙,赵亮,尹洪超.投入产出法在能源需求预测中的应用.节能,2003,(3):20-23
    [43] 赵士杭,于万纪.蒸汽系统的优化设计.石油炼制与化工,1994,25(10):1-8
    [44] 吉根林.遗传算法研究综述.计算机应用与软件,2004,21(2):69-73
    [45][美]米凯利维茨.演化程序—遗传算法和数据编码的结合,北京:科技出版社,2000
    [46] Goldberg D. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Readin, MA,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700