用户名: 密码: 验证码:
新型高Cr铁素体耐热钢的相变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高Cr铁素体耐热钢具备优异的高温持久性能和蠕变性能、良好的热导率、低热膨胀系数和较高的性能价格比,因此已广泛用于先进火力发电站机组中的高温部件(如主蒸汽管道、过热器和再热器管道等)。此外,由于高Cr铁素体耐热钢具有出色的抗辐照性能,其还是核电站结构部件的候选材料。随着能源短缺和环境污染等问题的日益突出,提高高Cr铁素体耐热钢的耐热温度以及提高电厂热效率的研究势在必行。
     作为高Cr铁素体耐热钢的代表钢种,T91钢已广泛用于火力发电站的耐热材料之中,并且已经成为开发满足更高温度要求的新型高Cr铁素体耐热钢的研究标准。基于本课题组前期对T91钢相变及强化工艺的研究,以及组织强化机理和合金化原理,开发了四种新型高Cr铁素体耐热钢。并针对新型高Cr铁素体耐热钢进行了显微组织分析和力学性能测试,以确定其是否具备优越的热强性和热稳定性,是否可成为650 oC用耐热钢的候选。为更深入的研究其相变过程和机理,组织形成与演化规律,以及探索控轧控冷的新工艺,采用高精度差分膨胀测量以及显微硬度测试等试验手段,对新型高Cr铁素体耐热钢的加热、冷却、保温及回火阶段的相变行为进行了系统研究。并在此基础上针对各阶段的相变动力学建立了相应的动力学模型。得出结论如下:
     (1)对自行研发的新型高Cr铁素体耐热钢进行了组织分析和力学性能测试。新型高Cr铁素体耐热钢的正火组织主要由高密度位错的马氏体板条和少量的δ-铁素体组成。回火后组织中析出大量晶内和晶界沉淀,此外位错密度有所降低,板条呈现变宽的趋势。新型高Cr铁素体耐热钢最佳热处理工艺为:1100 oC正火+750 oC回火;与传统高Cr铁素体耐热钢(如T91钢和T92钢等)相比,新型高Cr铁素体耐热钢热处理后其拉伸及屈服强度显著提高,具有更高的回火抗力,在高温回火条件下其回复及再结晶趋势更为缓慢。
     (2)对新型高Cr铁素体耐热钢的连续加热过程中奥氏体相变行为及动力学进行了研究。不同的加热速率会显著影响新型高Cr铁素体耐热钢的奥氏体相变开始温度A_(c1)和结束温度A_(c3),加热速率越快,A_(c1)和A_(c3)越高,奥氏体相变被推迟到更高的温度。提高加热速度导致合金元素扩散速率的增加,从而加快了扩散控制生长的奥氏体相变的速率,缩短了相变所需时间。对连续加热过程中的奥氏体相变过程进行了基于JMAK模型的动力学建模,该模型采用位置饱和形核、扩散控制生长的相变方式,能较为精确的描述新型高Cr铁素体耐热钢的奥氏体相变行为,模型的数值拟合精度和各动力学参数的物理意义都能较好的符合实际的相变过程。随着加热速率的升高,由于奥氏体相变时间的缩短,合金元素的溶解不充分,导致奥氏体相变过程的扩散激活能Qd_由130.1kJ/mol逐渐降低为79.0 kJ/mol,相变完成之后,合金元素继续进行溶解,导致了热膨胀曲线的偏离。
     (3)对T91钢和新型高Cr铁素体耐热钢奥氏体之后的冷却阶段的相变进行了系统研究,在此基础上建立了马氏体相变动力学模型,并推广到应变诱发马氏体相变的动力学研究。T91钢在奥氏体化之后的空冷过程中会析出针状M_3C沉淀相,而水冷则会抑制M_3C相的析出,而且M_3C相的析出发生于马氏体相变之前的亚稳奥氏体中,并导致了马氏体相变的分裂行为。高冷速同样抑制了新型高Cr铁素体耐热钢组织中M_3C相的析出,随着冷速的提高,组织内淬火空位和位错密度也增加,导致M_s点稍微上升,正是由于缺陷的增加提高了母相的强度,从而减缓了由切变主导的马氏体相变的长大速率。在Koistinen-Marburger模型的基础上提出了适用于新型高Cr铁素体耐热钢的马氏体相变动力学模型,对其非热激活马氏体相变特征进行了描述,模型分析表明,冷速的增加略微提高了马氏体相变的形核率,明显阻碍了马氏体相界面的移动速率,从而导致相变速率的降低。对预应力加载下的新型高Cr铁素体耐热钢的应变诱发马氏体相变进行了显微组织和相变行为研究,并建立了相变动力学模型,研究表明,预应力的存在导致了晶粒的破碎和马氏体板条的细化,通过增加晶内缺陷的方式提高了形核率,导致M_s点的提高,同时还通过对母相的强化降低了马氏体长大的界面移动速率,造成了相变速率的降低,进而导致相变时间的延长。
     (4)对新型高Cr铁素体耐热钢冷却阶段的等温停留过程进行了显微组织和相变行为研究,并建立了相应的贝氏体相变模型。在550℃或400℃的等温停留导致了贝氏体相变的发生,而且等温温度越低,生成的贝氏体数量也越多,由于贝氏体的生成,导致奥氏体热稳定化现象消失,随后马氏体相变的开始温度不降反升。650℃等温的试样中没有贝氏体相变的发生,但由于原奥氏体晶界处的碳化物沉淀相的析出,同样造成了奥氏体热稳定化现象的消失。对不同等温温度的贝氏体相变过程进行了动力学建模,证明其完全符合自催化形核的不完全贝氏体相变切变机制,其模型的数值拟合精度和所确定的动力学参数均能较好的符合实际相变过程。根据建立的动力学模型可知,等温贝氏体相变的临界温度为687.5℃,低于此温度才能发生贝氏体相变,而且等温温度越低,则相变驱动力越大,生成的贝氏体越多。等温温度越低,自催化形核的数量更多,且形核激活能越低,则相变速率越大。
     (5)通过显微组织观察及相变行为分析,对T91钢和新型高Cr铁素体耐热钢回火阶段的组织演化和沉淀析出规律进行了系统研究。冷却过程中析出的M_3C沉淀相会对T91钢的早期回火行为造成影响,在回火之前如果组织中存在M_3C沉淀相,会导致M_(23)C_6沉淀相的颗粒尺寸更小,且数量密度更大,且M_(23)C_6沉淀相更倾向晶内析出,但是随着回火时间的延长,M_3C沉淀相的存在对M_(23)C_6相沉淀析出的影响逐渐变得不明显。T91钢的二次回火能够细化马氏体板条组织,并增加沉淀相颗粒的数量密度以及减少其尺寸,这是因为,在一次回火阶段,析出的少量沉淀相颗粒对板条和位错造成有效钉扎,在二次回火阶段,沉淀得以充分析出,而板条宽度和位错密度依然能维持在较为理想的水平。对新型高Cr铁素体耐热钢的回火动力学研究表明,非均匀形核的M_(23)C_6沉淀相的形核位置会随着沉淀相颗粒密度的增加而减少,导致其形核率随时间而衰减,回火前期M_(23)C_6沉淀相的长大符合Zenner扩散生长模型,其长大速率与溶质原子的扩散系数相关,而随着回火的继续进行,基体中溶质浓度不断下降,导致M_(23)C_6沉淀相的长大速率明显放缓,此外,回火阶段马氏体板条的迁移速率由晶界处原子的热激活扩散所控制,随着回火时间的延长,板条宽度不断增加;对新型高Cr铁素体耐热钢应变诱发马氏体的回火过程的研究表明,应力加载后的回火试样的板条宽度更小,应力加载还导致了在回火阶段亚晶粒的出现,这是因为残余应变能的存在导致系统自由能的增加,以及回复激活能的降低,从而引起板条回复的提前出现,此外,应力加载后的回火试样组织内的沉淀相颗粒的尺寸更细小,且数量密度更高,这是由于缺陷的增加导致形核场所的增多,从而提高了第二相颗粒的形核率。
High Cr ferritic heat-resistant steels are being considered as an attractive candidate material for high-temperature structural components such as main steam pipe, superheater tube and resuperheater tube in advanced power plants due to the good high-temperature endurance, creep resistance properties, excellent heat conductivity, low thermal expansion coefficient and high performance-cost ratio. Additionally, they are also the potential candidate for structural steel in nuclear reactors because of its outstanding irradiation resistance. Furthermore,under the pressure of energy shortage and environment pollution, the study on elevating the thermal efficiency of generating station and endure temperature of the boiler tube materials is also imperative.
     T91 steel is the representative of high Cr ferritic heat-resistant steels, which has been widely used as power plants materials, and regarded as research benchmark for the development of new ferritic heat-resistant steels with higher application temperature. Based on the previous research on phase transformations and strengthening processes of T91 steel by our group, and strengthening mechanism and alloying principle, four types of the modified high Cr ferritic heat-resistant steels have been developed. The microstructural analysis and mechanical properties testing has been also carried out to evaluate whether they have the superiorperformances for the 650℃grade power plant. Furthermore, to clarify the phase transformation process and mechanism, microstructural evolution and explore the controlled rolling and cooling process of the modified high Cr ferritic heat-resistant steels, the transformation behaviors during continuous heating and cooling, isothermal holding and tempering process were systematically investigated by means of microstructural observation, high-resolution differential dilatometric measurements, micro hardness testing and so on. On this basis, the models for phase transformation kinetics were developed to analyze the transformation behaviors. Results as following:
     (1) Microstructural analysis and mechanical properties testing of the modified high Cr ferritic heat-resistant steels was carried out. The normalized microstructure of the modified high Cr ferritic heat-resistant steels is composed of martensitic laths with high density dislocation, and a small quantity ofδ-ferrite. During tempering, the precipitates form on the boundary and inside of grain, the density of dislocation decreases and the width of martensitic lath increases. The optimal parameter of heat treatment of the modified high Cr ferritic heat-resistant steels is normalizing at 1100℃+ tempering at 750℃. The results of mechanical properties testing suggest that, the tensile and yield strength of the modified high Cr ferritic heat-resistant steels is remarkably higher than that of the conventional high Cr ferritic heat-resistant steels as T91 and T92 steels. The experiment of resistance to tempering indicates that the modified high Cr ferritic heat-resistant steels, the rate of recovery and recrystallization of which is slow, possess the more excellent resistance to tempering than the conventional high Cr ferritic heat-resistant steels.
     (2) The austenitic transformation behaviors and kinetics of the modified high Cr ferritic heat-resistant steel during continuous heating were studied. Variation of heating rates affects the austenitic transformation starting temperature, A_(c1), and finishing temperature, A_(c3). Both A_(c1) and A_(c3) increase as the heating rate applied is raised, which means that austenitic transformation is retarded to the higher temperature. The increase of heating rate results in the increase of diffusion rate, and thus promotes the diffusion-controlled austenitic transformation and shortens the transformation time. Based on the JMAK model, the isochronal austenitic transformation of the modified high Cr ferritic heat-resistant steel during continuous heating was described well by a phase-transformation model involving site saturation and diffusion-controlled growth. The precision and physical significance of the fitted kinetics parameters agree well with the actual austenitic phase transformation process. The increase of heating rate results in the contraction of austenitic transformation time and the incompletion of dissolution of alloying elements. Hence, the activation energy for diffusion during austenitic transformation decreases from 130.1 kJ/mol to 79.0 kJ/mol, while the heating rate increases from 10℃/min to 3000℃/min. After the accomplishment of austenitic transformation, the alloy elements continue to dissolve, which results in the deviation of thermal expansive curve.
     (3) Phase transformation during continuous cooling after austenization, of T91 steel and the modified high Cr ferritic heat-resistant steel, was investigated systematically. The model for isochronal martensitic transformation kinetics of the modified high Cr ferritic heat-resistant steel was developed, and extended to strain-induced martensitic transformation kinetics. In T91 steel, the needle-liked M_3C precipitates generate during air cooling after austenization, while water cooling suppresses the formation of the M_3C phase. Furthermore, it was found that, precipitation of the M_3C phase takes place in metastable austenite, before martensitic transformation, and thus leads to the splitting phenomena of the martensitic transformation. In the modified high Cr ferritic heat-resistant steel, high cooling rate also blocks the precipitation of M_3C particles. With the increase of cooling rate, the number of quenching vacancy and density of dislocation increases, resulting in the slighte levation of M_s. Yet, the increase of defection density improves strength of the parent phase, and thus slows down the growth rate of shear dominant martensitic transformation. The model for martensitic transformation in the modified high Cr ferritic heat-resistant steel was developed base on the classical Koistinen-Marburger model. The present model describes the feature of athermal martensitic transformation well. The analysis of the model suggests that, increase of cooling rate slightly causes the slight increase of nucleation rate for martensitic transformation and remarkable decrease of interfacial migration rate for martensitic growth, namely retarding the progress of martensitic transformation. The pre-stress loading leads to the broken grains and narrow martensitic laths, and raises M_s due to the increase of defection density. Besides, pre-stress loading also decreases the interfacial migration rate for martensitic growth by means of strengthen the parent phase, and thus results in decrease of transformation rate and elongation of transformation time.
     (4) Isothermal holding during cooling after austenization in the modified high Cr ferritic heat-resistant steel was studied by microstructural analysis and transformation behavior research. Furthermore, the model for bainitic transformation kinetics was developed. Isothermal holding at 550℃or 400℃results in the occurrence of bainitic transformation. The decrease of holding temperature promotes the bainitic transformation. The production of bainite causes the disappearance of thermal stabilization of austenite, namely the increase of M_s. Bainite is not observed in the sample after isothermal holding at 650℃. Nevertheless, thermal stabilization of austenite also does not occur because of the precipitation of carbide at the prior austenitic grain boundary. The isothermal bainitic transformation of the modified high Cr ferritic heat-resistant steel during isothermal holding was described well by an incomplete displacive bainitic transformation model in view of autocatalytic nucleation. The precision and physical significance of the fitted kinetics parameters agree well with the actual bainitic phase transformation process. According to the present model, the critical temperature for isothermal bainitic transformation is 687.5℃. With the decrease of isothermal temperature, the driving force of bainitic transformation and the amount of bainite increases. Reduction of holding temperature promotes to bainite transformation by means of increase of number of embryos for autocatalytic nucleation and decrease of activation energy.
     (5) Microstructural evolution and precipitation of the second phase during tempering in T91 steel and the modified high Cr ferritic heat-resistant steel were investigated by microstructural and kinetic analysis. The M_3C precipitates formed during air cooling affect the early-stage tempering in T91 steel. The existence of the M_3C phase results in that the M_(23)C_6 particles become finer and denser, and intend to be precipitated within the grains. However, with the elongation of tempering time, the influence of the M_3C phase on precipitation of the M_(23)C_6 phase becomes not remarkable. The two-step tempering treatment leads to more precipitates, higher dislocation density and smaller martensitic lath width than that obtained from the traditional tempering process. This is because that, the firstly tempering at a low temperature forms some precipitates, which would pin the dislocation and martensitic lath, and the subsequent secondly tempering at a high temperature complete the precipitation of particles while the recovery of lath and dislocation remain a low level as before. The investigation of tempering kinetics in the modified high Cr ferritic heat-resistant steel indicates that, the heterogeneous nucleation sites of the M_(23)C_6 particles decrease with the increase of number density of precipitates, which leads to the decrease of nucleation rate. At the early stage of tempering, the growth of the M_(23)C_6 particles accords with the diffusion-controlled model developed by Zenner. The growth rate of the M_(23)C_6 phase is related to diffusion coefficient of the solute atoms. With the process of tempering, solute concentration in matrix declines, leading to the decrease of growth rate of the M_(23)C_6 phaes. Furthermore, the migration rate of martensitic lath is controlled by thermally activated diffusion of the atoms at the grain boundary. With the elongation of tempering time, the width of martensitic lath increases. The research on the tempering of strain-induced martensite in the modified high Cr ferritic heat-resistant steel suggests that, in the sample after tempering, pre-stress loading results in the reduction of width of martensitic lath, and formation of sub-grain. This is because that, existence of residual strain energy increases the system free energy and lowers the activation energy for recovery, so the phenomenon of recovery appears in advance. Besides, pre-stress loading also decreases the size of precipitates, and increases the number density of that. This is ascribed to that increase of defection results in the increase of nucleation sites, and thus improves the nucleation rate of the precipitates.
引文
[1]江泽民,对中国能源问题的思考,上海交通大学学报,2008,42(3):345~359
    [2]中华人民共和国国家统计局,中国统计年鉴2007,北京:中国统计出版社,2007
    [3]刘建成,中国超临界发电技术发展前景分析,东方锅炉,2004,3:1~8
    [4]沈邱农,陈文辉,超超临界汽轮机的技术特点,动力工程,2002,22(2):1659~1663
    [5]程世长,林肇杰,刘正东,锅炉和电站用钢展望,钢铁研究学报,1994,4:24~32
    [6]李君,昊少华,李振中,超超临界燃煤发电技术是我国目前发展洁净煤发电技术的优先选择,中国电力,2004,24(9):13~17
    [7]杨富,李为民,任永宁,超临界、超超临界锅炉用钢,电力设备,2004,5(10):41~46
    [8]樊险峰,杨松,超临界锅炉制造技术探讨,电力设备,2002,3(3):28~32
    [9]朱丽慧,新型锅炉刚耐热钢的研究进展,热处理,1999,4:6~12
    [10] M. Yoshizawa, M. Igarashi, Long-term creep deformation characteristics of advanced ferritic steels for USC power plants, Int. J. Pressure Vessels & Piping, 2007, 84(1-2): 37~43
    [11] M.J. Beér, High efficiency electric power generation: the environmental role, Prog. Energy Combust. Sci., 2007, 33(2): 107~134
    [12] C. Stefano, Carbon dioxide separation from high temperature fuel cell power plants, J. Power Sources, 2002, 112(1): 273~289
    [13] Y. Yano, T. Yoshitake, S. Yamashita et al., Tensile and transient burst properties of advanced ferritic/martensitic steel claddings after neutron irradiation, J Nucl. Mater., 2007, 367-370(1): 127~131
    [14] L. Enrico, A closer look at the fracture toughness of ferritic/martensitic steels, J Nucl. Mater., 2007, 367-370(1): 575~580
    [15] J.P. Longwell, E.S. Rubin, J. Wilson, Coal: Energy for the future, Prog. Energy Combust. Sci., 1995, 21(4): 269~360
    [16] K. Natesan, J.H. Park, Fireside and steamside corrosion of alloys for USC plants, Int. J. Hydrogen Energy, 2007, 32(16): 3689~3697
    [17]孟繁茂,付俊岩,现代含铌不锈钢,北京:冶金工业出版社,2004.189~199
    [18]宁保群,T91铁素体耐热钢相变过程及强化工艺:[博士学位论文],天津:天津大学,2007
    [19] R. Viswanathan, J.F. Henry, J. Tanzosh et al., U.S. program on materials technology for ultra-supercritical coal power plants, J. Mater. Eng. Perform., 2005, 14(3): 281~292
    [20]周荣灿,范长信,超超临界火电机组材料研究及选材分析,中国电力,2005,48(8):41~47
    [21] Y. Sawaragi, N. Otsuka, H. Senba et al., Properties of a new 18-8 austenitic steel tube(SUPER 304 H) for fossil fired boilers after service exposure with high elevated temperature strength, The Sumitomo Search, 1994, 56: 34~43
    [22] S.C. Srivastava, K.M. Godiwalla, M.K. Banerjee, Fuel ash corrosion of boiler and superheater tubes, J. Mater. Sci., 1997, 32(4): 835~849
    [23] T. Ishitsuka, H. Mimura, Development of 18Cr-9Ni-W-Nb-VN Austenitic Stainless Steel Tube for Thermal Power Boilers, JSME Int. J. Series A, 2002, 45: 110~117
    [24] J. Steven Zinkle, Advanced materials for fusion technology, Fusion Eng. Des., 2005, 74(1-4): 31~40
    [25] J. Chan-Seo, B. Si-Yeon, K. Dong-Hyun et al., Creep rupture life and variation of micro-structure according to aging time and creep test methods, Mater. Sci. Eng. A, 2007, 449-451(25): 155~158
    [26] F. Abe, Bainitic and martensitic creep-resistant steels, Curr. Opin. Solid State Mater. Sci., 2004, 8(3-4): 305~311
    [27] T. Hirose, K. Shiba, M. Ando et al., Joining technologies of reduced activation ferritic/martensitic steel for blanket fabrication, Fusion Eng. Des., 2006, 81(1-7): 645~651
    [28] A. Zeman, L. Debarberis, J. Ko?ík et al., Microstructural analysis of candidate steels pre-selected for new advanced reactor systems, J Nucl. Mater., 2007, 362(2-3): 259~267
    [29] K.M. Nikbin, M. Yatomi, K. Wasmer et al., Probabilistic analysis of creep crack initiation and growth in pipe components, Int. J. Pressure Vessels & Piping, 2003, 80(7-8): 585~595
    [30] H.S. Cho, H. Ohkubo, N. Iwata et al, Improvement of compatibility of advanced ferritic steels with super critical pressurized water toward a higher thermally efficient water-cooled blanket system, Fusion Eng. Des., 2006, 81(8-14): 1071~1076
    [31] C. Coussement, A. Dhooge, M. de Witte et al., High temperature properties of improved 9% Cr steel weldments, Int. J. Pressure Vessels & Piping, 1991, 45(2): 163~178
    [32] F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int., 2001, 41(6): 612~625
    [33] Z.G. Yang, K.S. Weil, D.M. Paxton et al., Selection and evaluation of heat-resistant alloys for SOFC interconnect applications, J. Electrochem. Soc., 2003, 150(9): 1188~1201
    [34] R.L. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater., 2007, 37(1-3): 37~52
    [35]李耀君,刘树涛,郝振亚,高温锅炉管寿命预测技术及其应用,热力发电,1996,5:50~64
    [36] R. Viswanathan, W. Bakker, Materials for ultra-supercritical coal power plants—Boiler materials: Part 1, J. Mater. Eng. Perform., 2001, 10(1): 81~95
    [37] C. Krzysztof, T. Edmund, Z. Aneta, Technology of welding and properties of welded joints of new bainitic and martensitic steels with creep-resistant steels, Weld. Int., 2011, 25(3): 172~177
    [38] N.S. Cheruvu, Degradation of mechanical properties of Cr-Mo-V and 2.25Cr-1Mo steel components after long-term service at elevated temperatures, Metall. Mater. Trans. A, 1989, 20(1): 87~97
    [39] R.L. Klueh, Interaction solid solution hardening in 2.25Cr-1Mo steel, Mater. Sci. Eng., 1978, 35(2): 239~253
    [40] M. Wada, K. Hosoi, O. Nishikawa, Atom probe analysis of 2.25Cr-1Mo steel, 1982, 30(5): 1013~1018
    [41] W. Bendick, J. Gabrel, B. Hahn et al., New low alloy heat resistant ferritic steels T/P23 and T/P24 for power plant application, Int. J. Pressure Vessels & Piping, 2007, 84(1-2): 13~20
    [42] N. Komai, F. Masuyama, M. Igarashi, 10-Year Experience With T23(2.25Cr-1.6W) and T122 (12Cr-0.4Mo-2W) in a Power Boiler, J. Pressure Vessel Technol., 2001, 127(2): 190~196
    [43] F. Masuyama, N. Komai, T. Yokoyama et al., Experiences with newly developed tungsten strengthened ferritic steel tubes in a power plant, Materials Issues in Heat Exchangers and Boilers, 1995, 17-18: 119~131
    [44] A.H. Marcinkevi?ius, A.V. Valiulis, Influence of Ageing Process on Structure and Mechanical Properties of the T24 Steel, Solid State Phenomena, 2010, 165: 56~60
    [45] J. Adamiec, Hot cracking of welded joints of the 7CrMoVTiB 10-10 (T/P24) steel, IOP Conf. Ser.: Mater. Sci. Eng. , 2011, 22(1): 1~11
    [46] M. Hattestrand, M. Schwind, H. Andren, Microanalysis of two creep resistant 9-12% chromium steels, Mater. Sci. Eng. A, 1998, 250(1): 27~36
    [47] D.J. Allen, B. Harvey, S.J. Brett, An investigation of the creep performance of advanced high alloy steel welds, Int. J. Pressure Vessels & Piping, 2007, 84(1-2): 104~113
    [48] J. O?oro, Weld metal microstructure analysis of 9–12% Cr steels, Int. J. Pressure Vessels & Piping, 2006, 83(7): 540~545
    [49] L.P. Antalffy, P.N. Chaku, D.A. Canonico, The potential for using high chromium ferritic alloys for hydroprocessing reactors, Int. J. Pressure Vessels & Piping, 2002, 79(8-10): 561~569
    [50] T. Uwaba, S. Ukai, T. Nakai, Properties of friction welds between 9Cr-ODS martensitic and ferritic–martensitic steels, J Nucl. Mater., 2007, 367-370(1): 1213~1217
    [51] A. Levy, Y.F. Man, Elevated temperature erosion-corrosion of 9Cr-1Mo steel, Wear, 1986, 111(2): 135~159
    [52] V. Moorthy, S. Vaidyanathan, K. Laha, Evaluation of microstructures in 2.25Cr-1Mo and 9Cr-1Mo steel weldments using magnetic Barkhausen noise, Mater. Sci. Eng. A, 1997, 231(1-2): 98~104
    [53] S. Guerin, J.L. Pastol, C. Leroux, Synergy effect of LBE and hydrogenated helium on resistance to LME of T91 steel grade, J. Nucl. Mater., 2003, 318: 339~347
    [54] X. Jia, Y. Dai, Microstructure in martensitic steels T91 and F82H after irradiation in SINQ Target-3, J. Nucl. Mater., 2003, 318: 207~214
    [55] R.W. Swindeman, M.L. Santella, P.J. Maziasz, Issues in replacing Cr–Mo steels and stainless steels with 9Cr–1Mo–V steel, Int. J. Pressure Vessels & Piping, 2004, 81(6): 507~512
    [56] P. J. Ennis, A. Zielinska-Lipiec, O. Wachter, Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant, Acta Mater., 1997, 45(12): 4901~4907
    [57] I. A. Shibli, N. Le Mat Hamata, Creep crack growth in P22 and P91 welds -overview from SOTA and HIDA projects, Int. J. Pressure Vessels & Piping, 2001, 78(11-12): 785~793
    [58] N. Le Mat Hamata, I. A. Shibli, Creep crack growth of seam-welded P22 and P91 pipes with artificial defects. Part I. Experimental study and post-test metallography, Int. J. Pressure Vessels & Piping, 2001, 78(11-12): 819~826
    [59] B. Kim, C. Jeong, B. Lim, Creep behavior and microstructural damage of martensitic P92 steel weldment, Mater. Sci. Eng. A, 2008, 483-484: 544~546
    [60] E. El-Magd, J. Gebhard, J. Stuhrmann, Simulation of the creep behaviour of P92 sandwich structures at 650 oC with loading transverse to the intermediate layer, Comput. Mater. Sci., 2007, 39(2): 446~452
    [61] S. Kunimitsu, Y. You, N. Kasuya, Y. Sasaki et al., Effect of thermo-mechanical treatment on toughness of 9Cr-W ferritic-martensitic steels during aging, J. Nucl. Mater., 1991, 179-181(1): 689~692
    [62] F. Abe, M. Tabuchi, M. Kondo et al., Suppression of Type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition, Int. J. Pressure Vessels & Piping, 2007, 84(1-2): 44~52
    [63]刘正东,程世长,钒对T122铁素体耐热钢组织和性能的影响,特殊钢,2006,7(1):7~11
    [64]包汉生,傅万堂,程世长等,T122耐热钢中氮化硼(BN)化合物的探讨,钢铁,2005,40(10):68~71
    [65]曹金荣,刘正东,程世长等,T122耐热钢平衡相转变的热力学计算和分析,特殊钢,2005,26(6):16~21
    [66] T.R. Allen, L. Tan, J. Gan et al., Microstructural development in advanced ferritic-martensitic steel HCM12A, J Nucl. Mater., 2006, 351(1-3): 174~186
    [67] P. Auerkari, S. Holmstr?m, J. Veivo et al., Creep damage and expected creep life for welded 9–11% Cr steels, Int. J. Pressure Vessels & Piping, 2007, 84(1-2): 69~74
    [68] R.L. Klueh, Reduced-activation bainitic and martensitic steels for nuclear fusion applications, Curr. Opin. Solid State Mater. Sci., 2004, 8(3-4): 239~250
    [69] J. Brózda, M. Zeman, Wrong heat treatment of martensitic steel welded tubes caused major cracking during assembly of resuperheaters in a fossil fuel power plant,Engineering Failure Analysis, 2003, 10(5): 569~579
    [70] H. Teranishi, Y. Sawaragi, M. Kubota et al., Fine-grained TP347H steel tubing with high elevated-temperature strength and corrosion resistance for boiler applications, The Sumitomo Search, 1989, 38: 63~74
    [71] C. Liu, J.A. Little, P.J. Henderson et al., Corrosion of TP347H FG stainless steel in a biomass fired PF utility boiler, J. Mater. Sci., 2001, 36(4): 1015~1026
    [72] A.Iseda, H. Okada, H. Semba et al., Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers, Energy Materials: Materials Science and Engineering for Energy Systems, 2007, 2(4): 199~206
    [73] N. Fujita, K. ohmura, A. Yamamoto, Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels, Mater. Sci. Eng. A, 2003, 351(1-2): 272~281
    [74] M. H?ttestrand, H.O. Andrén, Influence of strain on precipitation reactions during creep of an advanced 9% chromium steel, Acta Mater., 2001, 49(12): 2123~2128
    [75] M. H?ttestrand, H.O. Andrén, Boron distribution in 9–12% chromium steels, Mater. Sci. Eng. A, 1999, 270(1): 33~37
    [76] S.R. Holdsworth, Creep damage zone development in advanced 9%Cr steel weldments, Int. J. Pressure Vessels & Piping, 2001, 78(11-12): 773~778
    [77] J. S. Lee, H. G. Armaki, K. Maruyama et al., Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel, Mater. Sci. Eng. A, 2006, 428(1-2): 270~275
    [78] T. Kaito, T. Narita, S. Ukai et al., High temperature oxidation behavior of ODS steels, J. Nucl. Mater, 2004, 329-333(1): 1388~1392
    [79] R. Agamennone, W. Blum, C. Gupta, Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels, Acta Mater., 2006, 54(11): 3003~3014
    [80] K.H. Mayer, W.T. Bakker, New ferritic steels increase the thermal efficiency of steam turbines, Power. 1996, 30:333~346
    [81] J. Hald, Creep strength and ductility of 9 to 12% chromium steels, Mater. High Temp., 2004, 21(1): 41~46
    [82] G. Chai, J.-O. Nilsson, M. Bostr?m, Advanced Heat Resistant Austenitic Stainless Steels, Advanced Steels, 2011, 5: 385~397
    [83]赵钦新,朱丽慧,顾海澄等,国产T91/P91的深化研究锅炉技术,1999,30(8):16~26
    [84]闫超鹏,10CrMoWVNbN铁素体耐热钢组织与性能研究:[硕士学位论文],上海;上海交通大学,2008
    [85]束国刚,刘江南,石崇哲等,超临界锅炉用T/P91钢的组织性能与工程应用,西安:陕西科学技术出版社,2006
    [86] S. Spigarelli, E. Quadrini, Analysis of the creep behaviour of modified P91(9Cr-1Mo-NbV) welds, Mater. Des., 2002, 23: 547~552
    [87] R.L. Klueh, N. Hashimoto, P.J. Maziasz et al., Development of new nano-particle-strengthened martensitic steels, Scripta Mater., 2005, 53(3): 275~280
    [88] A. Kostka, K.G. Tak, R.J. Hellmig et al, On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels, Acta Mater., 2007, 55(2): 539~550
    [89] M. Albu, F.M. Martin, G. Kothleitner et al., Compositional characterisation and thermodynamic modelling of nitride precipitates in a 12% Cr steel, Int. J. Mater. Res., 2008, 99(4): 422~427
    [90] M. Tamura, H. Kusuyama, K. Shinozuka et al., Tempering Process and Precipitation Behavior of 8% Cr-2% WTa Steel, ISIJ Int., 2007, 47(2): 317~326
    [91] K. Yamada, M. Igarashi, S. Muneki et al., Effect of heat treatment on precipitation kinetics in high-Cr ferritic steels, ISIJ Int., 2002, 42(7): 779~784
    [92] H.C. Furtado, L.H. de Almeida, I. Le May, Precipitation in 9Cr-1Mo steel after creep deformation, Mater. Charact., 2007, 58(1): 72~77
    [93] Y.Z. Shen, S.H. Kim, H.D. Cho et al., Precipitate phases of a ferritic/martensitic 9% Cr steel for nuclear power reactors, Nucl. Eng. Des., 2009, 239(4): 648~654
    [94] P.J. Ennis, A. Czyrska-Filemonowicz, Recent advances in creep-resistant steels for power plant applications, Sadhana, 2003, 28(3): 709~730
    [95] R.C Thomson, H. Bhadeshia, Carbide precipitation in 12Cr1MoV power plant steel, Metall. Mater. Trans. A, 1992, 23(4): 1171~1179
    [96] M. Taneike, K. Sawada, F. Abe, Transformations-Effect of Carbon Concentration on Precipitation Behavior of M23C6 Carbides and MX Carbonitrides in Martensitic 9Cr Steel during Heat Treatment, Metall. Mater. Trans. A, 2004, 35(4): 1255~1262
    [97] C. Garca de Andres, G. Caruana, L.F. Alvarez, Control of M23C6 carbides in 0.45 C-13Cr martensitic stainless steel by means of three representative heat treatment parameters, Mater. Sci. Eng. A, 1998, 241(1): 211-215
    [98] F.S. Yin, W.S. Jung, Nanosized MX Precipitates in Ultra-Low-Carbon Ferritic/Martensitic Heat-Resistant Steels, Metall. Mater. Trans. A, 2009, 40(2): 302~309
    [99] F. Abe, T. Horiuchi, M. Taneike et al., Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature, Materi. Sci. Eng. A, 2004, 378(1-2): 299~303
    [100] D.S.Bae, W.S. Jung, K.T. Hong and K.S. Lee, Precipitation Behavior of MX Phase in Cr-Mo-NX (X= V, Nb, Ti) Ferritic Steels. Key Engineering Materials, 2007, 345346: p. 1553~1556.
    [101] O. Prat, J. Garcia, D. Rojas et al., Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: Experimental and DICTRA calculations, Acta Mater., 2010, 58(18): 6142~6153
    [102] G. Dimmler, P. Weinert, E. Kozeschnik et al., Quantification of the Laves phase in advanced 9-12% Cr steels using a standard SEM, Materi. Charact., 2003, 51(5): 341~352
    [103] J. Janovec, B. Richarz, H.J. Grabke, Some aspects of intermetallic phase precipitation in a 12% Cr-steel, Scripta Mater., 1995, 33(2): 295~300
    [104] H.K. Danielsen, J. Hald, A thermodynamic model of the Z-phase Cr(V, Nb)N, Calphad, 2007, 31(4): 505~514
    [105] C. Kocer, T. Abe, A. Soon, The Z-phase in 9–12% Cr ferritic steels: A phase stability analysis, Mater. Sci. Eng. A, 2009, 505(1-2): 1~5
    [106] K. Sawada, K. Suzuki, H. Kushima et al., Effect of tempering temperature on Z-phase formation and creep strength in 9Cr-1Mo-V-Nb-N steel, Mater. Sci. Eng. A, 2008, 480(1-2): 558~563
    [107] H.K. Danielsen, J. Hald, On the nucleation and dissolution process of Z-phase Cr(V,Nb)N in martensitic 12%Cr steels, Mater. Sci. Eng. A, 2009, 505(1-2): 169~177
    [108] A. Golpayegani, H.-O. Andren, H. Danielsen et al., A study on Z-phase nucleation in martensitic chromium steels, Mater. Sci. Eng. A, 2008, 489(1-2): 310~318
    [109] F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants, Sci. Technol. Adv. Mater., 2008, 9(1): 1~15
    [110] A.A. Tchizhik, T.A. Tchizhik, A.A. Tchizhik, Optimization of the heat treatment for steam and gas turbine parts manufactured from 9-12% Cr steels, J. Mater. Process. Technol., 1998, 77(1-3): 226~232
    [111] Y. De Carlan, M. Murugananth, T. Sourmail et al,, Design of new Fe–9CrWV reduced-activation martensitic steels for creep properties at 650 oC, J. Nucl. Mater., 2004, 329: 238~242
    [112] Y. Tsuchida, K. Okamoto, Y. Tokunaga, Improvement of Creep Rupture Strength of High Cr Ferritic Steel by Addition of W, ISIJ Int., 1995, 35(3): 317~323
    [113]朱丽慧,赵钦新,顾海澄等,10Cr9MolVNbN-耐热钢强化机理研究,机械工程材料,1999,23(1):6~8
    [114] K. Maruyama, K. Sawada, J. Koike, Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, ISIJ Int., 2001 41: 641~653
    [115] M. Y. Wey, T. Sakuma, T, Nishizawa, Growth of alloy carbide particles in austenite, Trans. JIM, 1981, 22: 733~742
    [116]雍歧龙,钢铁材料中的第二相,北京:冶金工业出版社,2006
    [117] N. Ridley, S. Maropoulos, J.D.H Paul, Effects of heat treatment on microstructure and mechanical properties of Cr–Mo–3·5Ni–V steel, Mater. Sci. Technol., 1994, 10(3): 239~249
    [118] K. Sawada, M. Takeda, K. Maruyama, et al., Effect of W on recovery of lath structure during creep of high chromium martensitic steels, Mater. Sci. Eng. A, 1999, 267 (1): 19~25
    [119] R.L.Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors, Int. Mater. Rev., 2005, 50(5): 287~310
    [120] P. Hofer, H.Cerjak, P. Warbichler, Quantification of precipitates in a 10Cr steel using TEM and EFTEM, Mater. Sci. Technol., 2000, 16: 1221~1225
    [121] F. Abe, Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution, Mater. Sci. Eng. A, 2009, 510-511: 64~69
    [122] Y. Toda, H. Tohyama, H. Kushima, Improvement in Creep Strength of Precipitation Strengthened 15Cr Ferritic Steel by Controlling Carbon and Nitrogen Contents, JSME Int. J. A, 2005, 48(1): 35~40
    [123] Gustafson, M. Hattestrand, Coarsening of precipitates in an advanced creep resistant 9% chromium steel-quantitative microscopy and simulations, Mater. Sci. Eng. A, 2002, 333(1-2): 279~286
    [124] A. Orlova, J. Bursik, K. Kuchaová, Microstructural development during high temperature creep of 9% Cr steel, Mater. Sci. Eng. A, 1998, 245(1): 39~48
    [125] J. Janovec, M. Svoboda, J. Blach, Evolution of secondary phases during quenching and tempering 12% Cr steel, Mater. Sci. Eng. A, 1998, 249(1-2): 184~189
    [126] M. Taneike, F. Abe, K. Sawada, Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions, Nature, 2003, 424(6946): 294~296
    [127] F. Abe, M. Taneike, K. Sawada, Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides, Int. J. Pressure Vessels & Piping, 2007, 84(1-2): 3~12
    [128] F. Abe, S. Nakazawa, The effect of tungsten on creep, Metall. Mater. Trans. A, 1992, 23(11): 3025~3034
    [129] K. Sakuraya, H. Okada, F. Abe, BN type inclusions formed in high Cr ferritic heat resistant steel, Energy Materials, 2006, 1(3): 158~166
    [130] K. Sakuraya, H. Okada, F. Abe, Influence of Heat Treatment on Formation Behavior of Boron Nitride Inclusions in P122 Heat Resistant Steel, ISIJ Int., 2006, 46(11): 1712~1719
    [131] F. Abe, H. Semba, T. Sakuraya, Effect of Boron on Microstructure and Creep Deformation Behavior of Tempered Martensitic 9Cr Steel, Mater. Sci. Forum, 2007, 539-543: 2982~2987
    [132] R.L. Klueh, D.J. Alexander, M.A. Sokolov, Effect of chromium, tungsten, tantalum, and boron on mechanical properties of 5-9Cr-WVTaB steels, J. Nucl. Mater., 2002, 304(2-3): 139~152
    [133] E. El-Kashif, K. Asakura, K. Shibata, Effect of nitrogen in 9Cr-3W-3Co ferritic heat resistant steels containing boron, ISIJ Int., 2002, 42(12): 1468~1476
    [134] N. Takahashi, T. Fujita, T, Yamada, Effect of boron on the long-time creep rupture strength of 12%cr heat resisting steel, Tetsu-to-Hagane, 1975, 61: 2263~2273
    [135] M. Hattestrand, H.O. Andren, M.S. Mousa, Boron distribution in 9-12% chromium steels, Mater. Sci. Eng. A, 1999, 270: 33~37
    [136] P. Hofer, M.K. Miller, S.S. Babu et al., Atom probe field ion microscopy investigation of boron containing martensitic 9 pct chromium steel, Metall. Mater. Trans. A, 2000, 31(3): 975~984
    [137] T. Horiuchi, M. Igarashi, F. Abe, Improved Utilization of Added B in 9Cr Heat-Resistant Steels Containing W, ISIJ Int., 2002, 42: S67~S71
    [138] M. Taneike, N. Fujitsuna, F. Abe, Improvement of creep strength by fine distribution of TiC in 9Cr ferritic heat resistant steel, Mater. Sci. Technol., 2004, 20: 1455~1461
    [139] Zhuo X.-j., Woo D.-h., Wang X.-H. et al., Formation and Thermal Stability of Large Precipitates and Oxides in Titanium and Niobium Microalloyed Steel, Journal of Iron and Steel Research, 2008, 15(3): 70~77
    [140] L. Helis, Y. Toda, T. Hara et al., Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants, Mater. Sci. Eng. A, 2009, 510-511: 88~94
    [141] K. Kimura, K. Seki, Y. Toda et al., Development of High Strength 15Cr Ferritic Creep Resistant Steel with Addition of Tungsten and Cobalt, ISIJ Int., 2001, 41: S121~S125
    [142] F Yin, W Jung, Microstructure and stress rupture property of titanium- containing 11Cr ferritic/martensitic steels, J. Mater. Processing Tech., 2009, 209(1): 181~185
    [143] P. Patriarca, S.D. Harkness, J.M. Duke et al., US advanced materials development program for steam generators, Nucl. Tech nol., 1976, 28: 516~536
    [144] G. George, H. Shaikh, N. Parvathavarthini et al., On the microstructure - polarization behavior correlation of a 9Cr-1Mo steel weld joint, J. Mater. Eng. Perform., 2001, 10: 460~467
    [145] A.P. Bashchenko, N.D. Mel'nichenko, Effect of the austenitizing temperature on the mechanical properties of steel after standard and thermomechanical treatments, Met. Sci. Heat Treat., 1969, 11: 948~951
    [146] E.S. Davenport, E.C. Bain, Transformation of austenite at constant subcritical temperatures, Metall. Mater. Trans. B, 1970, 1: 3503~3530
    [147] X. Zhang, W. Liu, D. Sun et al., The Transformation of Carbides during Austenization and Its Effect on the Wear Resistance of High Speed Steel Rolls, 2007, 38: 499~505
    [148] Y.C. Liu, F. Sommer, E.J. Mittemeijer, Kinetics of austenitization under uniaxial compressive stress in Fe–2.96 at.% Ni alloy, Acta Mater., 2010, 58: 753~763
    [149]王然,贺明贤,热处理对T91钢金相组织及显微硬度的影响,金属热处理,2000,11:6~8
    [150] A. Danon, C. Servant, A. Alamo, et al., Heterogeneous austenite grain growth in 9Cr martensitic steels: influence of the heating rate and the austenitization temperature, Mater. Sci. Eng. A, 2003, 348(1-2): 122~132
    [151] M. Avrami, Kinetics of phase change i: General theory, J. Chem. Phys., 1939, 7: 1103~1112
    [152] M. Avrami, Kinetics of phase change ii: Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys., 1940, 8: 212~224
    [153] M. Avrami, Kinetics of phase change iii: Granulation, Phase Change, and Microstructure, J. Chem. Phys., 1941, 9: 177~184
    [154] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. Met. Eng., 1939, 135: 416
    [155] A.N. Kolmogorov, On the Static Theory of Metal Crystallization, Izv Akad Nauk SSSR Ser Fiz, 1937, 3: 355
    [156] Y.C. Liu, F. Sommer, E.J. Mittemeijer., Abnormal austenite ferrite transformation behaviour in substitute Fe-base alloys, Acta Mater., 2003, 51(2): 507~519
    [157]姚可夫,钱滨,石伟等,马氏体回火过程中组织转变量预测的实验研究,金属学报,2003,39:892~896
    [158]刘云勋,金属热处理原理,北京:机械工业出版社,1981.
    [159]徐祖耀,马氏体相变与马氏体,北京:科学出版社,1999.
    [160] F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Analysis of solid state phase transformation kinetics: models and recipes, Int. Mater. Rev., 2007, 52: 193~212
    [161] H. Chen, Y.C. Liu, Z.S Yan et al., Consideration of the growth mode in isochronal austenite-ferrite transformation of ultra-low-carbon Fe–C alloy, Appl. Phys. A, 2010, 98: 211~217
    [162] D.J. Wang, Y.C. Liu, Y.H. Zhang, Improved analytical model for isochronal transformation kinetics, J. Mater. Sci., 2008, 43: 4876~4885
    [163]王冬江,相变动力学模型的改进及其在非晶晶化过程中的应用:[硕士学位论文],天津;天津大学,2007
    [164] D.J. Wang, Y.C. Liu, Y.H. Zhang, Improved analytical model for isochronal transformation kinetics, J. Mater. Sci., 2008, 43: 4876~4885
    [165] H. Chen, S. van der Zwaag, Modeling of soft impingement effect during solid-state partitioning phase transformations in binary alloys, J. Mater. Sci., 2011, 46: 1328~1336
    [166] E.A. Brandes, Smithells, Metals Reference Book, 6th Edition, London: Butterworths, 1983.
    [167] J. O?oro, Martensite microstructure of 9–12%Cr steels weld metals, J. Mater. Process. Technol., 2006, 180(1-3): 137~142
    [168] S. Saroja, M. Vijayalakshmi, V. S. Raghunathan, Influence of cooling rates on the transformation behaviour of 9Cr-1 Mo-0.07C steel, J. Mater. Sci., 1992, 27: 2389~2396
    [169] D.J. Gooch, Creep fracture of 12Cr–Mo–V steel, Met. Sci., 1982, 16: 79~89
    [170] M. Yoshino, Y. Mishima, Y. Toda et al., Phase Equilibrium between Austenite and MX Carbonitride in a 9Cr-1Mo-V-Nb Steel, ISIJ Int., 2005, 45: 107~115
    [171] G.B. Olson, Morris Cohen, Early stages of aging and tempering of ferrous martensites, Metall. Trans. A, 1983, 14: 1057~1065
    [172] W.B. Jones, C.R. Hills, D.H. Polonis, Microstructural Evolution of Modified 9Cr-lMo Steel, Metall. Trans. A, 1991, 22: 1049~1058
    [173] M. Yoshino, Y. Mishima, Y. Toda, et al., Influence of normalizing heat treatment on precipitation behaviour in modified 9Cr–1Mo steel, Mater. High Temp., 2008, 25(3): 149~158
    [174] G.R. Speich, W.C. Leslie, Tempering of Steel, Metall. Trans., 1972, 3: 1043~1054
    [175] P.C. Chen, P.G. Winchell, Martensite lattice changes during tempering, Metall. Trans. A, 1980, 11: 1333~1339
    [176] G.B. Olson, M. Cohen, Early stages of aging and tempering of ferrous martensites, Metall. Trans. A, 1983, 14: 1057~1065
    [177] R.C. Thomson, H.K.D.H. Bhadeshia, Carbide precipitation in 12Cr1MoV power plant steel, Metall. Trans. A, 1992, 23: 1171~1179
    [178] H.D. Kim, I.S Kim, Effect of Austenitizing Temperature on Microstructure and Mechanical Properties of 12%Cr Steel, ISIJ Int., 1994, 34: 198~204
    [179] S. Raju, B.J. Ganesh, A. Banerjee et al., Characterisation of thermal stability and phase transformation energetics in tempered 9Cr–1Mo steel using drop and differential scanning calorimetry, Mater. Sci. Eng. A, 2007, 465: 29~37
    [180] G. Ghosh, G.B. Olson, Precipitation of paraequilibrium cementite: Experiments, and thermodynamic and kinetic modeling, Acta Mater., 2002, 50: 2099~2119
    [181] J.M. Silcock, A.W. Denham, in Mechanism of Phase Transformations in Crystalline Solids, International Symposium, Institute of Metals, London, 1969, 59~64.
    [182] C. Garcia, J.A. Jimenez, L.F.álvarez, Splitting phenomena occurring in the martensitic transformation of cr13 and CrMoV14 stainless steels in the absence of carbide precipitation, Metall. Trans. A, 1996, 27: 1799~1805
    [183] A.R. Entwisle, The kinetics of martensite formation in steel, Metall. Mater. Trans. B, 1971, 2: 2395~2407
    [184] D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite- martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall., 1959, 7: 59~60
    [185] J.B. Leblond, J. Devaux, A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size, Acta Metall., 1984, 32: 137~146
    [186] E.M. Breinan, G.S. Ansell, The influence of austenite strength upon the austenite-martensite transformation in alloy steels, Metall. Mater. Trans. B, 1970, 1: 1513~1520
    [187] Y.V.L.N. Murthy, G.V. Rao, P.K. Iyer, Numerical simulation of welding and quenching processes using transient thermal and thermo-elasto-plastic formulations, Computers & Structures, 1996, 60: 131~154
    [188] J.M. Diani, H. Sabar, M. Berveiller, Micromechanical modelling of the transformation induced plasticity (TRIP) phenomenon in steels, Int. J. Eng. Sci., 1995, 33: 1921~1934
    [189] C.L. Magee, Nucleation of martensite, in Phase Transformations, ASM, 1970, 115~156.
    [190] C.L. Magee, H.W. Paxton, The microplastic response of partially transformed Fe-31Ni alloy, Trans. Met. Soc. AIME, 1968, 242: 1741~1749
    [191] J.R. Patel, M. Cohen, Criterion for the action of applied stress in the martensitic transformation, Acta Metall., 1953, 1(5): 531~538
    [192] A.R. Marder, G. Krauss, Formation of low carbon martensite in Fe-C alloys, Trans. Am. Soc. Metals, 1969, 62: 957~965
    [193] J.R.C. Guimar?es, P.R. Rio, Driving force and thermal activation in martensite kinetics, Metall. Mater. Trans. A, 2009, 40: 2264~2272
    [194] SMC van Bohemen, J Sietsma, Effect of composition on kinetics of athermal martensite formation in plain carbon steels, Mater. Sci. Techno. 2009, 25: 1009~1012
    [195] Z Nishiyama, Martensitic transformation, Academic press, New York, 1978.
    [196] S. Raju, B.J. Ganesh, A.K. Rai, et al., A study on martensitic phase transformation in 9Cr–1W–0.23V–0.063Ta–0.56Mn–0.09C–0.02N (wt.%) reduced activation steel using differential scanning calorimetry, J. Nucl. Mater., 2010, 405: 59~69
    [197] B.Q. Ning, Q.Z. Shi, Z.S. Yan, et al., Variation of martensite phase transformation mechanism in minor-stressed T91 ferritic steel, J. Nucl. Mater., 2009, 39: 54~60
    [198] K.R. Kinsman, J.C. Shyne, The thermal stabilization of austenite, Acta Metall., 1966, 14: 1063~1072
    [199] E.R. Morgan, T. Ko, Thermal stabilization of austenite in iron-carbon-nickel alloys, Acta Metall., 1953,1: 36~48
    [200] W.J. Harris, M. Cohen, Stabilization of the austenite-martensite transformation, Trans. AIME, 1949: 180, 447~470
    [201] E.S. Davenport, E.C. Bain, Transformation of austenite at constant subcritical temperatures, Trans. AIME, 1930, 90: 117~144
    [202] W.T. Reynolds, Jr., H.I. Aaronson et al., A summary of the present diffusionist views on bainite, Mater. Trans. JIM, 1991, 21: 737~746
    [203] Y. Ohmori, H. Ohtani, T. Kunitake, Bainite in low-carbon, low-alloy, high-strength steels, Trans. ISU, 1971, 11: 250~251
    [204] H. Ohtani, S. Okaguchi, Y. Fujishiro, et al., Morphology and properties of low-carbon bainite, Metall. Trans. A, 1990, 21: 877~888
    [205] A. Schneider, G. Inden, Simulation of the kinetics of precipitation reactions in ferritic steels, Acta Mater., 2005, 53: 519~531
    [206] H.K.D.H. Bhadeshia, Bainite in Steels, The Institute of Materials, London, 2001.
    [207] D. Quidort, Y.J.M. Brechet, Isothermal growth kinetics of bainite in 0.5% C steels, Acta Mater., 2001,49: 4161~4170
    [208] S.M.C. Van Bohemen, J. Sietsma, Modeling of isothermal bainite formation based on the nucleation kinetics, Int. J. Mater. Res., 2008, 99: 739~747
    [209] S.R. Pati, M. Cohen, Nucleation of the isothermal martensitic transformation, Acta Metall., 1969: 17: 189~199
    [210] G. Sidhu, S.D. Bhole, D.L. Chen, et al., An improved model for bainite formation at isothermal temperatures, Scripta Mater., 2011, 64: 73~76
    [211] S.M.C Van Bohemen, Modeling Start Curves of Bainite Formation, Metall. Mater. Trans. A, 2010, 4: 285~296
    [212] H.K.D.H. Bhadeshia, Driving force for martensitic transformation in steels, Met. Sci., 1981, 15: 175~177
    [213] N.A. Chester, H.K.D.H. Bhadeshia, Mathematical modelling of bainite transformation kinetics, J. Phys. IV, 1997,7: C5-41~46
    [214] R. Pati, M. Cohen, Kinetics of isothermal martensitic transformations in an iron-nickel-manganese alloy, Acta Metall., 1971, 19: 1327~1332
    [215] L.C. Chang, H.K.D.H. Bhadeshia, Metallographic observations of bainite transformation mechanism, Mater. Sci. Technol., 1995, 11: 105~108
    [216] G. Ghosh, V. Raghavan, The dimensions of isothermally formed martensitic plates in an Fe-Ni-Mn alloy,Mater. Sci. Eng., 1986,79: 223~231
    [217] R. Coppola, R. Kampmann, M. Magnani et al., Microstructural investigation, using polarized neutron scattering, of a martensitic steel for fusion reactors, Acta Mater., 1998, 46(15): 5447~5456
    [218] J. Pesicka, R. Kuzel, A. Dronhofer et al., The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels, Acta Mater., 2003, 51(16): 4847~4862
    [219] G. Gotz, W. Blum, Influence of thermal history on precipitation of hardening phases in tempered martensite 10% Cr-steel X12CrMoWVNbN 10-1-1, Mater. Sci. Eng. A, 2003, 348(1-2): 201~207
    [220] J. Pesicka, A. Dronhofer, G. Eggeler, Free dislocations and boundary dislocations in tempered martensite ferritic steels, Mater.Sci. Eng. A, 2004, 387: 176~180
    [221] M. Tamura, M. Nakamura, K. Shinozuka, Tempering and precipitation behavior of 7 Pct Cr-0.1 Pct V-0.06 Pct Nb-0.08 Pct N steel. Metall. Mater. Trans. A, 2008, 39(5): 1060~1076
    [222] Tanaka, in Creep-resistant steels, Woodhead Publishing Limited, Cambridge, UK, 2008, 174~214
    [223]鲍春,新型高Cr铁素体耐热钢组织及相变过程的研究:[硕士学位论文],天津:天津大学,2010
    [224] C. Zenner, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 1949, 20(10): 950~953
    [225] A Martinez-de-Guerenu, F. Arizti, I. Gutierrez, Recovery during annealing in a cold rolled low carbon steel. Part II Modelling the kinetics, Acta Mater. 2004, 52: 3665~3670

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700