用户名: 密码: 验证码:
波尔多液营养保护剂在果树上的应用效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波尔多液营养保护剂(Bordeaux nutritional protective powder简称:BNPP)是由国家948项目资助,山东农业大学自主研制开发的一种具有营养和杀菌双重功效的可湿性营养粉剂。为了改善制剂的物理及化学性质,本文对助剂和添加剂进行了筛选,对生产工艺进行了优化,并开发了包含铜锌铁等微量营养元素的波尔多液营养保护剂。同时还通过大田试验系统研究了波尔多液营养保护剂的在果树上的应用效果。结果表明BNPP能提高果树微素含量,改善果实品质,并对土壤产生影响。主要研究结果如下:
     1.在波尔多液营养保护剂中加入铁、锌浓度之和控制在100mg/kg之内能保证其具有良好的悬浮性,同时产品流动性、润湿性、分散性、悬浮性、低起泡性、物理和化学贮藏稳定性、细度、水分、酸碱度等性能已基本符合我国及联合国粮农组织(FAO)规定的质量标准。
     2.波尔多液营养保护剂对果树叶绿素含量的影响:波尔多液营养保护剂含有的铁锌等微量元素促进了叶绿素的合成。与对照和传统波尔多液相比较,BNPP促进了叶片对微量元素的吸收和积累,能明显提高叶片中的叶绿素含量,有助于果树光合产物的生成和果树干物质的积累。在石灰性土壤上,BNPP处理的果树叶片的叶绿素含量比对照提高2.8%-8.6%,且低浓度处理优于高浓度处理;喷施低浓度的BDM对叶绿素含量也有促进作用,但高浓度处理明显抑制了叶绿素积累。在棕壤上,与对照相比,喷施铜制剂和土施微肥都促进了叶片叶绿素含量的提高,且在其他条件一致的情况下,叶绿素含量BNPP处理>微肥处理>BDM处理。
     3.波尔多液营养保护剂对叶片全铜、全铁、全锌含量的影响:结果表明,喷施BNPP可明显提高叶片全铁、全锌含量,有效地改善植物微素营养,降低微量元素缺乏对植物造成的危害;叶片全铜含量也有明显提高,但差异不显著。与对照相比,喷施BDM能显著提高叶片的全铜含量,高浓度处理高于低浓度处理,造成了铜元素在叶片中的大量积累。对比两种铜制剂,BDM处理叶片全铜含量高于BNPP处理,而BNPP处理的叶片全锌、全铁含量高于BDM处理,且差异显著。在酸性棕壤上,土施微肥提高了土壤溶液中有效锌和有效铁浓度,促进了根系对微素的吸收和向叶片的运输,微肥处理的叶片全锌、全铁含量分别比对照高19.0%-31.9%和16.7%-27.4%。
     4.波尔多液营养保护剂对叶片活性铜、活性铁、活性锌含量的影响:叶片活性微素含量与全量微素含量有较好的相关性,与对照和BDM处理相比,喷施BNPP可显著提高叶片中的活性铁、活性锌含量,且差异显著。喷施BDM处理能明显提高叶片活性铜含量,叶片的活性铜含量高于BNPP处理,且高浓度处理高于低浓度处理。喷施BNPP则能明显促进铁锌积累,结果与叶片中的全量微素含量变化趋势基本吻合。土施控释肥和微肥也能促进叶片活性微素含量的提高,在其他条件一致时,控释肥处理高于普通肥料处理和对照处理,微肥处理高于不施微素处理。
     5.波尔多液营养保护剂对果实品质、产量的影响:BNPP中含有部分水溶性锌和铁,喷施BNPP能促进树体对微素的积累,改善微素营养,提高果实产量和品质。在石灰性土壤和棕壤上喷施BNPP均能提高果实的产量和品质,与对照相比,果实产量显著提高。在石灰性土壤上,BNPP低浓度处理优于高浓度处理。喷施低浓度BDM也可以在一定程度上提高产量和品质,但效果不明显;高浓度处理造成了铜的大量积累,对果实生长和树体发育产生抑制作用。控释肥能为果树提供充足的养分供应,因此也能提高果实的品质的产量,与普通肥料相比,果实的可溶糖、Vc含量均有所提高。土施微肥有利于果实产量和品质的提高和改善,CRF+MF+BDM和CRF+MF+BNPP处理的产量分别比CRF+BDM和CRF+BNPP处理提高3.2%和9.5%。
     6.波尔多液营养保护剂对土壤有效铜、有效铁、有效锌含量的影响:未被叶面吸收的铜制剂落到土壤中提高了土壤微素的含量。喷施BNPP能显著提高土壤中有效锌、有效铁含量,明显提高有效铜含量。石灰性土壤上高浓度BNPP处理的土壤有效锌、有效铁、有效铜含量高于低浓度处理;高浓度BDM处理土壤有效铜积累高于低浓度处理。对比两种铜制剂,BDM处理的土壤铜积累量明显高于BNPP处理,而BNPP处理的土壤有效锌、有效铁含量明显高于BDM处理。棕壤上喷施铜制剂对土壤微素含量影响与石灰性土壤结果相一致;土施微肥对土壤中微量元素含量的提高也有显著作用,在0-20cm和20-40cm土层中,0-20cm土层的有效微素含量明显高于20-40cm土层。
     7.波尔多液营养保护剂对pH值变化的影响:BNPP中含有酸性基团,因此喷施BNPP能短期内降低土壤pH值,提高土壤中微素的有效性。石灰性土壤上喷施BNPP土壤pH值有降低趋势,且上层土壤降幅大于下层土壤,土壤有效铁、有效锌和有效铜含量有所提高。与对照相比,BNPP处理上层土壤pH值降幅为0.07-0.17,下层土壤降幅0.02-0.09。喷施BDM土壤pH值高于对照,土壤的有效锌有效铁含量有降低趋势,且高浓度处理的变幅高于低浓度处理。棕壤上喷施铜制剂对土壤pH值影响情况与石灰性土壤结果相一致,由于土壤的缓冲作用,连续喷施不会造成土壤的显著酸化。
Bordeaux nutritional protective powder (BNPP) is possessed of nutritional and protective effects which is sponsored by national 948 items, and manufactured in Shandong Agricultural University. CuSO4, CaO, EDTA-Fe and ZnSO4 were used as raw materials in the manufacturing of BNPP and some ideal additives were carefully chosen to make more stable products with best suspension capacity. Field experiments and laboratory simulation experiments were conducted to study both the effects of BNPP on the growth of Fuji apple trees and manufacturing of ideal BNPP products, and thus provide the theoretical and statistical support for seeking the right substitute for traditional Bordeaux Mixture (BDM) and the application of BNPP on apple trees. Additionally, water release experiment and field experiments were conducted to study the effects of Controlled Release Fertilizer (CRF) on the content of nutritional elements in soil, the growth of apple trees and the quality of apple fruits. The results showed that BNPP could provide nutritional elements and protection for the apple trees; besides, nutrients released by CRF could meet the demand of nutritional need of apple trees. Researches were mainly concentrated on the effects of application of BNPP and CRF on apple trees to study the feasibility of application of two products on apple trees. The main results were as follows:
     1. Concentration of combined Zn and Fe added to BNPP should be no more than 100mg/kg to ensure its suspension capacity. And many characters such as fluidity, wedding ability, dispersing, suspension, low bubbles, the storage, diameter, water content, pH value fitted in well with quality standard prescribed by China and FAO.
     2. Effects of BNPP on the chlorophyll content in apple leaves: Compared with control and BDM treatments, BNPP could improve the chlorophyll content in apple leaves. BNPP containing trace elements such as Zn and Fe could promote the accumulation of trace elements in apple leaves which in turn increased the chlorophyll content, and thus the accumulation of dry matters from photothesis. In Dongying field experiment, the chlorophyll content in apple leaves in BNPP treatment was 2.8%-8.6% higher than that in control, low concentration BNPP treatments superior to high concentration. By contrast, the synthesis of chlorophyll was promoted by low concentration BDM, while inhibited by higher concentration BDM. In Fei city field experiment, both BDM and BNPP promoted the synthesis of chlorophyll, BNPP superior to BDM.
     3. Effects of BNPP on content of total Cu, total Fe and total Zn in apple leaves: BNPP which is possessed of trace elements, e.g. Zn and Fe, was helpful to the accumulation of total Cu, total Fe and total Zn in apple leaves. Compared with control, the content of total Zn and Fe were markedly increased which could be used to the rectification of diseases owing to deficiency of trace elements. Moreover, BDM increased the content of total Cu in apple leaves, higher than that in BNPP treatments, but inhibited the adsorption of Zn and Fe. In addition, microelement fertilizer improved concentration of trace element in soil solution, and content of total Zn and Fe was 19.0%-31.9% and 16.7%-27.4%higher than that in control respectively.
     4. Effects of BNPP on content of available Cu, available Fe and available Zn in apple leaves: The relations between content of available and total trace elements achieved significant level. Compared with control, the available Fe and Zn in BNPP treatments greatly increased and the difference was significant; the available Cu content increased with no significant difference. BDM could improve the available Cu content in apple leaves, high concentration BDM treatments higher than low concentration BDM treatments. In comparison with BDM treatment, lower accumulation of available Cu and higher accumulation of available Zn and Fe occurred in BNPP treatments, which was in accordance with the trend of leaf total trace elements. Moreover, CRF and MF were better in improving the content of leaf available trace elements that CCF and control.
     5. Effects of BNPP on quality and yields of apple fruits: BNPP increased accumulation of total Cu, Fe and Zn in apple leaves and promoted their transportation to fruits which was indispensable to good quality and high yield of apple fruits. In the two field experiments, BNPP improved the content of trace elements in apple fruits and the yields were significantly increased. And BNPP were superior to BDM in their effects on the quality and yields of fruits. In Dongying field experiment, the high concentration BNPP treatment excelled that of low concentration treatments; low concentration BDM treatments could also improve the quality and yield of fruits, but high concentration BDM increased the accumulation of Cu in fruits and in turn was deleterious to the growth of apple trees and expanding of fruits. Both CRF and MF could provide adequate mineral elements for trees, improving content of Sugar, Vc in fruits and yields, and yields in CRF+MF+BDM and CRF+MF+BNPP treatments were 3.2 % and 9.5 % higher than that in CRF+BDM and CRF+BNPP treatments respectively.
     6. Effects of BNPP on content of available Cu, available Fe and available Zn in soil: BNPP promoted accumulation of total Cu, total Fe and total Zn in apple leaves, and lessened the absorption of trace elements from soil. Besides, when spraying copper agents, the excessive suspension dripped from the apple leaves to the ground soil, which contributed to the rise of content of available trace elements. In contrast, the available Cu content in BDM treatment was significantly greater than that in BNPP treatments, and high concentration BDM treatment is higher that low concentration BDM treatments. Generally, BDM promoted the accumulation of excessive Cu in soil which could serve as a great threat to environment; BNPP played an important in the accumulation of Zn and Fe in soil, and did little harm to soil environment. Besides, the application of MF exerted much influence on the content of trace element. In all treatments, the content of available trace elements in soil of 0-20cm layer was higher than that in soil of 20-40cm layer.
     7. Effects of BNPP on soil pH value: BNPP could reduce soil pH value in calcareous soil and improve the validity of trace elements. A fairly high content of EDTA-Fe existed in BNPP which could be the main reason for BNPP to reduce pH value. After spraying BNPP, soil pH value decreased and availability of trace elements in soil increased; in contrast, BDM could enhance soil pH value and inhibit the activities of available trace elements. In brown soil, BNPP could also bring down soil pH value, but would not cause further acidification of tested soil.
引文
1.艾天成,李方敏,周治安等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,2000,20(1):6-8.
    2.白亚君,母树宏.植物对铁的吸收运转及铁与叶绿素的关系[J].河南农业大学学报,1994,17(增刊):21-125.
    3.曹恭,梁鸣早.锌-平衡栽培体系中植物必需的微量元素[J].土壤肥料, 2003(6):32-34.
    4.常有宏,刘红锦.花碱土地区苹果小叶病诱因与矫治技术[J].江苏农业科学,1993(23):55-57.
    5.陈双牛.波尔多液的换代产品-绿得保杀菌剂[J].北京农业.1994,163(2):24.
    6.陈艳秋,曲柏宏,牛广才等.苹果梨果实矿质元素含量及其品质效应的研究[J].吉林农业科学,2000 ,25(6) :44-48.
    7.郗荣庭,胡庆祥,张玉星等.鸭梨果实氮和矿质元素含量变化及其相关性[J].园艺学报,1997,24 (3) :285– 286.
    8.刁凤贵.缺锌苹果树叶片超微结构的观察[J].果树科学,1991,8(1):35-36.
    9.段路路.波尔多液营养保护剂矫治植物缺铁锌症状及其效应研究(硕士论文).泰安:山东农业大学,2005.
    10.段路路,张民,杨越超等.波尔多液营养保护剂对石灰性土壤铜、铁有效性及花生产量的影响研究[J].水土保持学报,2006,20(3): 47-50.
    11.房德纯.蔬菜生理病害防治图册[M].沈阳:辽宁科学技术出版社,1997,32-34.
    12.韩振海,沈隽.果树的缺铁失绿症-文献述评[J].园艺学报,1991,18:323-328.
    13.福瑞德里赫.果树生理[M].泰安:山东科学技术出版社泰安分社,1987.
    14.何林,慕立义.农药悬浮剂物理稳定性的预测与评价. 2001,22(5):10-12.
    15.胡克淮.从聊城地区土壤养分状况谈华北黄泛平原土壤施磷[J].土壤肥料,1985(1):38-43.
    16.华小梅,单正军.我国农药的生产、使用状况及其污染环境因子分析[J].环境科学进展,1996,4(12):33-450.
    17.黄振东.一种铜素杀菌剂“绿菌灵”的研制.农药,2001,40(12):17-18
    18.姜远茂,顾曼如,束怀瑞.缺铁失绿与苹果矿质元素含量的关系[J].园艺学报.1995,22(2):183-184.
    19.姜远茂,顾曼如,束怀瑞.山东省苹果园土壤营养成分分析[J].果树科学,1997,14(增刊):35-37.
    20.李宝江,林桂荣,刘凤君.矿质元素含量与苹果风味品质及耐贮性的关系[J].果树科学,1995,(3):141-145.
    21.李港丽.几种落叶果树叶内矿质元素含量标准的研究[J].园艺学报,1987,14(2):81-89.
    22.李贵深,陈树民.“绿得保”保护性杀菌剂的研制与开发.河北农业大学学报,1996,19(3):43-45.
    23.李辉桃.红富士苹果树小叶病与营养条件的关系[J].水土保持研究,1996,3(2):158-162.
    24.李燕婷,白灯莎,买买提艾力等.根际施肥调控技术研究初探[J].中国农业科技导报,2002,21(5) :55-581.
    25.刘润进,祝军,周爱琴苹果缺铁黄叶病的调查及纠正方法的试验.烟台果树,1995 (3):51.
    26.林玉锁.锌在石灰性土壤中的吸附[J].土壤学报1987,24(2):135-140.
    27.柳伟,唐吉玲.配置和使用波尔多液存在问题的调查.中国果树,1999(3):44-45.
    28.刘志坚.取代波尔多液的理想选择中国唯一乳油铜制剂—绿乳铜.北京农业,1998,(6):29.
    29.土壤中的锌和植物的锌营养[J].芦满济译.国外农学:土壤肥料,1988(4):37-39.
    30.马斯纳著.曹一平,陆景陵译.高等植物矿质营养[M].北京:北京农业大学出版社.1991.
    31.马文奇,刘东臣.果树缺铁性黄化植株诊断方法的研究进展[J].山西果树.总第105期.
    32. MilklosFaust.温带果树生理[M].李正之译.泰安:山东农业大学,1991.
    33.庞占荣,朱世新.苹果树施用锌肥试验[J ].北方果树,1993 (4) :16-18.
    34.彭福田.氮对苹果果实发育及产量、品质的调控(山东农业大学博士论文),2001.
    35.曲桂敏.苹果树锌素营养特性及缺锌对植株的影响[D].山东农业大学硕士论文,1990.
    36.邵蕾.控释肥在果树上的高校利用模式研究. (博士论文).泰安:山东农业大学,2005.
    37.单正军,王莲生,蔡道基,等.果园土壤铜污染状况及其对作物生长的影响[J].农业环境保护,2002,21(2):119-121.
    38.束怀瑞.山东省苹果园氮磷钾三要素的营养状况[J].山东农业大学学报,1988,19(2):1-10.
    39.宋建伟.对黄河故道地区苹果小叶病防治建议[J].山西果树,1989(4):32
    40.孙祖淡.河北土壤薇量元索研究会微肥应用.北京:农业出版社.1991.
    41.孙娅婷.控释肥在观赏花卉上的生物效应研究(硕士论文).泰安:山东农业大学,2007.
    42.谢春梅,杜纪壮.波尔多液配制方法的比较试验,北方果树,1998(3).
    43.涂从.紫色土中铜的形态及其对水稻毒性的研究[J].西南农业大学学报,1992,14(2):152-157.
    44.王清连,宋金耀,杨晓玲.植物生理生化[M].北京:中国科学技术出版社,1999.
    45.王文新.浓缩波尔多的制备[M].陕西化工,1998,27(3):37-38.
    46.王衍安,张方爱,李玲.苹果小叶病发生规律调查报告[J].山东林业科技,2000(5):20-26.
    47.王衍安,范伟国,李玲等.缺锌对苹果树生长和生理指标的影响[J].落叶果树,1992(2):7-8.
    48.王衍安,张方爱,李玲等.缺锌小叶病对苹果树叶片光合作用的影响[A].山东植物生理学会,植物生理与高效农业研讨会论文集[C]. 1999:34-36.
    49.王中英,古润泽,杨佩芳等.不同砧木苹果树体内锌含量变化的研究[J ]1落叶果树,1992 (3) :9 -12.
    50.王正直,刘春生,邱德峰,常红岩.果园土壤铜素的含量、形态及剖面特征研究[J].土壤通报, 2002,(11):369-371.
    51.吴建明.山东省土壤微量营养元素含量分布[J].土壤学报,1990,27(1):87-93.
    52.吴建明.山东省土壤供锌状况及对锌的吸附[J].土壤学报,1991,28(4):452-456.
    53.吴金成,秦露,史济花,等.苹果小叶病的防治试验[J].河南农业科学,1996 (2) :24-26
    54.薛新平,陈敏克,申仲妹.苹果树锌营养研究[A].侯喜林,常有宏,园艺学进展(第2辑)[C].南京:东南大学出版社,1998:83-86.
    55.薛进军,张宝忠,沈广城.矫正苹果缺铁失绿症途径及机理研究[J].中国农业大学学报2003,8(增刊):47-52.
    56.杨玉爱.有机肥料对土壤锌、锰有效性的影响[J].土壤学报,1990 ,27(3) :195– 201.
    57.易求实.均匀沉淀法制备纳米级碱式硫酸铜杀菌剂的研究.农药,2001,40(8):20-22.
    58.余观梅,朱本岳,俞巧钢.施用缓释肥对柑桔产量和品质的影响.土壤肥料,2002,(5),40-41.
    59.张建波.新型波尔多液——铜高尚.北京农业,2000(5):29.
    60.赵同科.冬小麦锌营养诊断指标与养分子平衡.见:胡思农主编.硫、镁和微量元素在作物营养平衡中的作用.国际学术讨论会论文集,成都:成都科技大学出版社,1993. 354-360.
    61.张福锁.缺锌对苹果苗光合作用的影响(简报)[J].北京农业大学学报,1991,17(2):30.
    62.张福锁.缺锌对苹果苗蒸腾作用的影响(简报)[J].北京农业大学学报,1991,17(4):74,78.
    63.张福锁,刘书娟,毛达如等.苹果抗缺铁基因型差异的生理生化指标研究[J].园艺学报,1995,22:1-6.
    64.张乃凤,王淑惠,张大弟.山东省土壤速效锌普查和锌肥肥效试验[J].土壤肥料,1980 (2) :36-39.
    65.张乃凤,王淑惠,张大弟1山东省土壤速效锌普查和锌肥肥效试验[J].土壤肥料,1980 (3) :44-47.
    66.张玉聚.高分子有机酸复合碱式硫酸铜杀菌效果研究[J].华北农学报,1998,13(2):98-101.
    67.赵振纪,黄细花,刘永厚.铜对土壤一植物系统的影响及其临界植指标的研究1J2.环境与开发,1993,8(1):4-9.
    68.周厚基,仝月澳.国光苹果树缺锌的临界指标与不同锌肥新品种的肥效[J].中国农业科学,1981(6):56-69.
    69.朱根发.控释肥及其在花卉上的应用.花卉,2002(8):6-7.
    70.朱文勇,薛新平,黄军保.苹果树锌营养失调及矫治新技术研究[J].山西果树,1997(4):3-5.
    71.邹邦基,何雪晖编著.植物营养[M].北京:农业出版社.1985.
    72. Alina Kabata, Pendias, Henryk Pendias, et al. Trace Elements in Soils and Plants,1984.
    73. Allace A. Additive, protective and synergistic effects on plants with excess trace elements [J]. Soil Sci, 1982, 136(5): 319-323.
    74. Alva AK, ChenEQ. Effects of external copper concentrations on uptake of elements by citrus seedlings [J]. SoilSci.1995, 159:59-64.
    75. AK. Alva, S. Paramasivam. Nitrogen management foe high yield and quality of citrus in sandy soils. Soil Sci. Soc. Am., 1998, (62):1335-1342.
    76. Bell A A, Ouglr CS. Effects on must and wine composition, rates of fermentation, and wine quality of nitrogen fertilization of Vitis vinifera var. Thompson seedliess grapevines. American Journal of Enology and Viticulture.1979,30(2):124-129.
    77. Brown JC, Jolley VD. Plant metabolic responses to iron deficiency stress [J]. Bio. Sci., 1989, 39:546-551.
    78. Chandler WH, Hoagland DR, Hibbard PL. Little-leaf or rosetic in fruit tree [J]. Proc.Amer.Soc.Hort.Sci.1932, 28:556-560.
    79. Coulombe BA, Chaney RL, Coulombe BA. Bicarbonate directly induces Iron Chlorosisin Susceptible soybean cultivers [J]. Soil Sci. Soc. Amer. J., 1984, 48:1297-1301.
    80. Courtade, etc. Bordeaux mixture process for its manufature and cupric fungicidial and bactericidalcompositions containing it, US5958438, Sept.28, 1999.
    81. Crowley D.E, Reid P.P, Szaniszlo P.J. Microbial siderophores as iron sources for plant [A].
    82. Evans D.A. New era, new challenges, new solutions. In: Proceedings of Brighton crop protection conference-pests&diseases. British crop protection council. 2000, 3-18.
    83. F.M., Rhoads, S.M., Olsonand, A, Manning. Copper toxicity into mato plants [J]. J-Environ-Qual, 1989, 18(2):195-197.
    84. Gile, P.L., J.O.C arrero.Cause of lime-induced chlorosis and availability of iron in the soil [J]. J. Agric. Res., 1920, 20:33-62.
    85. Hess, etc. Stable copper base fungicides. US3846545, Nov.5, 1974.
    86. Marchner H., Treeby M., Roemld V. Role of root induced changes in the rhiwsphere for iron acquisition in higher plants [J]. Z. Pflanzenemaehr Bodenkd. 1989, 152:197-204.
    87. Motosugi M, Lin R.Q. Secondary growth and flowering of summer pruned“Kyoho”Grapevines as affected by different levels of nitrogen [J]. Ada Horticulture, 1990, 279:585-597.
    88. Obreza T A., Rouse R E. Fertilizer effects on early growth and yield of ' Hamlin' orange trees. HortScience,1993,28(2):111-114.
    89. Olivier CM., Wooldridge J. Apple quality as related to nitrogen and phosphorus nutrition. Journa lof Plant Nutrition,1994,17(6):1005-1015
    90. Pierson, E.E, R b. Clark. Ferrous iron determination in plant tissue [J]. J. Plant Nutrition. 1984, 7(1-5): 107.
    91. Razeto B. Treatments for iron chlorosis in peach trees [J]. J. Plant Nutr., 1982, 5(47): 917-922.
    92. Rutland R. B. Radisotopic evidence of immobilization of iron in Azalea by excess calcium bicarbonate [J]. Am. Soc. Horn. Sci., 1971, 96:653-655.
    93. Schroth, etc. Methods for preventing precipitation of copper from copper based bactericidal compositions containing iron, US5385934, Jan.31, 1995.
    94. Schorth, etc. Iron enhancement of copper based fungicidal and bactericidal compositions, US5202353, April.13,1993.
    95. Steward 1, Leonard C.D. Chelates as sources of iron for plants growing in field. Science. 1952, 116: 564-566.
    96. Terblanche JJ, Gurgen KH, Hesebeck I. An Integrated approach to orchard nutrition and bitter pit control. Mineral nutrition of fruit trees. Butterworths, London,1980:71-82.
    97. Terry, N. Physiology of trace element toxicity and its relation to iron stress [J]. J. Plant Nutrition. 1981, 3(1-4): 561-578.
    98. Testoni A, Granelli G.. Mineral nutrition influence on the yield and the quality of kiwifruit. Acta Horticulturae, 1990, 282:203-208.
    99. Weeks WD, Southwick FW, Drake M, Olanvk GW. Relation of differential N and K fertilization to tree performance, fruit quality, and storage disorders of‘Delicious’apples. Univ. Mass. Agr. Exp.Sta. Bull.1965, 552.
    100.Winkelmann Dvander Helm J B, Neilands P. P (eds.). Iron transport in microbes, plant and animals [M]. Herdberg: VCH Verlag, 1987, 385-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700