用户名: 密码: 验证码:
水钾耦合对大豆生理特性及产量品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物的生物产量是子粒产量的基础,植物干物质的积累有90~95%来自光合作用,而蒸腾作用可以保证光合作用的正常进行,气孔既是水蒸气溢出的通道,又是同化作用中CO2的入口。土壤中的水分及钾肥均会影响作物的光合作用,水分不足会抑制气孔开放和光合作用;而钾肥能调节气孔开放,从而调控光合蒸腾作用的强弱。据此本文通过设置不同的钾素和水分水平,来探讨农田黑土下水钾耦合对大豆生理特性及产量品质的影响,以期为黑龙江省大豆生产提出更好的栽培管理措施,指导农业生产实践。
     盆栽条件下,以大豆品种黑农35为供试材料,于2006年在中国科学院海伦农业生态实验站进行,试验设三个钾肥水平及五个水分水平,共15个处理组合,随机区组设计,分别在大豆的营养生长期(V2-R1),开花期(R1-R3),结荚期(R3-R5)三个关键生育时期进行水分调控,研究不同供钾水平下水分状况对大豆不同生育时期生理特性及产量品质的影响。其中采用CI–301Ps光合作用测定仪进行净光合速率、蒸腾速率、气孔导度及胞间CO2浓度的测定;采用乙醇提取法测定叶绿素含量;采用CI-203手持式激光叶面积仪测定叶面积;各个生育时期控水后取样,以测定植株各部位的鲜重及干物重(105℃杀青30min,80℃烘至恒重);收获后测定子实产量及其构成要素;采用半微量凯氏定氮法测定蛋白质含量;采用干样索氏脂肪抽提法测定脂肪含量。其结果表明:
     同一生育时期控水条件下,水分及钾肥均会影响大豆的光合生理特性,但水分的效应要优于钾肥,并且光合速率、蒸腾速率与气孔导度的变化趋势相一致,水分对它们有明显的正效应,其中以W4水平效果最好。水分对大豆的植物生理水分利用效率表现为正效应,而钾肥为负效应,随着生育进程的推进植株的水分利用效率表现为先急剧增大后下降的趋势,即花期>结荚期>营养生长期。水分胁迫对叶绿素浓度的影响具有二重性,“特旱(W1)”条件下降低了叶片的叶绿素浓度,而“略旱(W2)”条件则提高了叶片的叶绿素浓度。同一生育时期控水条件下,水分及钾肥对叶面积指数的影响同对光合速率的影响相近,随着生育进程的推进,叶面积指数逐渐增大。大豆株高的积累主要在出苗至结荚前这段时间,结荚期开始后,株高增量较少。营养生长期、开花期控水条件下植株各部位生物量的分配表现为叶重>茎重>根重;结荚期控水条件下植株各部位生物量的分配表现为子粒重>叶重>茎重>根重。水分及钾肥影响植株各部位生物量的形成,水分对生物量形成的影响为正效应,以W4水平效果最优;相同水分条件下施用钾肥的处理生物量要优于未施钾肥的处理。水钾耦合对地上部、地下部干物重及根冠比的影响表现为:对地上部干物重的影响要大于对根干重的影响,大于对根冠比的影响;土壤水分状况对干物质的积累及根冠比的影响优于钾肥所产生的效应,水多有利于干物质的积累,但根冠比随着水分的增加而减小。
     无论何生育时期控水,钾肥均有提高大豆脂肪、降低蛋白质含量的趋势。土壤水分对大豆蛋白质含量的影响因控水时期不同而各异,营养生长期控水,相同钾肥水平下,随着土壤含水量的增加蛋白质含量增加,而开花、结荚期控水条件下则以W3水分条件下蛋白质含量最高;土壤水分对脂肪含量的影响表现为:同一生育时期控水条件下,相同钾肥水平下均以W3处理脂肪含量最高。
     生物产量最优的处理并未表现出最高的子粒产量,无论何生育时期控水条件下均以处理W3K3产量最高,比对照增加了10.90%,为本次试验中最佳处理组合。营养生长期(V2-R1)控水下大豆的产量效应表现为:钾肥>水分>水钾互作,而花期(R1-R3)、结荚期(R3-R5)控水条件下,大豆产量的变异主要是由水分引起的,钾肥与水钾互作只引起极小的一部分。比较不同生育时期各处理组合产量的差别时发现:当土壤水分含量较低时,结荚期控水减产最大,其次是花期控水,营养生长期控水减产幅度较小;而同一生育时期控水下水分对大豆产量的影响要高于钾肥;旱涝都将影响大豆子粒产量的形成,但干旱引起大豆的减产程度大于涝害。
     本研究发现大豆对水分较为敏感的时期是开花期和结荚期,而营养生长期土壤水分状况对产量的影响相对较小,因此生产上要注意花期、荚期的水分管理,建立良好的灌溉排水设施。一定量的钾肥能促进产量的形成,但只有在水分供应适宜条件下其效果才显著,因此生产上要依据土壤中的水分状况进行合理施用钾肥,注重二者的耦合效果。本试验还发现当作物生长前期土壤含水量较高,而后期较低时,可能会使土壤中的一些可交换性钾转化为非交换性钾,从而降低了钾离子的有效性,因此在实际生产上当大豆生长前期水分较充足,而后期干旱时应施钾肥,以提高土壤中速效钾的含量。本试验结果表明在高肥水条件下,虽然干物质积累很高,但子粒产量却没有相应地提高,这主要是由于高肥水往往使大豆的营养体过于茂密,器官平衡不合理,致使子粒产量不高,因此生产上应合理施肥与灌水。
Vegetal biomass constitutes the foundation of seed yield, and plant dry matter accumulation which come from photosynthesis account for 90%-95% in all. Transpiration ensures photosynthesis on the rails. Stoma is both the channels of vapour overflow and the portal of CO2 assimilation. However, potassium fertilizer and soil moisture impact plant photosynthesis, and soil water stress lowers stoma ringent extent and weakens plant photosynthesis; potassium fertilizer regulates the open and close of stoma first, and then regulates plant photosynthesis and transpiration. So diffierent potassium fertilizer and water levels applied in this experiment were to elucidate the effect of water-potassium coupling on physiological characteristics, yield and quality of soybean in order to provide practical agricultural measures for soybean production in Heilongjiang province.
     Pot experiments were carried out in Hailun Agro-ecological Experimental Station in 2006. In this experiment, five water supply levels and three potassium fertilizer application levels were included in terms of soil water content controlled at vegetative stage(V2-R1), flowering stage(R1-R3) and podding stage(R3-R5), respectively. The purpose is to investigate effects of water supply levels in different growth stages on physiological characteristics, yield and quality of soybean under different potassium fertilizer levels. The methods of each tested index are as follows: (1)Photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration were measured by using a portable CI-301PS photosynthesis system(CID,Inc.,USA); (2) chlorophyll was distilled with ethanol and was determined by the specific absorption coefficients at 663 nm and 645 nm by using spectrophotometry; (3) leaf area was measured by using a portable CI-203PS leaf area system(CID,Inc.,USA); (4) protein content was determined by the Kjaldahl method; (5)The soybean oil was extracted with aether.
     When soil moisture was controlled at the same growth stage, both soil moisture and potassium ferlizer influenced photosynthetic characteristics of soybean, but soil water content played a more important role than potassium fertilzer. Photosynthesis rate, transpiration rate and stomatal conductance had the similar changes at the same stage, and soil water content had positive effects on them, W4 was the optimum water treatment. Soil water content had positive effect on WUE but potassium fertilizer played the opposite. The WUE of soybean increased and then decreased with the growthing of soybean, the positive effect of soybean WUE showed in the order: flowering stage>poding stage>vegetitive stage. Soil water stress had double edged influences on chlorophyll content which decreased under exceeding drought condition(W1) but increased under mild drought condition(W2). When soil moisture was controlled at the same stage, the coupling of water-potassium fertilizer exerted similar effects on leaf area index to photosynthetic rate. The leaf area index increased with the growthing of soybean in an order of poding stage>flowering stage> vegetitive stage. The plant height developed mainly come from seedling stage to flowering stage, thereafter the increment of soybean plant height were little. When soil water content was controlled at vegetitive stage and flowering stage, biomass distribution of each apparatus showed the order of leaf weight>stem weight>root weight. When soil water content was controlled at podding stage, the order was: seed weight> leaf weight>stem weight>root weight. Soil moisture and potassium fertilizer had impacts on the formation of biomass in different part of soybean, and soil water content had a negative effect on the formation of biomass, W4 level was the optimal soil water treatment. The biomass accumulation of applying potassium fertilizer treatments was superior to other treatments under the same soil water content condition. Coupling of water-potassium influenced shoot dry matter weight more than on root dry matter weight, and the influence on the ratio of root to shoot was the least. Soil water supply had more significant effect on dry matter weight and the ratio of root to shoot than potassium fertilizer application did. The sufficient soil moisture enhanced the accumulation of dry matter, while the ratio of root to shoot decreased with the increase of soil water content.
     Potassium fertilizer played a vital role in protein accumulation but not in oil accumulation for all the stages. When soil moisture was controlled at different growth stage, soil water content had different influences on protein content. When soil moisture was controlled at vegetative stage, protein content increased with the increase of soil water content under the same potassium fertilizer level. When soil moisture was controlled at flowering stage and podding stage, protein content at W3 level was optimical under the same potassium fertilizer level.
     The treament with the highest biomass accumulation was not the one of the optimum seed yield. The hightest seed yield of all treaments was combination of W3K3 which increased seed yield by 10.90% than control, and it was the classic treament of all in this experiment. When soil water content was controlled during the vegetative stage, the effect of different treatments on yield decreased in the order of potassium fertilizer >water>water-potassium fertilizer; when the soil water content was controlled during flowering stage and podding stage, the yield difference was mainly attributed to the water supply, while potassium fertilizer and the interaction of water-potassium fertilizer played a little role in yield. The reduction of yield under deficient soil water condition at different stages showed in an order: podding stage> flowering stage>vegetative stage. The contribution of water supply to the yield formation was more central than potassium application in the light of soil water controlled at the same growth stage. Both drought and water logging conditions were found to influence the yield of soybean, in which drought condition reduced the yield more significantly.
     This reseach found that the sensitive stages of the soybean yield to soil water were flowering and podding stages, while soil water condition had relative small impact on the seed yield of soybean at vegetative stage, so attention should be paid to regulating soil moisture at flowering stage and podding stage, and good irrigation and drainage equipment should be set up. Applying potassium fertilizer at a certain extent may increase the yield of soybean together with suitable water supply, so optimical potassium fertilizer should be applied for agriculture production in terms of soil water condition, and the coupling effect of water-potassium fertilizer should be paid to on soybean growth and development. The availability of potassium became lower at later growth stages of soybean due probably to the transformation of exchangible potassium to non-exchangible potassium when soil water content was higher at early growth stage and lower at later growth stage. Potassium fertilizer should be applied at later growth stages in order to increase the content of available potassium when soil water was sufficient at early growth stage and drought took place at later growth stage. The seed yield did not increase corresponding to the increase of dry matter accumulation under the condition of higher water content and fertilizer application, which might be attributed to the inbalance of development of vegetable organs resulting in suppression of seed yield, it is of great significance to harmonize fertilization with water supply in agriculture production.
引文
Coombs J,等.1986.生物生产力和光合作用测定技术.邱国维,等译.北京:科学出版社,63-96
    陈模舜,柯世省,倪琼琼.2004.田间珊瑚树净光合速率及生态因子的日变化.四川大学学报.27(3):298-302
    董钻.2000.大豆产量生理.北京:中国农业出版社.
    郭相平,张烈君,王琴,等.2006.拔节孕穗期水分胁迫对水稻生理特性的影响.干旱地区农业研究.24(2):125-129
    郭亚芬,腾云,张忠学,等.2005.东北半干旱区大豆水肥耦合效应试验研究.东北农业大学学报.36(4):405-4l1
    郭英,孙学振,宋宪亮,等.2006.钾营养对棉花苗期生长和叶片生理特性的影响.植物营养与肥料报.12(3):363-368
    韩天富,王金陵,杨庆凯,等.1997.开花后光照长度对大豆化学品质的影响.中国农业科学.30(2):47-53
    韩晓增,乔云发,张秋英,等.2003.不同土壤水分条件对大豆产量的影响.大豆科学.22(4):269-272
    韩晓增,王守宇,刘晓杰.2002.黑土钾素分布状态与大豆钾肥效应的研究.大豆科学.21(1):36-42
    胡继超,曹卫星,姜东,等.2004.小麦水分胁迫影响因子的定量研究.Ⅰ干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响.作物学报.30(4):315-320
    胡明祥,于德洋,孟祥勋.1990.不同生态区域环境对中国大豆品质的影响.大豆科学.9(1):37-49
    李春杰,王建国,许艳丽,等.2005.钾对大豆产量及品质的影响.农业系统科学与综合研究.21(2):154-160
    李冬杰,杨培岭,王勇,等.2005.土壤水分对草坪草蒸散及生长特性的影响.草地学报.13(4):308-312
    李法云,宋丽,官春云,等.2000.辽西半干旱区农田水肥耦合作用对春小麦产量的影响.应用生态学报.11(4):535-539
    李延春,林毅,蔡永萍,等.2006.小麦安农98005旗叶光合生理特性及其与产量关系的研究.安徽农业大学学报.33(3):306-309
    李玉影,金继运,刘双全,等.2005.钾对春小麦生理特性、产量及品质的影响.植物营养与肥料学报.11(4):449-455
    李玉影.1998.大豆需钾特性及钾肥效应.植物营养与肥料学报.4(4):414-418
    刘蓓,曹敏建,闫洪奎.2006.低钾胁迫下不同耐性玉米自交系生理差异的研究.玉米科学.14(3):90-92
    卢皖等.1990.黄淮平原大豆品质的气象条件.中国农业气象.13(6):6-10
    鲁如坤,著.1999.土壤农业化学分析方法.中国农业科技出版社.431-434, 458-462
    陆景陵等.1994.植物营养学.北京:中国农业大学出版社.
    苗以农,姜艳秋,朱长甫等.1988.大豆光合生理生态研究.大豆不同节位叶片全氮含量的变异性.大豆科学.7(2):113-118
    宁海龙,胡国华,李文滨等.2006.氮磷钾底肥对大豆蛋白质含量的效应.大豆科学.25(3):288-293
    裴宇峰,韩晓增,祖伟,等.2005.水氮耦合对大豆生长发育的影响.I水氮耦合对大豆产量和品质的影响.大豆科学.24(2):106-111
    乔樵,沈善敏,周绍权.1963.东北北部黑土水分状况之研究.I黑土水分状况的基本特征及其与成土过程的关系.土壤学报.11(2):143-158
    曲扬,丁伟,曲文章.2007.钾对甜菜光合作用的影响.中国甜菜糖业.4:1-4; 13
    孙广玉,邹琦,程炳嵩,等.1991.大豆光合速率和气孔导度对水分胁迫的响应.植物学报.33(1):43-49
    孙卓涛,董钻.1986.大豆株型群体结构与产量关系的研究.大豆群体冠层的荚粒分布.大豆科学.5(2):91-102
    汪德水,程宪国,张美荣.1995.旱地土壤中的肥水激励机制.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,195-203
    汪德水等.1999.旱地农田肥水协同效应与耦合模式.北京:气象出版社.
    王海泉,朱继强,汪建学.2005.钾对高油大豆产量和品质的影响.黑龙江农业科学.6:19-21
    王金陵.1991.大豆生态类型.北京:农业出版社,103-109
    王忠等.2000.植物生理学.北京:中国农业出版社,63-66
    吴秀清,葛家麒,王宏燕,等.1995.黑土地区钾肥对大豆产量效应的研究.东北农业大学学报.26(1):1-6.
    谢田玲,沈禹颖,邵新庆,等.2004.黄土高原4种豆科牧草的净光合速率和蒸腾速率日动态及水分利用效率.生态学报.24(8):1678-1685
    徐豹,胡传璞,庄炳昌等.1988.中国大豆生产品种蛋白脂肪及其组分的研究.中国油料.1:1-8
    徐惠风,刘兴土,徐克章.2004.乌拉苔草光合速率日变化及日同化量.湿地科学.2(2):128-132
    阎秀峰,孙国荣,李敬兰,等.1994.羊草和星星草光合蒸腾日变化的比较研究.植物研究.14(3):287-291
    姚磊,杨阿明.1997.不同水分胁迫对番茄生长的影响.华北农学报.12(2):102-106
    张恒善.1990.大豆种子脂肪和蛋白质形成及积累规律的初步研究.大豆科学.9(3):191-197
    张贤泽,马占峰,赵淑文等.1986.大豆不同品种光合速率与产量关系的研究.作物学报.12(1):43-47
    张学斌,孙克刚,汪立刚,等.2002.河南省夏大豆施用钾肥效果的研究.土壤肥料.1:23-25
    张银锁,宇振荣,Driessen P M.2002.环境条件和栽培管理对夏玉米干物质积累、分配及转移的实验研究.作物学报.28(1):104-109
    赵海祯,梁哲军,等.2002.不同时期水肥耦合对旱地小麦光合特性和产量的影响.华北农学报.17(增刊):61-65
    赵鸿,杨启国,邓振镛,等.2007.半干旱雨养区小麦光合作用、蒸腾作用及水分利用效率特征.干旱地区农业研究.25(1):125-130
    赵平,林克惠,郑毅.2005.氮钾营养对烟叶衰老过程中内源激素与叶绿素含量的影响.植物营养与肥料学报.11(3):379-384
    赵平,曾小平,彭少麟,等.2000.海南红豆(Ormosia pinnata)夏季叶片气体交换、气孔导度和水分利用效率的日变化.热带亚热带植物学报.8(1):35-42
    郑淑琴.2001.钾对大豆生理效应及产量和品质的影响.黑龙江农业科学.4:25-27
    邹桂花,梅捍卫,余新桥等,等.2006.不同灌水量对水、旱稻营养生长和光合特性及其产量的影响.作物学报.32(8):1179-1183
    Abdul Jaleel C, Sankar B, Murali P V, Gomathinayagam M, Lakshmanan G M A, Panneerselvam R. 2008. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus: impacts on ajmalicine accumulation. Colloids and Surfaces B. 62:105–111
    Aron D C. 1949. Copper enzymes in isolated chloroplasts poly henoloxidase inbate vulgaris. Plant Physiol. 24:1–15
    Asha S, Rao K N. 2002. Effect of simulated water logging on the levels of amino acids in groundnut at the time of sowing. Plant Physiol. 7:288–291
    Bednarz C W, Oosterhuis D M. 1998. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environmental and Experimental Botany. 39(2):131–139
    Chaitanya K V, Sundar D, Jutur P P, Reddy A R. 2003. Water stress effects on photosynthesis in different mulberry cultivars. Plant Growth Regul. 40:75–80
    Ciro A. Rosolem, Jo?o Nakagawa. 2001. Residual and annual potassic fertilization for soybeans. Nutrient Cycling in Agroecosystems. 59:143–149
    Ding L, Wang K J, Jiang G M, Li Y G, Jiang C D, Liu M Z, Niu S L, Peng Y. 2006. Diurnal variation of gas exchange, chlorophyll fluorescence, and xanthophyll cycle components of maize hybrids released in different years. Photosynthetica. 44(1):26–31
    Dobermann A, Cassman K G, Mamaril C P , Sheehy J E. 1998. Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice. Field Crops Reasearch. 56:113–138
    Flavio H, Gutiérrez-Boeml, Grant W. Thomas. 1999. Phosphorus nutrition and water deficits in field-grown soybeans. Plant and Soil. 207:87–96
    Hsiao T C. 1973. Plant responses to water stress. Annu. Rev. Plant Physiol. 24:519–570
    Hunt T E, Higley L G, Witkowski J F. 1994. Soybean growth and yield after simulated bean leaf beetle injury to seedlings. Agron. 86:140–146
    James E. 2004. Board soybean cultivar diferences on light interception and leaf area index during seed filling. Agron. 96:305–310
    Krause G H, Weis E. 1991. Chlorophyll fluorescence and photosynthesis:the basics. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:313–349.
    Lawlor D W. 2002. Limitation to photosynthesis in water stressed leaves: stomata vs metabolism and role of ATP.Ann. Bot. 89:871–885
    Lecoeur J, Wery J, Turc O, et a1. 1995. Expansion of pea leaves subjected to short water deficit:Cell number and cell size are sensitive to stress at different periods of leaf development. 46(9):1093–1101
    Li Zizhen, Lin Hong. 1998. Research on the regulation of water and fertilizers and a crop growth model of spring wheat in farmland of semi-arid regions. Ecological Modeling. 107:279–287
    Liu Xiaobing, Jin Jian, Herbert S J, Zhang Qiuying, Wang Guanghua. 2005. Yield components, dry matter, LAI and LAD of soybeans in Northeast China. Field Crops Research. 93:85–93
    Longstreth D J, Nobel P S. 1980. Nutrient influences on leaf photosynthesis. Effect of nutrogen, phosphorus, and potassium for Gossypium hirsutum L. Plant Physiol. 65:541–543
    Manuel D, de la Guardial, Esteban Alcántara. 2002. A comparison of ferric-chelate reductase and chlorophyll and growth ratios as indices of selection of quince, pear and olive genotypes under iron deficiency stress. Plant and Soil. 241:49–56
    Miyasaka Susan C, Hansen James D, McDonald Ty G, Fukumoto Glen K. 1983. Effects of nitrogen and potassium in kikuyu grass on feeding by yellow sugarcane aphid. Crop Protection 26:511–517
    Mohamed-ARAG. 1999. Nitrogen accumulation, seed yield and water use efficiency of three grain legume species grown under different water regimes. Egyptian Journal of Agronomy. 20:1-2
    Ohashi Y, Nakayama N, Saneoka H, Fujita K. 2006. Effects of drought stress on photosynthetic gas exchange, fluorescence and stem diameter of soybean plants. Biologia Plantarum. 50(1):138–141
    Passiowra J B. 1983. Root and drought resistance. Agricultural Water Management. 7:265-280
    Pazel J O, Batchelor W D, Colvin T S, Logsdon S D, Kaspar T C, Karlen D L. 1998. Analysis of water stress effects causing spatial yield variability in soybeans. Transactions of the ASAE. 41(5):1527–1534
    Peaslee D E, Moss D N. 1968. Stomatal conductivities in K-deficient leaves of maize(Zea mays L.). Crop Sci. 8:427–430
    Pimentel C, Hebert G, Vieirada Silva J. 1999. Effects of drought on O2 evolution and stomatal conductance of beans at the pollination stage. Environ. Exp. Bot. 42:155–162
    Raja Reddy K, Zhao Duli. 2005. Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crops Research. 94:201–213
    Reddy A R, Chiatanya K V, Vivekanandan M. 2004. Draught induced responses of photosynthesis and antioxidant metabolism in higher plants. Plant Physiol. 161:1189–1202
    Rosell I A. 1988. Effects of moisture stress on the oil and protein component of soybean seeds. Australian Journal of Agricultural Research. 39:163–170
    Royo C, Blanco R. 1998. Use of potassium iodide to mimic drought stress in triticale. Field Crops Reasearch. 59:201–212
    Sadras V O, Villalobos F J, Fereres E, et a1. 1993. Leaf responses to soil water deficits:Comparative sensitivity of leaf expansion rate and leaf conductance in field-grown sunflower(Helianthus annuu L.). Plant and Soil. 153(2):189–194
    Sale P W G , Campbell L C. 1980. Changes in physical characteristics and composition of soybean seed during crop development. Field Crops research. 3:147–155
    Sharkey T D, Seemann J R. 1989. Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiol. 89:1060–1065.
    Shou H X, Zhu D H, Chen C X, Zhu W Y, Zhu S L. 1991. The initial study of responses and physiological indexes for drought resistance in eight soybean varieties under drought condition. Acta Agric Zhejiangensis. 6:278–281
    Stanhill G. 1986. Water use efficiency.Adv.Agron. 39:53-85
    Sun Hong-Yong, Liu Chang-Ming, Zhang Xi-Ying, Shen Yan-Jun, Zhang Yong-Qiang. 2006.
    Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural Water Management. 85:211–218
    Tan Yong, Liang Zongsuo, Shao Hongbo, Du Feng. 2006. Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix Astragali at seeding stage. Colloids and Surfaces B. 49:60–65
    Van Heerden PDR, Krüger GHJ. 2002. Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. Plant Physiol. 159:1077–86.
    Wood C W, Reeves D W, Duffield R R, Edmisten K L. 1992. Field chlorophyll measurements for evaluation of corn nitrogen status. Plant Nutrition. 15,487–500
    Yin Xinhua, Vyn Tony J. 2004. Residual effects of potassium placement for conservation-till corn on subsequent no-till soybean. Soil & Tillage Research. 75:151–159
    Yurtseven E, Kesmez G D, Unlükara A. 2005. The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central anatolian tomato species(Lycopersicon esculantum). Agricultural Water Management. 78:128–135
    Zhao Duli, Oosterhuis D M, Bednarz C W. 2001. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica. 39(1):103–109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700