用户名: 密码: 验证码:
集群磁流变效应超光滑抛光加工过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子、光电子技术的发展需求,对光学玻璃、单晶硅、工程陶瓷等硬脆材料的加工精度和表面质量也提出了越来越高的要求,一般需要达到超光滑表面,而这类材料的脆性高,可加工性差,加工表面极易产生微裂纹等损伤。由于传统研磨加工方法效率低下、加工质量不易控制,难以适应发展的需要。因此,如何实现硬脆材料表面的超光滑抛光成为超精密加工技术领域的一个重要研究课题,受到广泛重视。
     首先,本文分析了集群磁流变效应平面抛光原理,并基于磁流变抛光加工原理,提出以集群分布式磁性体构成抛光工具形成集群磁流变效应抛光的新方法。论文对集群磁流变效应抛光盘内磁性体的磁极方向进行了仿真分析,得出磁极异向排布优于同向排布的结论;同时,优化了抛光盘盘面结构,并对磨料的运动轨迹进行了仿真分析;通过分析磁流变抛光工作液的组成、特性、流变机理和性能要求,对磁流变抛光工作液的各组成成分比例进行了优化。
     其次,本文研制了集群磁流变效应平面抛光试验装置,对试验装置的旋转抛光盘、可调节磁场装置、磁流变液循环系统、工件装夹装置等组成部分进行了优化设计。对K9光学玻璃和硅片及YAG陶瓷进行了可行性加工试验,最终实现K9玻璃表面粗糙度Ra0.005μm、硅片Ra0.016μm、YAG陶瓷Ra0.015μm。结果表明,集群磁流变效应平面抛光加工方法可行,可以实现高精度抛光。
     最后,利用研制的集群磁流变效应平面抛光试验装置和自行配制的磁流变抛光工作液,对K9平面玻璃和硅片进行抛光加工试验,得到了加工时间、加工间隙、磁场强度、转速(抛光盘转速、工件盘转速、平摆速度)、羰基铁粉浓度、磨料浓度、磨料种类、磨料与铁粉粒径比等参数对加工效果的影响规律,总结出工艺参数优化选择原则。在工艺参数优化的基础上,对其它类型材料的工件进行加工试验,探索不同材料在应用集群磁流变效应加工方式的加工效果,为磁流变效应加工方法拓宽应用范围。试验研究表明,集群磁流变平面抛光加工方法可行,所研制的集群磁流变平面抛光加工装置具有良好的加工性能。
With the development of microelectronics and optoelectronic technology, there is an increasing demand to hard brittle material's machining accuracy and the surface quality, such as optical glass, silicon and project ceramics, it needs to achieve ultra smooth surface generally. But this kind of material's brittleness is high and the machinability is bad, so it is extremely easy to have damages on the processing surface. Because of the tradition abrasive machining method's efficiency is low, and the processing quality is not easy to control, it is difficult to meet develop need. Therefore, how to realize ultra-smooth polishing to hard brittle material have been become an important research issue in ultra-precision processing technology area, receives widespread attention.
     First, the author analyzed the principle of the cluster MR-effect plane polishing, a new method-cluster MR-effect polishing which formed by cluster distributed magnetic body has been put forward based on the principle of MR polishing processing in this article. The conclusion that the different magnetic pole arrangement is superior to the same magnetic pole arrangement gets through simulation analysis to magnetic pole, the structure of the polishing disk is designed optimally, and the movement of abrasive trajectory is analyzed through simulation. By analyzing the magnetorheological finish working fluid's composition, properties, rheological mechanism and performance requirements, the proportion of various components are optimized.
     Next, this article has developed a cluster MR-effect plane polishing experimental device, and design optimally to its component, such as rotary polishing disk, adjustable magnetic device, recycling and storing device and clamping workpiece device. Have carried on the feasible processing experiment to K9 optical glass, silicon and YAG ceramics, the surface roughness of K9 glass, silicon and YAG ceramics can achieve respectively Ra0.005μm, Ra0.016μm and Ra0.015μm finally after processed. The result indicated that the cluster MR-effect plane polishing method is feasible, can realize high accuracy polishing.
     Finally, using the experimental device and the magnetorheological finish working fluid which is selfmade, carries on the polishing experiment to K9 glass and silicon.The influence rule of parameters on processing effect is obtained, such as the polishing time, the machining gap. the magnetic field intensity, the speed (the rotational speed of polishing disk, the rotational speed of work piece disk and swing speed), the carbonyl iron consistency, the content of abrasives, the abrasive material type, the the size ratio of abrasive and iron powder. Summarized the technological parameter optimization selection principle. Based on the technological parameter optimizes, carries on the processing experiment to the different type material's work piece, explores the processing effect to different material in using the cluster MR-effect plane polishing method, expands the method's application scope. The experimental study indicated that the cluster MR-effect plane polishing method is feasible, and the designed processing equipment has good workability.
引文
[1]于兆勤,杨忠高等.超光滑表面加工技术的发展及应用[J].机床与液压,2007,35(6):217-220
    [2]刘志军.碳化硅镜面材料的磁流变抛光工艺研究[D].长沙:国防科学技术大学,2008.
    [3]朱勇建,尹韶辉,盛晓敏.两种非球面面形的光学测量方法研究[J].中国机械工程,2009,20(3):271-275.
    [4]杨力.先进光学制造技术[M].北京:科学出版社,2001.
    [5]高洪刚等.超光滑表面及其制造技术的发展[J].物理,2000,(10):610-614.
    [6]吴云锋,陈洁.精密超精密加工技术综述[J].新技术新工艺,2007,(6):38-40.
    [7]郑丹.超精密加工技术及其发展方向[J].《新技术新工艺》·高端访谈,2006,(5):4-6.
    [8]袁哲俊.国内外精密加工技术最新进展[J].工具技术,2008,42(1):5-13.
    [9]张华,王文,庞媛媛.光学表面超精密加工技术[J].光学仪器,2003,25(3):47-51.
    [10]张兰娣,马轶群,梁建明.超精密加工技术的发展[J].河北建筑工程学院学报,2006,24(1):81-84.
    [11]陈树海.超精密加工的关键技术及发展趋势[J].汽车工艺与材料,2008,(3):57-59.
    [12]孙希威.磁流变抛光机床数控系统关键技术研究[D].哈尔滨:哈尔滨工业大学博士论文,2006.
    [13]牛景丽,陈东海.现代超精密加工机床的发展及对策[J].机床与液压,2010,38(2):94-96.
    [14]赵健.综论超精密加工技术的发展[J].机械研究与应用,2008,21(5):6-8.
    [15]http://www.nanotechsys.com/products.aspx
    [16]Gijsbers T G. Colath. A numerically controlled lathe for very high-precision[J]. Philips technical Review,1980,39(9):229-244.
    [17]Walker David D, Shore Paul R. Manufacture of segments for extremely large telescopes:a new perspective[C]. Ardeberg AL, Andersen T(eds). Second Backaskog Workshop on Extremely Large Telescopes Proceedings of the SPIE, 2004:277-284.
    [18]Leadbeater P B. A unique machine for grinding large off-axis optical components:the OAGM 2500[J]. Journal of Precison Engineering,1989, 11(4):191-196.
    [19]吴云锋,陈洁.精密超精密加工技术综述[J].新技术新工艺,2007(6).
    [20]李立军,张飞虎,董申.非球面磨削加工设备现状与发展趋势[J].机床与液压,2007(7):229-236.
    [21]冯薇.精密与超精密磨削的发展现状[J].报道与评述.2009,2,7-9.
    [22]宋淑梅.大口径轻质非球面反射镜制造技术研究[J].光学技术,2005,31(2):246-248.
    [23]杨福兴.非球面光学零件的超精密磨削技术[J].机械工程师,1998(6).
    [24]康仁科,田业冰,郭东明等.大直径硅片超精密磨削技术的研究与应用现状[J].金刚石与磨料磨具工程,2003,(4):13-18.
    [25]蔡光起,冯宝富,赵恒华.磨削技术的最新进展[J].世界制造技术与装备市场,2003(1):16-19.
    [26]简金辉,焦锋.超精密加工技术研究现状及发展趋势[J],机械研究与应用,4-7.
    [27]Rabinow. J. The Magnetic Fluid Clutch. AIEE Trans.1948.67:1308.
    [28]Carlson, J. D. and M. J. Charzan. Magnetorheological fluid damper. Lord Corporation:United States,1994.
    [29]PHULE Dr. P P. Magnetorheological (MR) fluids:principles and applications [M]. Smart Materials Bulletin,2001.
    [30]张峰,张学军.磁流变抛光液的研制[J].功能材料,2002,33(5):490-494.
    [31]王琪民,徐国梁.磁流变液的流变性能及其工程应用[J].中国机械工程,2002,13(3):267-270.
    [32]Wm. I Kordonski, "Adagtive Structures Based on Magnetorheological Fluids", Proc.3rd Int. Conf, Adaptive Struct, ed. Wada, Natori and Breitbach.1992, 13-17.
    [33]I. V. Prokhorov, W. I. Kordonsky, L. K. Gleb, G. R. Gorodkin and M. L. Levin,'New High-Precision Magnetorheological Instrument-Based Method of Polishing Optics'OSA OF&T Workshop Digest.1992,24:134-136.
    [34]H. M. Pollicove, D. T. Moore. Technology Development at the Center for Optics Manuafcutring. SPIE.1992,1531:174-178.
    [35]Johan Eker, Jogren Malonbogr. Design and Implementation of a Hybrid Control Srtategy[J]. IEEE Trans & Control Systems Society,1999,19(4):12-21.
    [36]http://www.lle.rochester.edu/pub/review/V96
    [37]D.Golini, K. W. Magnetorheological Finishing(MRF) in Commercial Precision Optics Manuafcutring. SPIE.1999,3782(7):80-91.
    [38]N. A. Zhuravskii, D. E. Polesskii, I.V.Prokhorov. Rheodynamic Precision Suarfce Treatment Controlled by a Magnetic Field. Journal of Engineering. Physics and Themrophysics.2002,75(2):390-395.
    [39]J.D.Kim, Y. M. Xu, Y. H. Kang. Study on the Characteristics of Magneto-Electrolytic Abrasive Polishing by Using the newly Developed Nonwoven-abrasive Pads. International Journal of Machine Tools & Manuafcutre.1998,38:1031-1043.
    [40]C. H. Lim, Y. J. Kim, S. H. Lee, W. B. Kim, S. J. Lee. Polishing of the Three Dimensional Suarfces of Micro Sturcutre by Magnetorheological Fluid. The 5th Korean MEMS Conefrence.2003:127.
    [41]仇中军,张飞虎.光学玻璃研抛用磁流变液的研究[J].光学技术,2002,28(6),497-501.
    [42]司鹄,彭向和.磁流变流体的磁流变效应[J].重庆大学学报,2003,26(5):72-75.
    [43]张峰,余景池,张学军等.对磁流变抛光技术中磁场的分析[J].仪器仪表学报,2001,22(1):42-44.
    [44]程濒波,冯之敬,王英伟.磁流变抛光超光滑光学表面[J].哈尔滨工业大学学报,2005,37(4):433-436.
    [45]康桂文,张飞虎,仇中军等.精密磁流变抛光机床的研制[J].设计与研究,2005,7:47-49.
    [46]杨阿饶.超声辅助磁流变抛光的磁流变液循环系统研制及磁路设计[D].哈尔滨:哈尔滨工业大学,2006.
    [47]尤伟伟,彭小强,戴~帆.磁流变抛光液的研究[J].光学精密工程,2004,12(3): 330-334.
    [48]I.V. Prokhorov, I. W. Kordonski. New High-Precision Magnetorheological Instrument-Based Method of Polishing Optics[J]. OSA OF&T Workshop Digest,1992, (24):134-136.
    [49]邱明君,李中会.磁流变抛光效果影响因素控制的研究[J].中国新技术新产品,2009年,22:1-2.
    [50]康桂文.磁流变抛光技术的研究现状及其发展[J].机床与液压,2008,36(3):173-175.
    [51]S.D.Jacobs, A. B. Shorey. Magnetorheological Finishing. New Fluids for New Materials. Optical Society of America.2000:142-144.
    [52]A. B. Shorey. Mechanisms of Material Removal in Magnetorheological Finishing (MRF) of Glass [D]. New York:Univ. of Rochester,2000.
    [53]W. I. Kordonski, D. Golini. Fundamentals of Magnetorheological Fluid Utilization in High Precision Finishing. Journal of Intelligent Material Systems and Structures,1999,10(9):683-689.
    [54]P. Dumas, D. Golini, M, Tricard. Improve figure and finish of diamond turned surfaces with magneto-rheological finishing(MRF). Proceedings of ASPE,2004.
    [55]QED公司主页 http://www.qedmrf.com/
    [56]D. Golini, K. W. Magnetorheological Finishing(MRF) in Commercial Precision Optics Manuafcutring. SPIE.1999,3782(7):80-91.
    [57]余娟,阎秋生,路家斌.磁流变液性能分析及用于光学件精细加工的基础研究[J].金刚石磨料磨具工程,2007,1:74-77.
    [58]J. B. Lu, Q. S. Yan, J. Yu, et al., Parametric study of micro machining with instantaneous tiny-grinding wheel based on the magnetorheological effect of abrasive slurry [J]. Int. J. Materials and Product Technology,2008,31(1):113-124.
    [59]J. Yu, Q. S. Yan, J. B. Lu, et al., Research on Material Removal of a New Micro Machining Technology Based on the Magnetorheological Effect of Abrasive Slurry [J]. Key Engineering Materials,2008,364-366:914-919.
    [60]Hong Tian, Qiusheng Yan, Jiabin Lu, Juan Yu. Foundational study on micro machining with instantaneous tiny-grinding wheel based on the electro-magneto-rheological effect[J]. Proceedings of the society of photo-optical instrumentical instrumentation engineers(SPIE), 2008,6724:7240-7240.
    [61]J. B. Lu, J. Yu, Q. S. Yan. A Novel Superfine Machining Technology Based on the Magnetorheological Effect of Abrasive Slurry [J]. Materials Science Forum.2006,532-533:145-148.
    [62]冯建华.电流变效应微磨头研抛加工研究及电流变微细加工实验装置研制[D].广州:广东工业大学,2007.
    [63]Jianhua Feng, Qiusheng Yan, Jiabin Lu, et al., A Study of Fine Machining using Instantaneous Tiny Grinding Wheel Based on Electrorheological Effect [C], The 7th International Conference on Frontiers of Design and Manufacturing,2007.
    [64]田虹.电磁流变效应微砂轮研抛加工机理研究[D].广州:广东工业大学,2008.
    [65]余娟.磁流变效应微砂轮超精密研抛加工机理研究[D].广州:广东工业大学,2007.
    [66]Q. S. Yan, A. J. Tang, J. B. Lu, et al., Simulation Analysis and Structure Optimization of the Polishing Disc with Tiny-Grinding Wheel Cluster Based on the Magnetorheological Effect[C]. The 8th International Conference on Frontiers of Design and Manufacturing. Tianjin:2008.
    [67]汤爱军.集群磁流变效应微磨头平面研抛加工技术研究[D].广州:广东工业大学,2008.
    [68]杨勇.集群磁流变效应研磨盘的结构优化及研抛加工实验研究[D].广州:广东工业大学,2009.
    [69]徐安民.蓝宝石晶片超光滑加工技术研究[D].苏州:苏州大学,2007.
    [70]顾坚,李正兴,赵永武,王永兴.单头单面旋转式化学机械抛光机的运动机理研究[J].煤矿机械,2006,27(8):39-41.
    [71]黄军辉,周旗钢等.300mm硅片双面抛光运动轨迹模拟和优化[J].稀有金属,2007,31(6):737-740.
    [72]申儒林,吴任和,钟掘.浮动块研磨抛光机研磨磁头的表面去除分析[J].中南大学学报,2005,36(6):1021-1024.
    [73]沈晓安.平面抛光中磨粒运动轨迹仿真研究[J].机械制造,2009,47(537):16-18.
    [74]赵萍,陶黎,王志伟,袁巨龙.平面研磨抛光轨迹研究[J].航空精密制造技术,2009,45(2期):1-6.
    [75]苏建修,郭东明,康仁科等.硅片自旋转磨削的运动形式对片内非均匀行的影响分析[J].中国机械工程,2005,16(9):815-819.
    [76]刘士军.磁流变液流变性能测试仪的设计与研究[D].武汉:武汉理工大学,2006.
    [77]姚金光,晏华.高性能磁流变液研究的进展[J].材料开发与应用,2009,24(2)62-66.
    [78]姚黎明,王竹轩,顾玲,肖燕.磁流变液及其工程应用[J].液压与气动,2009,(7):64-66.
    [79]关新春,欧进萍,李金海.磁流变液组分选择原则及其机理探讨[J].化学物理学报,2001,14(5):592-595.
    [80]程灏波,冯之敬,王英伟.油基磁流变液的开发及抛光性能研究[J].光电工程,2004,31(10):28-31.
    [81]浦鸿汀,蒋峰景.磁流变液材料的研究进展和应用前景[J].化工进展,2005,24(2):132-136.
    [82]阮承斌,蒋贤芳.磁流变液稳定性研究[J].新技术新工艺,2008,(12):110-112.
    [83]王金铭.水基磁流变液的制备和性能研究[D].武汉:武汉理工大学,2008.
    [84]王大坤.羰基铁粉磁流变液特性及其初步应用研究[D].重庆:重庆大学,2007.
    [85]王小云.磁流变液的相变及结构研究[D].湘潭:湘潭大学,2004.
    [86]http://www.kinco.cn/
    [87]周杭君.超光滑表面磁流变加工原理与实验研究[D].长沙:国防科学技术大学,2002.
    [88]http://baike.baidu.com/view/2093348.htm
    [89]严杰文.集群磁流变效应平面研抛加工特性研究[D].广州:广东工业大学,2010.
    [90]http://www.zhedu.net/teachstudv/se/huaxue/zqb/014/si.htm
    [91]http://baike.baidu.com/view/913556.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700