马疱疹病毒Ⅰ型改造活疫苗的构建及其作为活载体的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马疱疹病毒1型(equine herpesvirus type 1, EHV-1)是马科动物重要的病原,马最为易感,通常会引起呼吸道疾病和病毒性流产,严重时引发神经性疾病。该病毒在世界范围内流行,对养马业和赛马业的危害很大。目前市场上广泛使用的主要为灭活疫苗,无法产生有效的细胞免疫反应,免疫保护性较差。EHV-1所有毒株都可引起流产,但只有个别毒株可以引起神经症状。近些年来,由EHV-1引发的神经性疾病出现的频率越来越高。目前已经证实,EHV-1 DNA聚合酶第752位氨基酸的点突变决定其神经致病性。本研究将EHV-1强毒RacL11株的DNA聚合酶第752位氨基酸用同源重组方法从神经致病型(D752)突变为非神经致病型(N752),同时将其gC蛋白基因敲除,构建了基因改造活疫苗L11_D752N△gC。在用绿色荧光蛋白基因EYFP取代聚合酶基因后,RacL11只能在表达聚合酶蛋白的细胞系RK13中生长,首次证实DNA聚合酶对EHV-1的体外复制是必需的。L11_D752N△gC在体外对RK13细胞的吸附能力相对于野毒显著下降,病毒滴度下降约20倍,从细胞中胞吐的效率降低,但形成的空斑却比野毒和gC蛋白修复株大10%(p<0.0001)。进一步用流式细胞仪分析了不同突变株对马成纤维细胞NBL6表面MHC-1分子的下调作用,首次发现gC蛋白可下调MHC-1表达水平,表明gC蛋白可能参与了EHV-1在宿主体内的免疫调控。用小鼠做动物模型对Lll_D752NAgC进行了毒力和攻毒试验发现,L11_D752N△gC在体内复制能力显著下降,接毒后第2天肺组织中病毒滴度小于野毒滴度的0.01%,未造成明显病理损伤,在接毒后28天用野毒进行攻毒可有效阻止病毒复制,在攻毒后第2天肺组织中病毒滴度与PBS对照组相比下降约100倍。上述结果表明,构建的重组病毒L11_D752N AgC毒力显著减弱,但具有良好的免疫保护效果,有望成为安全有效的减毒活疫苗。
     在自然流行的EHV-1毒株中,其DNA聚合酶的第752位氨基酸主要存在天冬酰胺(N752)和天冬氨酸(D752)两种形式,该位点的突变可影响聚合酶的活性并足以决定病毒对宿主的神经致病性。DNA聚合酶对EHV-1的复制是必需的,而第752位氨基酸位于聚合酶高度保守的结构域内,该位点对DNA聚合酶的功能是否也是必需并不清楚。本研究通过细菌人工染色体和Red重组技术将该位点进行了敲除,并对突变株L11△752gp2进行了N752和D752两种修复。L11△752gp2在体外可以正常增殖,形成的空斑大小和生长曲线与母源病毒以及两个修复株没有显著性差异,但对靶向聚合酶的抗病毒药Aphidicolin的敏感性显著降低。上述结果表明,EHV-1 DNA聚合酶第752位氨基酸对病毒的体外复制是非必需的,但该位点的突变可以改变病毒对抗病毒药Aphidicolin的敏感性。
     蓝舌病毒为呼肠孤病毒科成员,是引起牛羊等反刍动物蓝舌病的病原,为虫媒病毒,主要依靠库蠓传播。通常认为该病毒只存在于热带和亚热带地区,但在2006年8月,蓝舌病毒8型首次登陆欧洲北部,并大规模流行,造成了巨大的经济损失。蓝舌病毒各血清型间交叉保护性很差,目前针对8型的疫苗主要为灭活疫苗,无法区分免疫和自然感染。马疱疹病毒1型作为活病毒载体具有感染谱广,容纳外源基因能力强,机体缺少抗载体免疫等优势,作为活病毒载体已经得到了初步的应用。本研究首先将克隆为细菌人工染色体的马疱疹病毒1型RacH疫苗株进行了启动子改造,并以此为载体构建了可表达蓝舌病毒8型VP2蛋白的重组病毒rH_VP2。在体外,rH_VP2形成的空斑显著小于野毒RacH,但可达到与野毒相同的滴度,并可稳定的表达VP2蛋白。该重组活载体疫苗有望成为蓝舌病毒8型的新型标记性疫苗。
Equine Herpesvirus 1 (EHV-1) is the causative agent of respiratory disease, abortions and neurological disorders in horses. Sequence analysis as well as reverse genetic studies shown that a single amino acid variation in the EHV-1 DNA polymerase (D752/N752) determines the virus'neuropathogenic potential. Glycoprotein C (gC) of EHV-1 was known to play important roles in the early steps of infection and in release of virions and contribute to viral virulence. Here, a gC-negative EHV-1 strain RacLll mutant with a D752 to N752 mutation in the polymerase was constructed. A complementing rabbit kidney cell line designated RK13_Pol expressing the non-neurological form of the polymerase (N752) was generated. A Pol-negative RacLl 1 mutant was then constructed by inserting EYFP in lieu of the authentic polymerase gene via co-transfection of RacLl 1 DNA and a shuttle plasmid into the RK13_Pol cell line. After a homogenous Pol-negative virus population was obtained that was unable to grow on non-complementing cells, homologous recombination was used again to introduce the N752 Pol variant, which was amplified from non-neurologic EHV-1 strain NY03. To delete the gC open reading frame from the L11_D752N mutant, the EYFP gene flanked with LoxP sites was used as a positive selection marker. By expressing Cre upon co-transfection, EYFP was finally excised and a gC-negative, non-neurological RacLll mutant, termed L11_D752N AgC, was engineered. L11_D752N AgC was shown to replicate less effectively in vitro with virus titer that was 20-fold reduced when compared to wild type and gC revertant, and impaired in case of attachment to and release from RK13 cells. Interestingly, plaque sizes induced by L11_D752N AgC were increased and 10% larger than those of wild type. Using FACS analysis, it was demonstrated for the first time that, gC is responsible for the MHC-1 down-regulation by EHV-1. In vivo, infection with this modified virus did not cause apparent bodyweight loss and clinic signs. Importantly, L11_D752N AgC can only be recovered at day 2 post infection from murine lungs. Upon challenge with wild type virus, apparent protection by L11_D752N AgC was observed with virus titers that was more than 100-fold decreased in lung tissues.
     Equine herpesvirus type 1 (EHV-1), a member of the subfamily Alphaherpesviridae, infects horses worldwide. Althogh all EHV-1 strains are capable of causing abortions and respiratory disease, only a few sets of strains can induce neurological disease. It is known that a single amino acid variation ar position 752 in EHV-1 DNA polymerase (D752/N752) determines the virus'neuropathogenic potential. While the D to N752 mutation affects the function of polymerase, which is believed to be indispensable for virus growth, the effect of a deletion of residue 752 on virus growth and pathogenicity is not clear. Here, an EHV-1 strain RacLll mutant with a deletion of residue 752 of the viral polymerase was constructed using two-step (en passant) Red mutagenesis. The mutant virus was then repaired to code for D752 or N752, respectively, with the same mutagenesis strategy. The correct genotypes of the final mutant viruses were confirmed by sequencing and restriction fragment length polymorphisms (RFLPs) analysis. After transfection of the A752 clone into a rabbit kidney (RK13) cell line, mutant virus could be recovered and was shown to grow with kinetics that were indistinguishable from those of parental, wild-type RacLll. The results clearly show that the absence of the residue 752 in the essential enzyme is not required for virus growth in vitro. In addition, biochemial assays of the△752 mutant addressed that the mutant is more resistance to Aphidicolin, a Pol-targeting drug, than either D752 or N752 gene type, indicating that the deletion of residue 752 does alter the function of EHV-1 DNA polymerase. The effect of the single amino acid deletion on virus pathogenicity will be tested in a murine infection model and ultimately in horses in the futher.
     Bluetongue virus (BTV) can infect most species of domestic and wild ruminants causing substantial morbidity and mortality and, consequently, high economical losses. In 2006, an epizootic of BTV serotype 8 (BTV-8) in northern Europe started and has caused significant disease in cattle and sheep before comprehensive vaccination was introduced. Equine herpesvirus type 1 (EHV-1), a member of subfamily Alphaherpesviridae, has been shown to be an efficient live virus vector. Here, the construction and characterization of a recombinant vectored vaccine that expresses VP2 of BTV-8 using EHV-1 as the delivery vehicle is described. The VP2 gene was synthesized after codon optimization and cloned into a generic transfer plasmid. Two-step (en passant) Red mutagenesis was employed to manipulate a bacterial artificial chromosome (BAC) of EHV-1 vaccine strain RacH and generate the recombinant vaccine. To avoid any unwanted recombination, the HCMV promoter upstream of the egfp gene in mini-F sequence of pRacHrv was replaced with the EF-la promoter. Afterwards, the vp2 gene was inserted in lieu of ORF1 and ORF2 in the RacH genome. Southern blot and restriction fragment length polymorphism analyses (RFLPs) confirmed the correct insertion of the transgene. The recombinant virus rH-VP2 was finally achieved by restoring gp2 encoding gene71, and shown to grow with smaller plaque size but comparable growth kinetics when compared with parental virus rRacH. Stable expression of VP2 by the recombinant EHV-1 was demonstrated using indirect immunofluorescence assay and western blotting. Vaccination/challenge experiments in ruminants are planned.
引文
1. Dimock, W.W. and P.R. Edwards, Is there a filterable virus of abortion in mares? Ky. Agr. Exp. Sta. Bull.,1933.333:p.297-301.
    2. Davison, A.J., et al., The order Herpesvirales. Arch Virol,2009.154:p.171-177.
    3. Sabine, M., GR. Robertson, and J.M. Whalley, Differentiation of sub-types of equine herpesvirus 1 by restriction endonuclease analysis. Aust. Vet. J.,1981.57:p.148-149.
    4. Studdert, M.J., Simpson, and B. Roizman, Differentiation of respiratory and abortogenic isolates of equine herpesvirus 1 by restriction endonucleases. Science,1981.214:p.562-564.
    5. Roizman, B., et al., The family Herpesviridae: an update. Arch Virol,1992.123:p.425-449.
    6. Allen, G.P., et al., Advances in understanding of the pathogenesis, epidemiology and immunological control of equine herpesvirus abortion, in Equine Infectious Diseases VIII: Proceedings of the Eighth International Conference., J.A.W. J.F.Wernery, J.A.Mumford and O.R.Kaaden (ed.), Editor.1999, R&W Publishers: Newmarket, UK. p.129-146.
    7. Zhu, L.H., C.P. Lu, and C.Z. Liang, Quarantine of equine rhinopnermonitis. Chinese Journal of Animal Quarantine,2005.25(3):p.46-48.
    8. Yu, D.H. and Y.L. Cui, Guideline for Entry and Exit Animal Quarantine of China.1997, China Agriculture Press: Beijing.
    9. Vallat, B. and G.P. Allen, Equine Rhinopnermonitis.2004, World Organisation for Animal Health (OIE):Paris.
    10. Telford, E.A.R., et al., The DNA sequence of equine herpesvirus-1. Virology,1992.89:p. 304-316.
    11. Field, H.J., S. Biswas, and I.T. Mohammad, Herpesvirus latency and therapy—from a veterinary perspective. Antiviral Res,2006.71:p.127-133.
    12. Allen, GP. and J.T.Bryans, Molecular epizootiology, pathogenesis, and prophylaxia of equine herpesvirus-1 infections. Prog.Vet. Microbiol. Immunol.,1986.2:p.78-144.
    13. Kydd, J.H., et al., Distribution of equid herpesvirus-1 (EHV-1) in the respiratory tract of ponies: implications for vaccination strategies. Equine Vet. J.,1994.26:p.466-473.
    14. Scott, J.C., S.K. Dutta, and A.C. Myrup, In vivo harbouring of equine herpesvirus-1 in leucocyte populations and subpopulations and their quantitation from experimentally infected ponies. Am. J. Vet. Res.,1983.44:p.1344-1348.
    15. Welch, H.M., et al., Latent equid herpesviruses 1 and 4: detection and distinction using the polymerase chain reaction and cocultivation from lymphoid tissues. J.Gen.Virol.,1992.73:p. 261-268.
    16. Slater, J.D., et al., The trigeminal ganglion is a location for equine herpesvirus 1 latency and reactivation in the horse. J.Gen.Virol,1994.75:p. b2007-2016.
    17. Mumford, J.A., et al., Serological and virological investigations of an equid herpesvirus 1 (EHV-1) abortion storm on a stud farm in 1985. J. Reprod. Fert. Suppl.,1987.35:p.509-518.
    18. Edington, N., C.GBridges, and J.R.Patel, Endothelial cell infection and thrombosis in paralysis caused by equid herpesvirus-1:equine stroke. Arch. Virol.,1986.90:p.111-124.
    19. Schultheiss, P.C., J.K.Collins, and S.F.Hotaling, Immunohistochemical demonstration of equine herpesvirus-1 antigen in neurons and astrocytes of horses with acute paralysis. Vet. Pathol., 1997.34:p.52-54.
    20. Wilson, W.D., Equine herpesvirus 1 myeloencephalopathy. Vet. Clin. North Am. Equine Pract., 1997.13:p.53-72.
    21. Stierstorfer, B., et al., Equine herpesvirus type 1 (EHV-1) myeloencephalopathy: a case report. J.Vet.Med. B Infect. Dis. Vet. Public Health,2002.49:p.37-41.
    22. Nugent, J., et al., Analysis of Equid Herpesvirus 1 Strain Variation Reveals a Point Mutation of the DNA Polymerase Strongly Associated with Neuropathogenic versus Nonneuropathogenic Disease Outbreaks. J.Virol.,2006.80:p.4047-4060.
    23. Crabb, B.S., G.P. Allen, and M.J. Studdert, Characterization of the major glycoproteins of equine herpesvirus-4 and 1 and asinine herpesvirus 3 using monoclonal antibodies. J.Gen.Virol,1991.72:p.2075-2082.
    24. Foote, C.E., et al., Seroprevalence of equine herpesvirus 1 in mares and foals on a large Hunter Valley stud farm inyears pre- and postvaccination. Aust. Vet. J.,2003.81:p.283-288.
    25. Goehring, L.S., et al. Equine herpesvirus type 1-associated myeloencephalopathy in the Netherlands: a four-year retropective study (1999-2003). J. Vet. Intern. Med,2006.20:p. 601-607.
    26. Gilkerson, J.R., et al., Epidemiology of EHV-1 and EHV-4 in the mare and foal populations on a Hunter Valley stud farm are: are mares the source of EHV-1 for unweaned foals. Vet. Microbiol.,1999.68:p.27-34.
    27. Gilkerson, J., D. Love, and J. Whalley, Serological evidence of equine herpesvirus 1 (EHV-1) infection in Thoroughbred foals 30-120 days of age. Australian Equine Veterinarian,1997.15: p.128-134.
    28. holmes, M.A., et al., Immune responses to commercial equine vaccines against equine herpesvirus-1, equine influenz virus, eastern equine encephalomyelits, and tetans. Vet. Immunol. Immunopathol.,2006. 111:p.67-80.
    29. Allen, G.P., Antemortem detection of latent infection with neuropathogenic strains of equine herpesvirus.1 in horses. Am. J. Vet. Res.,2006.67:p.1401-1405.
    30. Shan, Wenlu, et al., Isolation and Identification of Equine Rhinopneumonitis Virus from Przewalskii Horses in Xinjiang. Chinese Journal of Veterinary Medicine,1999.25(6):p.3-7.
    31. Yi, X.P., et al., Detection and Identification of Equine Herpesvirus-1 and-4 by One-step Polymerase Chain Reaction. Chinese Journal of Virology,2001.17(2):p.158-160.
    32. Zhu, L.H., C.P. Lu, and C.Z. Liang, Detection and differentiation of three types of equine herpesviruses by the multiplex polymerase chain reaction assay. Chinese Journal of Veterinary Science and Technology,2005.35(8):p.595-599.
    33. Henninger, R.W., et al., Outbreak of neurologic disease caused by equine herpesvirus-1 at a university equestrian center. J. Vet. Intern. Med,2007.21:p.157-165.
    34. USDA-APHIS, Equine Herpes Virus Myeloencephalopathy: A Potentially Emerging Disease 2007.2007:4.
    35. Mayr, A., et al., Studies on the development of a live vaccine against rhinopneumonitis (mare abortion) of horses. Zentralbo. Veterinarmed. B.,1968.15:p.406-418.
    36. Awan, A.R., M.Baxi, and H.J.Field, EHV-1-induced abortion in mice and its relationship to stage of gestation. Res.Vet.Sci.,1995.59:p.139-145.
    37. Walker, C, D.N.Love, and J.M.Whalley, Comparison of the pathogenesis of acute equine herpesvirus 1 (EHV-1) infection in horse and the mouse model: a review. Vet. Microbiol.,1999. 68:p.3-13.
    38. Ostlund, E.N., The equine herpesviruses. Vet. Clin. North Am. Equine Pract.,1993.9:p. 283-294.
    39. Tearle, J.P., et al., In vitro characterisation of high and low virulence isolates of equine herpesvirus-1 and-4. Res.Vet.Sci.,2003.75:p.83-86.
    40. Campbell, E.M. and T. J. Hope, Gene therapy progress and prospects: viral trafficking during infection. Gene.Ther.,2005.12:p.1353-1359.
    41. Goodman, L.B., et al, A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity. PLoS Pathogens,2007.3:p.1583-1592.
    42. Van de Walle, G.R., et al., A Single-Nucleotide Polymorphism in a Herpesvirus DNA Polymerase Is Sufficient to Cause Lethal Neurological Disease. J Infect Dis.,2009.200(1):p. 20-25.
    43. Spear, P.G., Entry of alphaherpesviruses into cells. Seminars in Virology,1993.4:p.167-180.
    44. WuDunn, D. and P.G Spear, Initial interaction of herpes simplex virus with cells is binding to heparan suldfate. J. Virol.,1989.63:p.52-58.
    45. Mettenbleiter, T.C., et al., Interaction of glzcoprotein III with a cellular heparin like substance mediates adsorption of pseudorabies virus. J. Virol.,1990.64:p.278-286.
    46. Osterrieder, N., Construction and characterization of an equine herpesvirus 1 glycoprotein C negative mutant. Virus Research,1999.59:p.165-177.
    47. Sun, Y., et al., The role of the gene 71 product in the life cycle of equine herpesvirus 1. J. Gen Virol,1996.77:p.493 500.
    48. Arthur R. Frampton, J., et al., Equine Herpesvirus 1 Utilizes a Novel Herpesvirus Entry Receptor. J.Virol,2005.79(5):p.3169-3173.
    49. Ligas, M.W. and D.C. Johnson, A herpes simplex virus mutant in which glycoprotein D sequences are replaced by β-galactosidase sequences binds to but is unable to penetrate into cells. J. Virol.,1988.62:p.1486-1494.
    50. Peeters, B., et al., Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus penetration but only GII is involved in membrane fusion. J. Virol.,1992.66:p.894-905.
    51. Osterrieder, N., et al., The Equine Herpesvirus 1 Glycoprotein gp21/22a, the Herpes Simplex Virus Type 1 gM Homolog, Is Involved in Virus Penetration and Cell-to-Cell spread of Virions. J.Virol.,1996.70(6):p.4110-4115.
    52. Neubauer, A., et al., Analysis of the contributions of the equine herpesvirus 1 glycoprotein gB homolog to virus entry and direct cell-to-cell spread. Virology,1997.227:p.281-294.
    53. Rauh, I. and T.C. Mettenleiter, Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration. J. Virol,1991.65:p.5348-5356.
    54. Allen, G.P., et al., Major histocompatibility complex class I-restricted cztotoxic T-lymphocyte responses in horses infected with equine herpesvirus 1. J.Virol,1995.69:p.606-612.
    55. Osterrieder, N., et al., Expression of equine herpesvirus type 1 glycoprotein gpl4 in Escherichia coli and in insect cells: a comparative study on protein processing and humoral immune responses. J.Gen.Virol.,1994.75:p.2041-2046.
    56. Tewari, D., et al., Characterization of immune response to baculovirus-expressed equine herpesvirus type 1 glycoprotein D and H in a murine model. J.Gen.Virol.,1994.75:p. 1735-1741.
    57. Osterrieder, N., et al., Protection against EHV-1 challenge infection in the murine model after vaccination with various formulations of recombinant glycoprotein gpl4 (gB). Virology,1995. 208:p.500-510.
    58. Tewari, D., et al., Immunization with glycoprotein C of equine herpesvirus-1 is associated with accelerated virus clearance in a murine model. Arch Virol,1995.140:p.789-797.
    59. Stokes, A., et al., The production of a truncated form of baculovirus expressed EHV-1 glycoprotein C and its role in protection of C3H (H-2Kk) mice against virus challenge. Vir. Res.,1996a.44:p.97-109.
    60. Stokes, A., et al., The expression of the proteins of equine herpesvirus 1 which share homology with herpes simplex virus 1 glycoproteins Hand L. Vir. Res.,1996b.40:p.91-107.
    61. Flowers, C.C. and D.J. O'Callaghan, The equine herpesvirus type 1 (EHV-1) homolog of herpes simplex virus type 1 US9 and the nature of a major deletion within the unique short segment of the EHV-1 KyA strain genome. Virology,1992.190:p.307-315.
    62. Colle, C.F., et al., Equine herpesvirus 1 strain KyA, a candidate vaccine strain, reduces viral titers in mice challenged with a pathogenic strain, RacL. Vir. Res.,1996.43:p.111-124.
    63. Matsumura, T., et al., Lack of virulence of the murine fibroblast adapted strain, Kentucky A (KyA), of equine herpesvirus type 1 (EHV1) in young horses. Vet. Microbiol.,1996.48:p. 353-365.
    64. Marshall, K.R., et al., An equine herpesvirus-1 gene 71 deletant is attenuated and elicits a protective immune response in mice. Virology,1997.231:p.20-27.
    65. Neubauer, A., et al., Equine herpesvirus 1 mutants devoid of glycoprotein B or M are apathogenic for mice but induce protection againt challenge infection. Virology,1999.239:p. 36-45.
    66. Ortmann, B., M. J. Androlewicz, and P. Cresswell, MHC class I/beta 2-microglobulin complexes associate with TAP transporters before peptide binding. Nature,1994.368:p.864-867.
    67. Gilbert, M.J., et al., Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature,1996.383:p.720-722.
    68. Levitskaya, J., et al., Inhibition of ubiquitin/ proteasome- dependent protein degration by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen-1. Proc. Natl Acad. Sci. USA, 1997.94:p.12616-12621.
    69. Fruh, K., et al., A viral inhibitor of peptide transporters for antigen presentation. Nature,1995. 375:p.415-418.
    70. Ahn, K., et al., The ER- luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity,1997.6:p.613-621.
    71. Galocha, B., et al., The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHV)-encoded peptide transporter associated with anigen processing (TAP), maps to the NH2-terminal 35 residues. J. Exp. Med,1997.185:p. 1565-1572.
    72. Lipinska, A.D., et al., Bovine herpesvirus I UL49.5 protein inhibits the transporter associated with antigen processing despite complex fromation with glycoprotein M. J.Virol,2006.80:p. 5822-5832.
    73. Abendroth, A. and A. Arvin, Immune evasion mechanisms of varicella-zoster virus. Arch Virol, 2001. Suppl:p.99-107.
    74. Abendroth, A., et al., Varicella-zoster virus tetains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J.Virol,2001.75:p.4878-4888.
    75. Rappocciolo, G, J. Birch, and S.A. Ellis, Down-regulation of MHC class I expression by equine herpesvirus-1. J. Gen Virol,2003.84:p.293-300.
    76. Ambagala, A.P.N., R.S. Gopinath, and S. Srikumaran, Peptide transport activity of the transporter associated with antigen processing (TAP) is inhibited by an early protein of equine herpesvirus-1. J.Gen. Virol.,2004.85:p.349-353.
    77. Koppers-Lalic, D., et al., Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP. PLoS Pathogens,2008.4(5):p. el000080.
    78. Anderson, E. and E.W. Goodpasture, Infection of newborn syrian hamsters with the virus of mare abortion. Am. J. Pathol.,1942.18:p.555-561.
    79. Randall, C.C., et al., Cultivation of equine abortion virus in fetal horse tissue in vitro. Am. J. Pathol.,1953.29:p.139-153.
    80. Randall, C.C., Adaptation of equine abortion virus to Hela cells. Proc. Soc. Exp. Biol. Med., 1957.95:p.508-510.
    81. Doll, E.R., J.T. Bryans, and W.H. McCollum, A procedure for evaluating the antigenicity of killed virus vaccine for equine rhinopneumonitis. Cornell Vet.,1959.49:p.212-220.
    82. Doll, E.R. and J.T. Bryans, A planned infection programm for immunizing mares against viral rhinopneumonitis. Cornell Vet.,1963.53:p.249-263.
    83. Doll, E.R. and J.T. Bryans, Immunization of young horses against viral rhinopneumonitis. Cornell Vet.,1963.53:p.24-41.
    84. Holmes, M.A., et al., Immune response to commercial equine vaccines. AAEP Proceedings, 2003.49:p.224-226.
    85. Townsend, H.G.G., et al., Comparative efficacy of commercial vaccines in naive horses: serologic responses and protection after influenza challenge. AAEP Proceedings,2003.49:p. 227-229.
    86. Jacobs, L., et al., Deleting two amino acids in glycoprotein gl of pseudorabies virus decreases virulence and neurotropism for pigs, but does not affect immunogenicity. J.Gen. Virol.,1993.74: p.2201-2206.
    87. van Engelenburg, F.A., et al., A glyprotein E deletion mutant of bovine herpesvirus 1 is avirulent in calves. J.Gen.Virol.,1994.75:p.2311-2318.
    88. Arvin, A.M., Varicella vaccine-the first six years. N. Engl. J Med.,2001.344:p.1007-1009.
    89. Breathnach, C.C., et al., The mucosal humoral immune response of the horse to infective challenge and vaccination with equine herpesvirus-1 antigens. Equine Vet. J.,2001. 33(651-657).
    90. Goodman, L.B., et al., Comparison of the efficacy of inactivated combination and modified-live virus vaccines against challenge infection with neuropathogenic equine herpesvirus type I (EHV-1). Vaccine,2006.17:p.3636-3645.
    91. Mayr, A., et al., Characterization of an equine abortion virus from Poland and comparison with known equine rhinopneumonitis virus strains. Arch. Gesamte Virusforsch.,1965.17:p. 216-230.
    92. Mayr, A. and J. Pette,1st experiments concerning the vaccination of horses against rhinopneumonia (viral abortion of mares) with a live vaccine from cell culture. Bull. Off. Int. Epizoot.,1968.70:p.133-140.
    93. Rosas, C.T., et al., Equine herpesvirus type 1 modified live virus vaccines: quo vaditis? Expert Rev.Vaccines,2006.5:p.119-131.
    94. Osterrieder, N., et al., The equine herpesvirus 1 IR6 protein is nonessential for virus growth in vitro and modified by serial virus passage in cell culture. Virology,1996.217:p.442-451.
    95. Hubert, P.H., et al., Alterations in the equine herpesvirus type-1 (EHV-1) strain RacH during attenuation. Zentralbl. Veterinarmed. B.,1996.43:p.1-14.
    96. Osterrieder, N., et al., The Equine Herpesvirus 1 IR6 Protein That Colocalizes with Nuclear Lamins Is Involved in Nucleocapsid Egress and Migrates from Cell to Cell Independently of Virus Infection. J. Virol.,1998.72(12):p.9806-9817.
    97. Meyer, H., et al., Rapid identification and differentiation of the vaccine strain RacH from EHV 1 field isolates using a nonradioactive DNA probe. Vet. Microbiol.,1992.30:p.13-20.
    98. Osterrieder, N., et al., A touchdown PCR for the differentiation of equine herpesvirus Type 1 (EHV-1) field strains from the modified live vaccine strain RacH. J.Virol. Methods,1994.50:p. 129-136.
    99. Flowers, C.C., E.M. Eastman, and D.J. O'Callaghan, Sequence analysis of a glycoprotein D gene homolog within the unique short segment of the EHV-1 genome. Virology,1991.180:p. 175-184.
    100. Colle, C.F.r., C.C. Flowers, and D.J. O'Callaghan, Open reading frames encoding a protein kinase, homolog of glycoprotein gX of pseudorabies virus, and a novel glycoprotein map within the unique short segment of equine herpesvirus Type 1. Virology,1992.188:p.545-557.
    101. Colle, C.F.r. and D.J. O'Callaghan, Transcriptional analyses of the unique short segment of EHV-1 strain Kentucky A. Virus Genes,1995.9:p.257-268.
    102. Rudolph, J., D.J.O'Callaghan, and N. Osterrieder, Cloning of genomes of equine herpesvirus type I (EHV-!) strains KyA and RacLll as bacterial artificial chromosomes (BAC). J.Vet. Med. B Infect. Dis. Vet. Public Health,2002.49:p.31-36.
    103. Von Einem, J., et al., The Truncated Form of Glycoprotein gp2 of Equine Herpesvirus 1 (EHV-1) Vaccine Strain KyA Is Not Functionally Equivalent to Full-Length gp2 Encoded by EHV-1 Wild-Type Strain RacLll. J.Virol,2004.78(6):p.3003-3013.
    104. Smith, P.M., et al., Expression of the Full-Length Form of gp2 of Equine Herpesvirus 1 (EHV-1) Completely Restores Respiratory Virulence to the Attenuated EHV-1 Strain KyA in CBA Mice. J.Virol,2005.79(8):p.5105-5115.
    105. Matsumura, T., et al., An equine herpesvirus Type 1 recombinant with a deletion in the gE and gI genes is avirulent in young horses. Virology,1998.242:p.68-79.
    106. Frampton, A.R., et al., Contribution of gene products encoded within the unique short segment of equine herpesvirus 1 to virulence in a murine model. Virus Res..2002.90:p.287-301.
    107. Nicolson, L., et al., An improved cosmid vector for the cloning of equine herpesvirus DNA. Gene,1994.150:p.405-406.
    108. Sun, Y. and S.M. Brown, The open reading frames 1,2,71 and 75 are nonessential for the replication of equine herpesvirus Type 1 in vitro. Virology,1994.199:p.448-452.
    109. Fitzmaurice, T., et al., The pathogenesis of ED71, a defined deletion mutant of equine herpesvirus-1, in a murine intranasal infection model for equine abortion. J.Gen. Virol.,1997. 78:p.2167-2169.
    110. Neubauer, A., et al., Equine herpesvirus 1 mutants devoid of glycoprotein B or M are apathogenic for mice but induce protection against challenge infection. Virology,1997.239:p. 36-45.
    111. Osterrieder, N., C. Seyboldt, and K. Elbers, Deletion of gene 52 encoding glycoprotein M of equine herpesvirus Type 1 strain RacH results in increased immunogenicity. Vet. Microbiol., 2001.81:p.219-226.
    112. Rudolph, J. and N. Osterrieder, Equine Herpesvirus Type 1 Devoid of gM and gp2 Is Severely Impaired in Virus Egress but Not Direct Cell-to-Cell Spread. Virology,2002.293:p.356-367.
    113. Tischer, B.K., et al., Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. BioTechniques,2006.40(2):p.191-197.
    114. Rudolph, J., et al., The Gene 10 (UL49.5) Product of Equine Herpesvirus 1 Is Necessary and Sufficient for Functional Processing of Glycoprotein M. J.Virol,2002.76(6):p.2952-2963.
    115. Bryant, N.A., et al., Glycoprotein G isoforms from some alphaherpesviruses function as broad spectrum chemokine binding proteins. EMBO J.,2003.22:p.833-846.
    116. Koppers-Lalic, D., et al., Varicelloviruses avoid T-cell recognition by UL 49.5-mediated inactivation of the transporter associated with antigen processing. Proc. Natl Acad. Sci. USA, 2005.102:p.5144-5149.
    117. Abaitua, F., et al., Improving recombinant MVA immune responses:Potentiation of the immune responses to HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and IFN-γ. Virus Res.,2005.
    118. Rupprecht, C.E., et al., Oral vaccination of dogs with recombinant rabies virus vaccine. Virus Res.,2005. 111:p.101-105.
    119. Smee, D.F., et al., Topical cidofoir is nore effective than is parenteral therapy for treatment of progressive vaccinia in immunocompromised mice. J Infect Dis.,2004.190:p.1132-1139.
    120. kanesa-Thasan, N., et al., Safety and immunogenicity of NYVAC-JEV and ALVAC-JEV attenuated recombinant Japanese encephalitis virus-poxvirus vaccines in vaccinia-nonimmune and vaccinia-immune humans. Vaccine,2000.19:p.483-491.
    121. Lauterbach, H., et al., Reduced immune responses after vaccination with a recombinant herpes simplex virus Type 1 vector in the presence of antiviral immunity. J.Gen.Virol.,2005.86:p. 2401-2410.
    122. Trapp, S., et al., Potential of Equine Herpesvirus 1 as a Vector for Immunization. J. Virol,2005. 79:p.5445-5454.
    123. Bolin, S.R. and J.F. Ridpath, Glycoprotein E2 of bovine viral diarrhea virus expressed in insect cells provides calves limited protection from systemic infection and disease. Arch Virol,1996. 141:p.1463-1477.
    124. Rosas, C.T., et al., Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Research,2007.125:p. 69-78.
    125. Rosas, C.T., et al., Protection of Mice by Equine Herpesvirus Type 1-Based Experimental Vaccine against Lethal Venezuelan Equine Encephalitis Virus Infection in the Absence of Neutralizing Antibodies. Am. J. Trop. Med. Hyg.,2008.78:p.83-92.
    126. Rosas, C.T., et al., Evaluation of the vaccine potential of an equine herpesvirus type Ⅰ vector expressing bovine viral diarrhea virus structural proteins. J. Gen Virol,2007.88:p.748-757.
    127. Rosas, C., et al., Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza. Vaccine,2008. 26:p.2335-2343.
    1. Davison, A.J., et al., The order Herpesvirales. Arch Virol,2009.154:p.171-177.
    2. Roizman, B., et al., The family Herpesviridae: an update. Arch Virol,1992.123:p.425-449.
    3. Telford, E.A.R., et al., The DNA sequence of equine herpesvirus-1. Virology,1992.89:p. 304-316.
    4. Allen, G.P. and M.R. Yeargan, Use of λ-gtll and monoclonal antibodies to map the genes for the six major glycoproteins of equine herpesvirus 1. J.Virol,1987.61:p.2454-2461.
    5. Osterrieder, N., Construction and characterization of an equine herpesvirus 1 glycoprotein C negative mutant. Virus Research,1999.59:p.165-177.
    6. Stierstorfer, B., et al., Equine herpesvirus type 1 (EHV-1) myeloencephalopathy: a case report. J.Vet.Med. B Infect. Dis. Vet. Public Health,2002.49:p.37-41.
    7. Nugent, J., et al., Analysis of Equid Herpesvirus 1 Strain Variation Reveals a Point Mutation of the DNA Polymerase Strongly Associated with Neuropathogenic versus Nonneuropathogenic Disease Outbreaks. J.Virol,2006.80:p.4047-4060.
    8. Goodman, L.B., et al., A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity. PLoS Pathogens,2007.3:p.1583-1592.
    9. Van de Walle, G.R., et al., A Single-Nucleotide Polymorphism in a Herpesvirus DNA Polymerase Is Sufficient to Cause Lethal Neurological Disease. J Infect Dis.,2009.
    10. Holmes, M.A., et al., Immune response to commercial equine vaccines. AAEP Proceedings, 2003.49:p.224-226.
    11. Townsend, H.G.G., et al., Comparative efficacy of commercial vaccines in naive horses: serologic responses and protection after influenza challenge. AAEP Proceedings,2003.49:p. 227-229.
    12. USD A-APHIS, Equine Herpes Virus Myeloencephalopathy: A Potentially Emerging Disease 2007.2007:4.
    13. Jacobs, L., et al., Deleting two amino acids in glycoprotein gI of pseudorabies virus decreases virulence and neurotropism for pigs, but does not affect immunogenicity. J.Gen. Virol.,1993.74: p.2201-2206.
    14. van Engelenburg, F.A., et al., A glyprotein E deletion mutant of bovine herpesvirus 1 is avirulentin calves. J.Gen.Virol.,1994.75:p.2311-2318.
    15. Arvin, A.M., Varicella vaccine-the first six years. N. Engl. J Med.,2001.344(1007-1009).
    16. Doll, E.R. and J.T. Bryans, Epizootiology of equine viral rhinopneumonitis. Journal of American Veterinary Medical Association,1963.142:p.31-37.
    17. Burrows, R., D. Goodridge, and M.S. Denyer, Trials of an inactivated equid herpesvirus-1 vaccine: challenge with a subtype-1 virus. Vet. Rec.,1984.114:p.369-374.
    18. Burki, F., et al., Viremia and abortions are not prevented by two commercial equine herpesvirus-1 vaccines after experimental challenge of horses. Vet. Q.,1990.12:p.80-86.
    19. Ostlund, E.N., The equine herpesviruses. Vet. Clin. North Am. Equine Pract.,1993.9: p. 283-294.
    20. Mayr, A., et al., Characterization of an equine abortion virus from Poland and comparison with known equine rhinopneumonitis virus strains. Arch. Gesamte Virusforsch.,1965.17:p. 216-230.
    21. Mayr, A. and J. Pette,1st experiments concerning the vaccination of horses against rhinopneumonia (viral abortion of mares) with a live vaccine from cell culture. Bull. Off. Int. Epizoot.,1968.70:p.133-140.
    22. Mayr, A., et al., Studies on the development of a live vaccine against rhinopneumonitis (mare abortion) of horses. Zentralbo. Veterinarmed. B.,1968.15:p.406-418.
    23. Hubert, P.H., et al., Alterations in the equine herpesvirus type-1 (EHV-1) strain RacH during attenuation. Zentralbl. Veterinarmed. B.,1996.43:p.1-14.
    24. Osterrieder, N., et al., The equine herpesvirus 1 IR6 protein is nonessential for virus growth in vitro and modified by serial virus passage in cell culture. Virology,1996.217:p.442-451.
    25. Osterrieder, N., et al., The Equine Herpesvirus 1 IR6 Protein That Colocalizes with Nuclear Lamins Is Involved in Nucleocapsid Egress and Migrates from Cell to Cell Independently of Virus Infection. J. Virol.,1998.72(12):p.9806-9817.
    26. Matsumura, T., et al., Lack of virulence of the murine fibroblast adapted strain, Kentucky A (KyA), of equine herpesvirus type 1 (EHV1) in young horses. Vet. Microbiol.,1996.48:p. 353-365.
    27. Sun, Y., et al., The role of the gene 71 product in the life cycle of equine herpesvirus 1. J. Gen Virol,1996.77:p.493 500.
    28. Neubauer, A., et al., Equine Herpesvirus 1 Mutants Devoid of Glycoprotein B or M Are Apathogenic for Mice but Induce Protection against Challenge Infection. Virology,1997.239: p.36-45.
    29. Matsumura, T., et al., An equine herpesvirus Type 1 recombinant with a deletion in the gE and gI genes is avirulent in young horses. Virology,1998.242:p.68-79.
    30. Neubauer, A., et al., Analysis of the contributions of the equine herpesvirus 1 glycoprotein gB homolog to virus entry and direct cell-to-cell spread. Virology,1997.227:p.281-294.
    31. Fitzmaurice, T., et al., The pathogenesis of ED71, a defined deletion mutant of equine herpesvirus-1, in a murine intranasal infection model for equine abortion. J.Gen. Virol.,1997. 78:p.2167-2169.
    32. Abendroth, A., et al., Varicella-zoster virus tetains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J.Virol,2001.75:p.4878-4888.
    33. Rappocciolo, G., J. Birch, and S.A. Ellis, Down-regulation ofMHC class I expression by equine herpesvirus-1. J. Gen Virol,2003.84:p.293-300.
    34. Ambagala, A.P.N., R.S. Gopinath, and S. Srikumaran, Peptide transport activity of the transporter associated with antigen processing (TAP) is inhibited by an early protein of equine herpesvirus-1. J.Gen.Virol.,2004.85:p.349-353.
    35. Von Einem, J., et al., In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology,2007.362:p. 151-162.
    1. Allen, G.P. and J.T.Bryans, Molecular epizootiology, pathogenesis, and prophylaxia of equine herpesvirus-1 infections. Prog.Vet. Microbiol. Immunol.,1986.2:p.78-144.
    2. Nugent, J., et al., Analysis of Equid Herpesvirus 1 Strain Variation Reveals a Point Mutation of the DNA Polymerase Strongly Associated with Neuropathogenic versus Nonneuropathogenic Disease Outbreaks. J.Virol,2006.80:p.4047-4060.
    3. Edington, N., C.G.Bridges, and J.R.Patel, Endothelial cell infection and thrombosis in paralysis caused by equid herpesvirus-I:equine stroke. Arch. Virol.,1986.90:p.111-124.
    4. Schultheiss, P.C., J.K.Collins, and S.F.Hotaling, Immunohistochemical demonstration of equine herpesvirus-1 antigen in neurons and astrocytes of horses with acute paralysis. Vet. Pathol., 1997.34:p.52-54.
    5. Rosas, C.T., et al., Equine herpesvirus type I modified live virus vaccines: quo vaditis? Expert Rev.Vaccines,2006.5:p.119-131.
    6. Ostlund, E.N., The equine herpesviruses. Vet. Clin. North Am. Equine Pract.,1993.9:p. 283-294.
    7. Wilson, W.D., Equine herpesvirus I myeloencephalopathy. Vet. Clin. North Am. Equine Pract., 1997.13:p.53-72.
    8. Tearle, J.P., et al., In vitro characterisation of high and low virulence isolates of equine herpesvirus-J and-4. Res.Vet.Scl.,2003.75:p.83-86.
    9. Campbell, E.M. and T.J. Hope, Gene therapy progress and prospects: viral trafficking during infection. Gene.Ther.,2005.12:p.1353-1359.
    10. Goodman, L.B., et al., A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity. PLoS Pathogens,2007.3:p.1583-1592.
    11. Van de Walle, G.R., et al., A Single-Nucleotide Polymorphism in a Herpesvirus DNA Polymerase Is Sufficient to Cause Lethal Neurological Disease. J Infect Dis.,2009.
    12. Dicioccio, R., A,, K. Chadha, and B.I. Sahai Srivastava, Inhibition of herpes simplex virus-induced DNA polymerase, cellular DNA polymerase alpha, and virus production by Aphidicolin. Biochim Biophys Acta,1980.609:p.224-231.
    13. Gibbs, J.S., et al., Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proc Natl Acad Sci U S A,1988.85:p.6672-6676.
    14. Matthews, J.T., B.J. Terry, and K.A. Field., The structure and function of the HSV DNA replication proteins: defining novel antiviral targets. Antivir. Res.,1993.20:p.89-114.
    15. Kamiyama, T., M. Kurokawa, and K. Shiraki., Characterisation of the DNA polymerase gene of varicella-zoster viruses resistant to acyclovir. J. Gen Virol,2001.82:p.2761-2765.
    16. Chou, S., et al., Viral DNA polymerase mutations associated with drug resistance in human cytomegalovirus. J. Infect. Dis.,2003.188:p.32-39.
    1. Nason, E.L., et al., Interactions between the inner and outer capsids of bluetongue virus. J. Virol,2004.78:p.8059-8067.
    2. Lobato, Z.I., et al., Antibody responses and protective immunity to recombinant vaccinia virus expressed bluetongue virus antigens. Vet. Immunol. Immunopathol,1997.59:p.293-309.
    3. Roy, P., et al., Recombinant virus vaccine for bluetongue disease in sheep. J. Virol,1990.64: p. 1998-2003.
    4. Hassan, S.S. and P. Roy, Expression and functional characterization of bluetongue virus VP2 protein: role in cell entry 1999. J. Virol,1999.73:p.9832-9842.
    5. Roy, P., Bluetongue virus proteins. J. Gen. Virol,1992.73:p.3051-3064.
    6. Maan, S., et al., Analysis and phylogenetic comparisons of full-length VP2 genes of the 24 bluetongue virus serotypes. J. Gen. Virol,2007.88:p.621-630.
    7. Hassan, S.H., et al., Expression and functional characterization of bluetongue virus VP5 protein:role in cellular permeabilization. J. Virol,2001.75:p.8356-8367.
    8. Jeggo, M.H., R.C. Wardley, and W.P. Taylor, Role of neutralising antibody in passive immunity to bluetongue infection. Res. Vet. Sci.,1984.36:p.81-86.
    9. Conraths, F.J., et al., Epidemiology of bluetongue virus serotype 8, Germany. Emerg. Inf. Dis., 2009.15(3):p.433-435.
    10. Trapp, S., et al., Potential of Equine Herpesvirus 1 as a Vector for Immunization. J. Virol,2005. 79:p.5445-5454.
    11. Rudolph, J., D.J.O'Callaghan, and N. Osterrieder, Cloning of genomes of equine herpesvirus type 1 (EHV-!) strains KyA and RacLll as bacterial artificial chromosomes (BAC). J.Vet. Med. B Infect. Dis. Vet. Public Health,2002.49:p.31-36.
    12. Rudolph, J. and N. Osterrieder, Equine Herpesvirus Type 1 Devoid of gM and gp2 Is Severely Impaired in Virus Egress but Not Direct Cell-to-Cell Spread. Virology,2002.293:p.356-367.
    13. Hubert, P.H., et al., Alterations in the equine herpesvirus type-1 (EHV-1) strain RacH during attenuation. Zentralbl. Veterinarmed. B.,1996.43:p.1-14.
    14. Osterrieder, N., et al., The equine herpesvirus 1 IR6 protein is nonessential for virus growth in vitro and modified by serial virus passage in cell culture. Virology,1996.217:p.442-451.
    15. Osterrieder, N., et al., The Equine Herpesvirus 1 IR6 Protein That Colocalizes with Nuclear Lamins Is Involved in Nucleocapsid Egress and Migrates from Cell to Cell Independently of Virus Infection. J. Virol.,1998.72(12):p.9806-9817.
    16. Rosas, C.T., et al., Evaluation of the vaccine potential of an equine herpesvirus type 1 vector expressing bovine viral diarrhea virus structural proteins. J. Gen Virol,2007.88:p.748-757.
    17. Rosas, C.T., et al., Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Research,2007.125:p. 69-78.
    18. Rosas, C., et al., Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza. Vaccine,2008. 26:p.2335—2343.
    19. Rosas, C.T., et al., Protection of Mice by Equine Herpesvirus Type 1-Based Experimental Vaccine against Lethal Venezuelan Equine Encephalitis Virus Infection in the Absence of Neutralizing Antibodies. Am. J. Trop. Med. Hyg.,2008.78:p.83-92.
    20. Bhanuprakash, V, et al., Bluetongue vaccines: the past, present and future. Expert Rev Vaccines,2009.8(2):p.191-204.
    21. Eschbaumer, M., et al., Efficacy of three inactivated vaccines against bluetongue virus serotype 8 in sheep. Vaccine,2009.27:p.4169-4175.
    22. Gethmann, J., et al., Comparative safety study of three inactivated BTV-8 vaccines in sheep and cattle under field conditions. Vaccine,2009.27:p.4118-4126.
    23. Batten, C.A., et al., A European field strain of bluetongue virus derived fromtwo parental vaccine strains by genome segment reassortment. Virus Res.,2008.137:p.56-63.
    24. Veronesi, E., C. Hamblin, and P.S. Mellor, Live attenuated bluetongue vaccine viruses in Dorset Poll sheep, before and after passage in vector midges (Diptera:Ceratopogonidae). Vaccine, 2005.23:p.5509-5516.
    25. Tischer, B.K., et al., Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. BioTechniques,2006.40(2):p.191-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700