用户名: 密码: 验证码:
丙酮酸激酶OsPK1对水稻重要农艺性状的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是重要的粮食作物。增加水稻单产,培育具有优良农艺性状的新品种是一个重大课题。水稻又是单子叶植物基因组研究的模式植物,对其研究已进入“功能基因组时代”。丙酮酸激酶是糖酵解途径的一个关键酶,其对水稻形态发育的影响报道甚少。本课题对T-DNA插入的水稻矮化突变体ospk1进行鉴定,对突变基因OsPK1进行功能分析,探讨胞质丙酮酸激酶OsPK1对水稻生长发育的影响及机制。
     突变体ospk1的突变表型主要有:矮秆、鞘包穗、结实率低。侧翼序列分析确定T-DNA插入到基因OsPK1起始密码子上游349bp处。定量RT-PCR检测发现,OsPK1在ospk1的根、叶片、节间和幼穗中的表达均下降约90%,表明T-DNA插入到基因上游的转录调控区域。将OsPK1的全长基因组片段转化到ospk1突变体,获得互补转基因水稻,从穗是否伸出叶鞘、株高、结实率和种子萌发等方面判断,基本恢复到野生型的表型,证实了OsPK1的突变导致ospk1的突变表型。亚细胞定位和酶活性分析揭示OsPK1编码一个胞质的丙酮酸激酶。定量RT-PCR结果显示糖酵解/糖异生途径中的4个酶的表达在ospk1突变体中上调或下调。RT-PCR结果显示突变体中的1个PEP羧化酶Os01g0208700表达增加。表明OsPK1的表达降低引起相关代谢途径的其他酶的表达改变。通过定量RT-PCR、GUS染色和石蜡切片分析了OsPK1的表达模式:在叶的表达水平最高;在幼苗期胚芽鞘、胚根根尖的成熟区、不定根表达很强;在花和乳熟期种子也有表达;在叶肉细胞、茎的韧皮部伴胞细胞有强的表达,还见于根的皮层薄壁组织细胞。OsPK1在不同的功能组织和细胞表达较强,暗示OsPK1参与到不同代谢过程。LC/MS检测发现突变体叶鞘中的GA_4和茎中的GA_1含量降低,而前体大量积累,推断具生物活性的赤霉素在突变体中的合成受到抑制是导致其矮化的原因之一。突变体叶鞘和茎中的ABA含量增加,打破了赤霉素和脱落酸之间原有的平衡。GC/MS检测了野生型水稻和ospk1不同器官中葡萄糖、果糖、半乳糖和蔗糖的含量,推断OsPK1表达降低影响了糖的合成、代谢和运输以及根对外源蔗糖(营养)的吸收。
     本研究阐明了胞质的丙酮酸激酶OsPK1对水稻重要农艺性状(株高和结实)的影响,拓宽了对株高和结实分子调控机制的理解。拟南芥、玉米和高粱均有与OsPK1序列高度一致的同源基因,因此本研究对这些基因的研究具有参考价值。
Rice is an important cereal crop. How to increase rice yield and cultivate newvarieties which has favorable agronomic traits is a major issue. Rice is a modelplant of genome research in monocots. Rice research has entered the "functionalgenomics era." Pyruvate kinase (PK) is a key enzyme of the glycolytic pathway,and its effects on morphological development of rice are rarely reported. In thisstudy, we explored the effects of a cytosolic PK (PKc), OsPK1, on rice growthand development and the mechanism in them by identification of a rice T-DNAinsertion dwarf mutant ospk1and functional analysis of the gene OsPK1.
     The main phenotypes of mutant ospk1are dwarf, panicle enclosure andreduced seed set. Analysis of the flanking sequences revealed that a T-DNAintegration occurred at nucleotide position349bp upstream of the ATG startcodon of OsPK1. Quantitative RT-PCR analysis showed that the expression ofOsPK1was decreased by approximately90%in the root, leaf, internode, andpanicle of ospk1, which suggested that the T-DNA insertion site is in thetranscriptional regulatory region of OsPK1. OsPK1full-length genomicfragment was introduced into ospk1mutant to obtain transgenic plants forcomplementation. The phenotype of these transgenic plants totally reverted tothat of WT, which was judged from whether panicle is out of sheath, plantheight, seed set and seed germination. This confirmed that the OsPK1mutationis responsible for the ospk1phenotype. Subcellular localization and enzymeassay revealed that OsPK1encodes a PKc. Quantitative RT-PCR analysisshowed altered expression of four putative enzyme genes ofglycolysis/gluconeogenesis pathway. RT-PCR analysis showed that theexpression of Os01g0208700, a PEP carboxylase, was increased in ospk1. Thesesuggest that the decreased expression of OsPK1leads to altered expression ofcertain enzymes involved in related metabolic pathways. The expression patternof OsPK1was analyzed using quantitative RT-PCR, GUS staining andmicrotome sections. The highest level of OsPK1expression was in leaves. Inyoung seedlings, high levels of OsPK1expression were observed in coleoptile, the maturation zone of the radicle and adventitious roots. OsPK1expression wasalso detected in young floret and milky stage seeds. At the cellular level, OsPK1expression was localized in mesophyll cells in leaves, phloem companion cellsin vascular bundles in stems, and in cortical parenchyma cells in roots. Thus,OsPK1appears to be expressed predominately in these functional tissues andcell types, implying that OsPK1is critical for diverse metabolic processes in rice.Using LC/MS, we found that the contents of GA_4in the young sheath and GA_1in the uppermost internode (UI) were decreased in ospk1, and their precursorsaccumulated abundantly. We infer that the suppressed synthesis of bioactiveGAs in ospk1is likely to be one of the factors resulting in its dwarf phenotype.In addition, ospk1showed increased ABA contents in the two tissues, resultingin the variation in the ABA/GA balance. The contents of glucose, fructose,galactose and sucrose in different organs of WT and ospk1were measured usingGC/MS. These results indicated that the decreased expression of OsPK1haseffects on the biosynthesis, catabolism and transport of sugar, as well asexogenous sucrose (nutrient) uptake by root.
     This study clarified the effects of a PKc, OsPK1, on the important agronomictraits (plant height and seed set) and provided new insights into molecularmechanisms of plant height and seed set. OsPK1has very close orthologs inArabidopsis thaliana, maize and sorghum. Therefore, our work is a valuablereference to future study on those orthologs.
引文
[1] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica).Science,2002,296:79-92.
    [2] Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp.japonica). Science,2002,296:92–100.
    [3] Sasaki T, Matsumoto T, Yamamoto K, et al. The genome sequence and structure of ricechromosome1. Nature,2002,420:312-316.
    [4] Feng Q, Zhang Y, Hao P, et al. Sequence and analysis of rice chromosome4. Nature,2002,420:316-320.
    [5]钱前,程式华.水稻遗传学和功能基因组学.北京:科学出版社,2006.
    [6] Notsu Y, Masood S, Nishikawa T, et al. The complete sequence of the rice (Oryza sativa L.)mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution offlowering plants. Mol Genet Genomics,2002,268:434-445.
    [7] The Rice Chromosome10Sequencing Consortium. In-depth view of structure, activity, andevolution of rice chromosome10. Science,2003,300:1566-1569.
    [8] The Rice Full-Length cDNA Consortium. Collection, mapping, and annotation of over28000cDNA clones from japonica rice. Science,2003,301:376-379.
    [9] Christou P, Fordel L, Kofron M. Production of transgenic rice (Oryza sativa L.) plants fromagronomically important indica and japonica varieties via electric discharge particleacceleration of exogenous DNA into immature zygotic embryos. Bio Technol,1991,9:957-962.
    [10] Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J,1994,6:271-282.
    [11] Lee S, Jeon J S, Jung K H, et al. Binary vectors for efficient transformation of rice. J PlantBiol,1999,42:310-316.
    [12] Sallaud C, Meynard D, van Boxtel J, et al. Highly efficient production and characterization ofT-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet,2003,106:1396-1408.
    [13] Terada R, Asao H, Iida S. A large-scale Agrobacterium-mediated transformation procedurewith a strong positive-negative selection for gene targeting in rice (Oryza sativa L.). PlantCell Rep,2004,22:653-659.
    [14]国家水稻数据中心.水稻株型相关基因[EB/OL].[2010-08-05].http://www.ricedata.cn/gene/gene_sd.htm.
    [15] Zhou H,He S,Cao Y,et al. OsGLU1, a putative membrane-bound endo-1,4-beta-D-glucanasefrom rice, affects plant internode elongation. Plant Mol Biol,2006,60(1):137-151.
    [16] Li M, Xiong G, Li R, et al. Rice cellulose synthase-like D4is essential for normal cell-wallbiosynthesis and plant growth. Plant J,2009,60:1055–1069.
    [17] Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive1homolog prevents internode elongation and bending of the lamina joint. Plant Cell,2000,12:1591–1605.
    [18] Mashalidis H. Novel Drug Design Strategies for the Treatment of Human AfricanTrypanosomiasis [EB/OL].(2007-05-02)[2010-09-09].http://www.biochem.arizona.edu/classes/bioc462/462bh2008/462bhonorsprojects/462bhonors2007/helenm/new_background.html.
    [19] Munoz M E, Ponce E. Pyruvate kinase: current status of regulatory and functional properties.Comp Biochem Physiol B Biochem Mol Biol,2003,135:197-218.
    [20] Kayne F J, Price N C. Amino-Acid Effector Binding to Rabbit Muscle Pyruvate-Kinase. ArchBiochem Biophys,1973,159:292-296.
    [21] Plaxton W C. The organization and regulation of plant glycolysis. Annu Rev Plant PhysiolPlant Mol Biol,1996,47:185-214.
    [22] Plaxton W C, Podesta F E. The functional organization and control of plant respiration. CritRev Plant Sci,2006,25:159-198.
    [23] Plaxton W C, Smith C R, Knowles V L. Molecular and regulatory properties of leucoplastpyruvate kinase from Brassica napus (rapeseed) suspension cells. Arch Biochem Biophys,2002,400:54-62.
    [24] Schramm A, Siebers B, Tjaden B, et al. Pyruvate kinase of the hyperthermophiliccrenarchaeote Thermoproteus tenax: physiological role and phylogenetic aspects. J Bacteriol,2000,182:2001-2009.
    [25] Fothergill-Gilmore L A, Rigden D J, Michels P A M, et al. Leishmania pyruvate kinase: thecrystal structure reveals the structural basis of its unique regulatory properties. Biochem SocTrans,2000,28:186-190.
    [26] Smith C R, Knowles V L, Plaxton W C. Purification and characterization of cytosolicpyruvate kinase from Brassica napus (rapeseed) suspension cells cultures. Eur J Biochem,2000,267:4477-4485.
    [27] Andre C, Froehlich J E, Moll M R, et al. A heteromeric plastidic pyruvate kinase complexinvolved in seed oil biosynthesis in Arabidopsis. Plant Cell,2007,19:2006-2022.
    [28] Mattevi A, Valentini G, Rizzi, M, et al. Crystal structure of Escherichia coli pyruvate kinasetype I: molecular basis of the allosteric transition. Structure,1995,3:729-741.
    [29] Mattevi A, Bolognesi M, Valentini G. The allosteric regulation of pyruvate kinase. FEBS Lett,1996,389:15-19.
    [30] Turner W L, Plaxton W C. Purification and characterization of cytosolic pyruvate kinase frombanana fruit. Biochem J,2000,352:875-882.
    [31] Hu Z Y, Plaxton W C. Purification and characterization of cytosolic pyruvate kinase fromleaves of the castor oil plant. Arch Biochem Biophys,1996,333:298-307.
    [32] Ireland R J, De Luca V, Dennis D T. Characterization and kinetics of isozymes of pyruvatekinase from developing castor bean endosperm. Plant Physiol,1980,65:1188-1193.
    [33] Lin M, Turpin D H, Plaxton W C. Pyruvate kinase isozymes from the green alga, Selenastrumminutum. I. Purification, physical and immunological characterization. Arch BiochemBiophys,1989,269:219-227.
    [34] Beitner R. Control of glycolytic enzymes through binding to cell structures and byglucose-1,6-bisphosphate under different conditions. The role of Ca2+and calmodulin. Int JBiochem,1993,25:297-305.
    [35] Turner W L, Knowles V L, Plaxton W C. Cytosolic pyruvate kinase: subunit composition,activity, and amount in developing castor and soybean seeds, and biochemicalcharacterization of the purified castor seed enzyme. Planta,2005,222:1051-1062.
    [36] Tang G Q, Hardin S C, Dewey R, et al. A novel C-terminal proteolytic processing of cytosolicpyruvate kinase, its phosphorylation and degradation by the proteasome in developingsoybean seeds. Plant J,2003,34:77-93.
    [37] McHugh S G, Knowles V L, Blakeley S D, et al. Differential expression of cytosolic andplastid pyruvate kinase isozymes in tobacco. Physiol Plant,1995,95:507-514.
    [38] Cole K P, Blakeley S D, Dennis D T. Structure of the gene encoding potato cytosolicpyruvate-kinase. Gene,1992,122:255-261.
    [39] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature,2000,408:796-815.
    [40] Ruuska S A, Girke T, Benning C, et al. Contrapuntal networks of gene expression duringArabidopsis seedfilling. Plant Cell,2002,14:1191-1206.
    [41] Kubis S E, Pike M J, Everett C J, et al. The import of phosphoenolpyruvate by plastids fromdeveloping embryos of oilseed rape, Brassica napus (L.), and its potential as a substrate forfatty acid synthesis. J Exp Bot,2004,55:1455-1462.
    [42] Baud S, Wuilleme S, Dubreucq B, de Almeida A, et al. Function of plastidial pyruvatekinases in seeds of Arabidopsis thaliana. Plant J,2007,52:405-419.
    [43] Grodzinski B, Jiao J, Knowles V L, et al. Photosynthesis and carbon partitioning in transgenictobacco plants deficient in leaf cytosolic pyruvate kinase. Plant Physiol,1999,120:887-895.
    [44] Knowles V L, McHugh S G, Hu Z Y, et al. Altered growth of transgenic tobacco lacking leafcytosolic pyruvate kinase. Plant Physiol,1998,116:45-51.
    [45] Oliver S N, Lunn J E, Urbanczyk-Wochniak E, et al. Decreased expression of cytosolicpyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivorepression of the alternative oxidase. Plant Physiol,2008,148:1640-1654.
    [46] Gomez-Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching.Nature,2008,455:189-194.
    [47] Umehara M, Hanada A, Yoshida S, et al. Inhibitionof shoot branching by new terpenoid planthormones. Nature,2008,455:195-200.
    [48] Gibberellins [EB/OL].[2010-9-11]. http://www.plant-hormones.info/gibberellins.htm.
    [49] King R W, Evans L T. Gibberellins and flowering of grasses and cereals. Annu Rev PlantBiol,2003,54:307-328.
    [50] Sakamoto T, Miura K, Itoh H, et al. An overview of gibberellin metabolism enzyme genesand their related mutants in rice. Plant Physiol,2004,134:1642-1653.
    [51] Fleet C M, Sun T P. A DELLAcate balance: the role of gibberellin in plant morphogenesis.Curr Opin Plant Biol,2005,8:77-85.
    [52] Tanimoto E. Regulation of root growth by plant hormones: Roles for auxin and gibberellin.Crit Rev Plant Sci,2005,24:249-265.
    [53] Wang Y, Li J. The plant architecture of rice (Oryza sativa). Plant Mol Biol,2005,59:75-84.
    [54] Hedden P, Phillips A L. Gibberellin metabolism: New insights revealed by the genes. TrendsPlant Sci,2000,5:523-530.
    [55] Lo S F, Yang S Y, Chen K T, et al. A novel class of gibberellin2-oxidases controlsemidwarfism, tillering, and root development in rice. Plant Cell,2008,20:2603-2618.
    [56] Cytokinins [EB/OL].[2010-9-11]. http://www.plant-hormones.info/cytokinins.htm.
    [57] Kim H J, Ryu H, Hong S H, et al. Cytokinin-mediated control of leaf longevity by AHK3through phosphorylation of ARR2in Arabidopsis. Proc Natl Acad Sci USA,2006,103:814-819.
    [58] Tanaka M, Takei K, Kojima M, et al. Auxin controls local cytokinin biosynthesis in the nodalstem in apical dominance. Plant J,2006,45:1028-1036.
    [59] Werner T, Motyka V, Strnad M, et al. Regulation of plant growth by cytokinin. Proc NatlAcad Sci USA,2001,98:10487-10492.
    [60] Giulini A, Wang J, Jackson D. Control of phyllotaxy by the cytokinin-inducible responseregulator homologue ABPHYL1. Nature,2004,430:1031-1034.
    [61] Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grain production.Science,2005,309:741-745.
    [62] Takei K, Sakakibara H, Taniguchi M, et al. Nitrogen-dependent accumulation of cytokinins inroot and the translocation to leaf: implication of cytokinin species that induces geneexpression of maize response regulator. Plant Cell Physiol,2001,42:85-93.
    [63] Takei K, Takahashi T, Sugiyama T, et al. Multiple routes communicating nitrogen availabilityfrom roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot,2002,53:971-977.
    [64] Werner T, Motyka V, Laucou V, et al. Cytokinin-deficient transgenic Arabidopsis plantsshow multiple developmental alterations indicating opposite functions of cytokinins in theregulation of shoot and root meristem activity. Plant Cell,2003,15:2532-2550.
    [65] Leibfried A, To J P, Busch W, et al. WUSCHEL controls meristem function by directregulation of cytokinin-inducible response regulators. Nature,2005,438:1172-1175.
    [66] Kurakawa T, Ueda N, Maekawa M, et al. Direct control of shoot meristem activity by acytokinin-activating enzyme. Nature,2007,445:652-655.
    [67] Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol,2006,57:431-449.
    [68] Franco-Zorrilla J M, Gonzalez E, Bustos R, et al. The transcriptional control of plantresponses to phosphate limitation. J Exp Bot,2004,55:285-293.
    [69] Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, et al. Induction of SULTR1;1sulfate transporter in Arabidopsis roots involves protein phosphorylation/dephosphorylationcircuit for transcriptional regulation. Plant Cell Physiol,2004,45:340-345.
    [70] Hirose1N, Takei1K, Kuroha T, et al. Regulation of cytokinin biosynthesis,compartmentalization and translocation. J Exp Bot,2008,59:75-83.
    [71] Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyldiphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol,2001,42:677-685.
    [72] Takei K, Yamaya T, Sakakibara H. Arabidopsis CYP735A1and CYP735A2encodecytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem,2004,279:41866-41872.
    [73] Abscisic acid [EB/OL].[2010-9-14]. http://www.plant-hormones.info/abscisicacid.htm.
    [74] Milborrow B V. The pathway of biosynthesis of abscisic acid in vascular plants: a review ofthe present state of knowledge of ABA biosynthesis. J Exp Bot,2001,52:1145-1164.
    [75] Auxins [EB/OL].[2010-9-15]. http://www.plant-hormones.info/auxins.htm.
    [76] Yamamoto Y, Kamiya N, Morinaka Y, et al. Auxin biosynthesis by the YUCCA genes in rice.Plant Physiol,2007,143:1362-1371.
    [77] Dornelas M C, Mazzafera P. A genomic approach to characterization of the Citrusterpenesynthase gene family. Genet Mol Biol,2007,30:832-840.
    [78] IPR006218DAHP synthetase I/KDSA [EB/OL].[2010-9-15].http://www.ebi.ac.uk/interpro/IEntry?ac=IPR006218.
    [79] Sha Y, Li S, Pei Z, et al. Generation and flanking sequence analysis of a rice T-DNA taggedpopulation. Theor Appl Genet,2004,108:306-314.
    [80]沙优宝.水稻T-DNA插入群体的建立和突变体的分析[博士学位论文].北京:中国科学院微生物研究所,2003.
    [81]肖文开.水稻矮秆、鞘包穗突变相关基因的克隆及功能分析[博士后研究报告].北京:清华大学,2008.
    [82] Li X Y, Lin H Q, Zhang W G, et al. Flagellin induces innate immunity in nonhost interactionsthat is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci USA,2005,102:12990-12995.
    [83] Jenner H L, Winning B M, Millar A H, et al. NAD malic enzyme and the control ofcarbohydrate metabolism in potato tubers. Plant Physiol,2001,126:1139-1149.
    [84] Ebbighausen H, Chen J, Heldt H W. Oxaloacetate translocator in plant mitochondria. BiochimBiophys Acta,1985,810:184-199.
    [85] Kromer S, Gardestrom P, Samuelsson G. Regulation of the supply of cytosolic oxaloacetatefor mitochondrial metabolism via phosphoenolpyruvate carboxylase in barley leaf protoplasts:I. The effect of covalent modification on PEPC activity, pH response, and kinetic properties.Biochim Biophys Acta,1996,1289:343-350.
    [86] Plaxton W C. Molecular and immunological characterization of plastid and cytosolic pyruvatekinase isoenzymes from castor-oil-plant endosperm and leaf. Eur J Biochem,1989,181:443-451.
    [87] Wang S M, Lue W L, Yu T S, et al. Characterization of ADG1, an Arabidopsis locusencoding for ADPG pyrophosphorylase small subunit, demonstrates that the presence of thesmall subunit is required for large subunit stability. Plant J,1998,13:63-70.
    [88] Plant tissues [EB/OL].[2011-4-8].http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/PlantTissues.html.
    [89] Luo A D, Qian Q, Yin H F, et al. EUI1, encoding a putative cytochrome P450monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.Plant Cell Physiol,2006,47:181-191.
    [90] Gou J Q, Strauss S H, Tsai C J, et al. Gibberellins regulate lateral root formation in Populusthrough interactions with auxin and other hormones. Plant Cell,2010,22:623-639.
    [91] Zhang S Y, Li G, Fang J, et al. The interactions among DWARF10, auxin and cytokininunderlie lateral bud outgrowth in rice. J Integra Plant Biol,2010,52:626-638.
    [92]朱传风.水稻半矮杆突变体A1473的分子鉴定[博士后研究报告].北京:中国科学院微生物研究所,2010.
    [93] Tan Y, Li K, Hu L, et al. Fast and simple droplet sampling of sap from plant tissues andcapillary microextraction of soluble saccharides for picogram-scale quantitative determiationwith GC-MS. J Agric Food Chem,2010,58:9931-9935.
    [94] Oikawa T, Koshioka M, Kojima K, et al. A role of OsGA20ox1, encoding an isoform ofgibberellin20-oxidase, for regulation of plant stature in rice. Plant Mol Biol,2004,55:687-700.
    [95] Qiao F, Yang Q, Wang C L, et al. Modification of plant height via RNAi suppression ofOsGA20ox2gene in rice. Euphytica,2007,158:35-45.
    [96] Yin C X, Gan L J, Ng D, et al. Decreased panicle-derived indole-3-acetic acid reducesgibberellin A1level in the uppermost internode, causing panicle enclosure in male sterile riceZhenshan97A. J Exp Bot,2007,58:2441-2449.
    [97] Son O, Hur Y S, Kim Y K, et al. ATHB12, an ABA-inducible homeodomain-leucine zipper(HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem bydecreasing the expression of a gibberellin20-oxidase gene. Plant Cell Physiol,2010,51:1537-1547.
    [98] Sakamoto T, Kobayashi M, Itoh H, et al. Expression of a gibberellin2-oxidase gene aroundthe shoot apex is related to phase transition in rice. Plant Physiol,2001,125:1508-1516.
    [99] Sakamoto T, Miura K, Itoh H, et al. An overview of gibberellin metabolism enzyme genesand their related mutants in rice. Plant Physiol,2004,134:1642-1653.
    [100] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1),"green revolution" rice, containsa defective gibberellin20-oxidase gene. Proc Natl Acad Sci USA,2002,99:9043-9048.
    [101] Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive1homolog prevents internode elongation and bending of the lamina joint. Plant Cell,2000,12:1591-1605.
    [102] Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisudwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell,2003,15:2900-2910.
    [103] Gomi K, Sasaki A, Itoh H, et al. GID2, an F-box subunit of the SCF E3complex, specificallyinteracts with phosphorylated SLR1protein and regulates the gibberellin-dependentdegradation of SLR1in rice. Plant J,2004,37:626-634.
    [104] Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1ortholog, controlslateral bud outgrowth in rice. Plant J,2007,51:1019-1029.
    [105] Yamada K, Noguchi T. Nutrient and hormonal regulation of pyruvate kinase gene expression.Biochem J,1999,337:1-11.
    [106] Tang G Q, Hardin S C, Dewey R, et al. A novel C-terminal proteolytic processing of cytosolicpyruvate kinase, its phosphorylation and degradation by the proteasome in developingsoybean seeds. Plant J,2003,34:77-93.
    [107] Kubis S E, Pike M J, Hill L M, et al. The import of phosphoenolpyruvate by plastids fromdeveloping embryos of oilseed rape, Brassica napus (L.), and its potential as a substrate forfatty acid synthesis. J Exp Bot,2004,55:1455-1462.
    [108] Kasahara H, Hanada A, Kuzuyama T, et al. Contribution of the mevalonate andmethylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J BiolChem,2002,277:45188-45194.
    [109] Milborrow B V. The pathway of biosynthesis of abscisic acid in vascular plants: a review ofthe present state of knowledge of ABA biosynthesis. J Exp Bot,2001,52:1145-1164.
    [110] Seo M, Hanada A, Kuwahara A, et al. Regulation of hormone metabolism in Arabidopsisseeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation ofgibberellin metabolism. Plant J,2006,48:354-366.
    [111] Johnson R R, Shin M, Shen J Q. The wheat PKABA1-interacting factor TaABF1mediatesboth abscisic acid-suppressed and abscisic acid-induced gene expression in bombardedaleurone cells. Plant Mol Biol,2008,68:93-103.
    [112] Liu Y G, Ye N H, Liu R, et al. H2O2mediates the regulation of ABA catabolism and GAbiosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot,2010,61:2979-2990.
    [113] Yaish M W, El-Kereamy A, Zhu T, et al. The APETALA-2-like transcription factorOsAP2-39controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet,2010,6(9). doi:10.1371/journal.pgen.1001098.
    [114] Shin K S, Chakrabarty D, Ko J Y, et al. Sucrose utilization and mineral nutrient uptake duringhairy root growth of red beet (Beta vulgaris L.) in liquid culture. Plant Growth Regul,2003,39:187-193.
    [115] Van Bel A J E. The phloem, a miracle of ingenuity. Plant Cell Environ,2003,26:125-149.
    [116] Borisjuk L, Rolletschek H, Radchuk R, et al. Seed development and differentiation: A role formetabolic regulation. Plant Biol,2004,6:375-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700