用户名: 密码: 验证码:
蔗髓生物质包装材料的制备、性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料包装在广泛使用的同时也引起了严重的环境污染问题。由于大多数塑料包装制品来源于不可再生的石油资源,因此寻找一种新的行之有效的方法来处理塑料包装材料造成的污染,同时摆脱对石油基材料的过度依赖成为全球的热点问题。本论文以造纸工业的废弃物蔗髓(BP)为原料,分别将其与淀粉熔融共混制备生物质复合包装材料,与亚硫酸盐制浆废液混合制备生物质缓冲包装材料。研究了蔗髓生物质包装材料的增强机理及制备工艺,对所制备材料的力学性能、流变性、热稳定性和吸湿性进行了分析,为蔗髓在新型包装材料领域中的应用提供了依据。
     采用甘油和尿素混合增塑剂制备热塑性淀粉(TPS),TPS的X-射线衍射说明尿素和甘油的质量比大于1:1时,混合增塑剂能够抑制淀粉的老化回生。扫描电镜(SEM)和转矩流变仪流变曲线显示增塑剂中尿素含量增加,其对淀粉的塑化效果变好。综合力学性能和包装材料加工特性要求,甘油和尿素混合增塑热塑性淀粉的适宜质量比为1:1。
     以TPS为基体,蔗髓作为增强相通过熔融共混法制备蔗髓/热塑性淀粉复合包装材料(BP/TPS)。研究了混合增塑剂用量、蔗髓用量、转速、加工温度对材料拉伸性能和弯曲性能的影响,同时优化得到最佳的制备工艺为蔗髓用量10wt%(以绝干淀粉质量计),混合增塑剂用量45wt%(以绝干淀粉质量计),m(甘油):m(尿素)=1:1,转速40r/min,加工温度140°C。此时得到的包装材料的拉伸强度和断裂伸长率分别为16.71MPa和15.18%,弯曲强度和弯曲模量分别为21.91MPa和1267.55MPa,具有较好的力学性能。
     研究了40~60目间蔗髓的含量对BP/TPS流变性、力学性能、热稳定性和吸湿性的影响。结果表明,蔗髓含量增加,混合物料塑化时间延长,平衡转矩增大;BP/TPS的拉伸强度和弯曲强度增大,热稳定性提高;在低相对湿度(RH=43%)下,蔗髓加入导致TPS吸湿率上升;在高相对湿度(RH﹥75%)下,蔗髓加入降低了TPS吸湿率。而在RH=75%时,蔗髓对TPS吸湿率的影响取决于其加入量的多少。红外光谱(FT-IR)和扫描电镜(SEM)显示,蔗髓和TPS基体之间形成的分子间氢键以及二者之间良好的界面结合是蔗髓作为增强相的根本原因。
     研究了蔗髓粒径对BP/TPS的流变性、力学性能和吸湿性的影响,并建立了最大转矩和蔗髓粒径的关系函数。结果表明,随着蔗髓粒径变小,材料的拉伸强度和断裂伸长率都呈现先增大后减小的趋势,其中60~100目间的蔗髓增强热塑性淀粉材料的拉伸性能最好;随着蔗髓粒径变小,BP/TPS包装材料的弯曲强度增加,而弯曲模量降低;当蔗髓含量为10wt%时,在低相对湿度(RH=43%)下,实验中所用四种粒径的蔗髓都不能够抑制TPS的吸湿;而在高相对湿度(RH﹥75%)下,实验中所用四种粒径的蔗髓都能够抑制TPS的吸水。
     通过对蔗髓进行不同浓度、温度下的碱处理和酸碱混合处理,研究了蔗髓中木素含量对BP/TPS力学性能的影响。结果表明,随着木素含量的降低,BP/TPS材料的拉伸强度逐渐增大,而断裂伸长率呈现先增大后减小的趋势。当在30°C下脱出蔗髓中的木素时,随着木素含量降低,BP/TPS材料的弯曲强度和弯曲模量表现出先减小后增大的趋势,木素含量为12.70%的蔗髓填充的材料的弯曲强度和弯曲模量最大,分别比未处理蔗髓材料增加14%和34%。
     以蔗髓为基材,蔗渣亚硫酸氢镁制浆废液为胶黏剂,气相法白炭黑为补强填料,通过常温模压工艺制备蔗髓缓冲包装材料(BPCPMs)。研究了蔗髓用量、白炭黑用量、以及白炭黑比表面积对BPCPMs表观密度和力学性能的影响。BPCPMs的微观形态分析表明,气相法白炭黑对于材料的增强是白炭黑填料-聚合物基体间以及白炭黑填料-填料间相互作用的综合结果,白炭黑与基体间的氢键结合以及其在基体中的分散情况均是影响BPCPMs性能的重要因素。BPCPMs具备良好的缓冲性能,可以代替高密度EPS(硬质泡沫塑料)包装脆值较高、质量较大的产品。
     BP/TPS和BPCPMs的微生物降解实验结果表明,经过15d处理,前者的降解率都大于80%,后者的降解率最高达到52.5%,说明蔗髓生物质包装材料在霉菌作用下具有良好的降解性能。
The serious pollution originated by disposal of large volume of plastic packages,together with the depletion of petroleum stocks, have prompted to an increasing interest innew natural-based biomass packaging materials design. In this paper, a new biomasscomposite material was prepared based on bagasse pith and corn starch by melting blendmethod, and a new biomass cushion packaging material was prepared based on bagasse pith,magnesium bisulfite spent liquor, and reinforcing silica filler by press-molding process. Thebiomass packaging materials were evaluated in terms of mechanical properties, rheologicalproperties, thermal stability and water absorption. The reinforcement mechanism of bagassepith and fumed silica particles were also analyzed, respectively.
     Thermoplastic starch (TPS) was prepared with glycerol and urea as mixed plasticizer.X-ray diffractometry demonstrated that TPS could restrain starch retro gradation when themass ratio of glycerol to urea was above1:1. SEM micrographs and rheological curves ofstarch plasticization processing showed good plasticizing effect with increasing urea content.According to the mechanical and processing properties of TPS, the optimum mass ratio ofglycerol to urea was1:1.
     Bagasse pith/thermoplastic starch (BP/TPS) packaging materials were prepared fromthe matrix of TPS and the reinforcement of bagasse pith by melt processing. The influencesof mixing plasticizers contents, bagasse pith loadings, roller speeds and processingtemperature on the tensile properties and flexural properties were investigated. The optimumprocess conditions were demonstrated as follows: the bagasse pith content of10wt%, themixed plasticizers content of45wt%, the mass ratio of glycerol to urea of1:1, roller speeds of40r/min, and processing temperature of140°C, which achieved that the tensile strength was16.71MPa, the flexural strength was15.18%, elastic modulus was21.91MPa, and flexuralmodulus was1267.55MPa.
     The influences of bagasse pith (40~60mesh) content on the rheological properties,mechanical properties, thermal stability and water absorption of BP/TPS were analyzed. Theplasticization time and constant torque of mixed blends increased with increasing bagassepith content. Moreover, the tensile strength and flexural strength increased, and the thermal stability improved. Water absorption of TPS increased with the addition of bagasse pith at43%RH, while decreased as RH>75%. The water absorption of TPS were determined bybagasse pith contents at75%RH. FT-IR and SEM illustrated that the intermolecularhydrogen bondings and strong interfacial interactions were formed in the bagasse pith andTPS, which led to reinforcing effect of bagasse pith.
     The effects of particle size of bagasse pith on the rheological properties, mechanicalproperties and water absorption of BP/TPS were studied, and a relationship function betweenmaximum torque and particle size was established. The results showed that tensile strengthand elongation at break increased at first and then decreased with decreasing particle size.The maximum value of tensile properties of TPS reinforced by pith (60~100mesh) wereobserved. Flexural strength of BP/TPS increased, while the flexural modulus decreased withdecreasing particle size. With the same bagasse pith loading of10wt%, the water absorptionof TPS increased with the addition of bagasse pith (>60mesh) at43%RH, while decreasedas RH>75%.
     Bagasse pith was pre-treated by different concentrations of NaOH solution at differenttemperatures. The effects of lignin content of bagasse pith on the mechanical properties ofBP/TPS were investigated. The results showed that tensile strength of BP/TPS increased withdecreasing lignin content, and the minimum tensile strength was achieved by BP/TPS with5.38%lignin content. The elongation at break of BP/TPS increased at first and then decreasedwith decreasing lignin content. When the lignin extraction was carried out at30°C, theflexural strength and flexural modulus decreased at first and then increased with decreasinglignin content, and the maximum values were achieved by BP/TPS with12.70%lignincontent, up14%and34%on the values of the untreated bagasse pith/TPS, respectively.
     A new biodegradable cushion packaging material was prepared based on bagasse pith,magnesium bisulfite spent liquor, and reinforcing silica filler. The effects of bagasse pithcontent, fumed silica loading and BET Surface Area of fumed silica on the apparent densityand static compressive strength of the bagasse pith cushion packaging materials (BPCPMs)were investigated. The SEM image of the BPCPMs revealed that the reinforcement effect offumed silica was the consequence of silica filler-matrix interaction and silica filler-fillerinteractions. The most important factors to affect the properties of BPCPMs were the hydrogen bonds between the molecules of lignosulfonate and silanol groups on the silicasurface and dispersion state of silica particles in the matrix. BPCPMs had good cushioningproperties within a large stress range and can be used for packaging heavy delicate articles.
     The bio-degradation performance of BP/TPS and BPCPMs were investigated by mouldsdegradation. The results indicated that the degradability rates of BP/TPS were above80%,and the maximum degradability rate of BPCPMS was52%after15days of incubation in amedium of liquid nutrients. These results indicated the biomass packaging materials based onbagasse pith had good bio-degradation performance.
引文
[1] Cinelli P,Chiellini E,Lawton J W,et al. Properties of injection molded compositescontaining corn fiber and poly(vinyl alcohol)[J].Journal of Polymer Research,2006,13(2):107-113
    [2] Imam S H,Cinelli P,Gordon S H,et al. Characterization of biodegradable compositefilms prepared from blends of poly(vinyl alcohol),cornstarch,and lignocellulosic fiber[J].J.Polym.Environ.2005,13(1):47-55
    [3] Qinghua Y,Dexian H,Huashan L. Effect of liquid film mulching on cotton yield and soilenvironment [J].Transactions of The Chinese Society of Agricultural Engineering,2005,5:28
    [4] Markarian J. Biopolymers present new market opportunities for additives in packaging[J].Plastics,Additives and Compounding,2008,10(3):22-25
    [5]王海,卢旭东,张慧媛.国内外生物质的开发与利用[J].农业工程学报,2006,(10):8-11
    [6]王军.生物质化学品[M].北京:化学工业出版社,2008
    [7]李十中.生物质材料产业发展及其策略[J].产业透视,2005,(7):50-52
    [8]李坚.生物质复合材料[M].北京:科学出版社,2008
    [9] Zhao X,Bai F. Mechanisms of yeast stress tolerance and its manipulation for efficientfuel ethanol production [J].J.Biotechnol.2009,44(1):23-30
    [10] KhakifiroozA,Ravanbakhsh F,SamarihaA,et al.Investigating the possibility ofchemi-mechanical pulping of bagasse [J]. BioResources,2013,8(1):21-30
    [11]詹怀宇.我国造纸用非木材纤维和废纸原料供应与利用[J].中国造纸,2010,29(8):56-64
    [12] Jahan M S,SaeedA, Ni Y, et al.Pre-extraction and its impact on the alkaline pulping ofbagasse [J].Journal of Biobased Materials and Bioenergy,2009,3(4):380-385
    [13]王仁宇.蔗渣的蒸煮方法和蔗髓对纸张性能的影响[J].国际造纸,1984,(3):31-45
    [14]陈克复.制浆造纸机械与设备(上)[M].第三版.北京:中国轻工业出版社,2011:27-28
    [15] Rasul M G,Rudolph V,Carsky M. Physical properties of bagasse [J].Fuel,1999,78(8):905-910
    [16]刘新亮.蔗髓改性制备重金属离子吸附材料及其机理研究[D].广西南宁:广西大学,2012
    [17]詹怀宇.我国非木材纤维制浆的发展概况与技术进步[A].中国造纸学会.制浆造纸工业科学合理利用非木材纤维原料研讨会论文集[C].广西南宁,2010:1-6
    [18]杨丽涛.蔗髓能量的利用[J].甘蔗糖业,1989,(2):60-61
    [19]保国裕.提高蔗髓饲料营养价值的探讨[J].甘蔗糖业,2004,(5):34-41
    [20] Ray,AK,Srinivas, K M,Gupta,S,et al. Utilization of sugar industry by-products,the bagasse pith for manufacture of furfural [A].American Institute of ChemicalEngineers.2011AIChE Annual Meeting,Conference Proceedings[C].USA,2011
    [21]曹玉华,王关斌,崔淑芬,等.蔗髓水解生产木糖工艺研究[J].山东化工,2012,41(3):28-35
    [22]李娜,刘秋娟,江超.选择性水解工艺提取蔗髓L-阿拉伯糖的研究[J].造纸科学与技术,2012,31(1):30-32
    [23] Jain R K, Thakur V V,Pandey D,et al. Bioethanol from bagasse pith a lignocellulosicwaste biomass from paper/sugar industry [J].IPPTA,2011,23:169-173
    [24]欧阳昌礼.制浆造纸企业废弃物—蔗髓吸附废水中Cu(Ⅱ)、Pb(Ⅱ)的研究[D].广西南宁:广西大学,2012
    [25]段宁,孙启宏,傅泽强,等.我国制糖(甘蔗)生态工业模式及典型案例分析[J].环境科学研究,2004,17(4):29-32
    [26] Keller A.Compounding and mechanical properties of biodegradable hemp fibrecomposites [J]. Compos.Sci.Technol.2003,63(9):1307-1316
    [27] Peterson S,Jayaraman K,Bhattacharyya D. Forming performance and biodegradabilityof woodfibre–Biopol composites [J].Composites Part A:Appiled Science andManafacturing (Incorporating),2002,33(8):1123-1134
    [28] Shibata M,Ozawa K,Teramoto N,et al. Biocomposites made from short abaca fiberand biodegradable polyesters [J]. Macromolecular Materials and Engineering,2003,288(1):35-43
    [29] Rout J,Misra M,Tripathy S S,et al. The influence of fibre treatment on theperformance of coir-polyester composites [J].Compos.Sci.Technol.2001,61(9):1303-1310
    [30]郭文静,王正,鲍甫成,等.天然植物纤维/可生物降解塑料生物质复合材料研究现状与发展趋势[J].林业科学,2008,4(1):157-163
    [31] Wang L,Ma W,Gross RA,et al. Reactive compatibilization of biodegradable blendsof poly (lactic acid) and poly (ε-caprolactone)[J].Polym.Degrad.Stab.1998,59(1):161-168
    [32] YussufAA,Massoumi I,HassanA. Comparison of polylactic acid/kenaf and polylacticacid/rise husk composites: the influence of the natural fibers on the mechanical,thermaland biodegradability properties [J]. J.Polym.Environ.2010,18(3):422-429
    [33]吕彦梅.全生物塑料聚乳酸的实际应用[J].中国石油和化工标准与质量,2014,(6):33-34
    [34] Harris AM,Lee E C. Improving mechanical performance of injection molded PLAbycontrolling crystallinity [J]. J.Appl.Polym.Sci.2008,107(4):2246-2255
    [35] Sanchez-Garcia M D,Gimenez E,Lagarón J M. Morphology and barrier properties ofsolvent cast composites of thermoplastic biopolymers and purified cellulose fibers [J].Carbohydr.Polym.2008,71(2):235-244
    [36] Oksman K,Mathew A P,Bondeson D,et al. Manufacturing process of cellulosewhiskers/polylactic acid nanocomposites[J].Compos.Sci.Technol.2006,66(15):2776-2784
    [37] Dogossy G,Czigany T.Thermoplastic starch composites reinforced by agriculturalby-products: properties, biodegradability, and application[J].J.Reinf.Plast.Compos.2011,30(21):1819-1825
    [38] Averous L,Fringant C, Moro L.Plasticized starch–cellulose interactions inpolysaccharide composites [J].Polymer,2001,42(15):6565-6572
    [39] Vilaseca F,Mendez J A,Pelach A,et al.Composite materials derived frombiodegradable starch polymer and jute strands [J].Process Biochem.2007,42(3):329-334
    [40] Teixeira E M,Lotti C,Corrêa A C,et al. Thermoplastic corn starch reinforced withcotton cellulose nanofibers [J]. J. Appl. Polym. Sci.2011,120(4):2428-2433
    [41]环球聚氨酯网.包装市场科降解塑料需求量2023年达945万t [J].工程塑料应用,2014,42(4):69
    [42] Oksman K,Skrifvars M,Selin J F. Natural fibres as reinforcement in polylactic acid(PLA) composites [J].Compos.Sci.Technol.2003,63(9):1317-1324
    [43] Goda K,Cao Y.Research and development of fully green composites reinforced withnatural fibers [J].Journal of solid mechanics and materials engineering,2007,9(1):1073-1084
    [44]吴义强,李新功,秦志永,等.木纤维/聚乳酸可生物降解复合材料的制备和性能研究[J].中南林业科技大学学报,2012,32(1):100-103
    [45]申晓燕,朱琦,田景阳,等.植物纤维与聚乳酸制备生物质复合材料的研究[J].广西大学学报:自然科学版,2012,37(3):555-560
    [46] Lin CA,Tung C C. The preparation of glycerol pseudo-thermoplastic starch (GTPS) viagelatinization and plasticization [J].Polym.Plast.Technol.Eng.2009,48(5):509-515
    [47] Forssell P M,Mikkil J M,Moates G K,et al. Phase and glass transition behaviour ofconcentrated barley starch-glycerol-water mixtures,a model for thermoplastic starch [J].Carbohydr.Polym.1997,34(4):275-282
    [48]刘现峰,王苓.淀粉的塑化研究进展[J].山东化工,2007,36(2):38-40
    [49] Da RózAL,CarvalhoAJ F,GandiniA,et al. The effect of plasticizers on thermoplasticstarch compositions obtained by melt processing [J].Carbohydr.Polym.2006,63(3):417-424
    [50] Van Soest J J G,Knooren N. Influence of glycerol and water content on the structureand properties of extruded starch plastic sheets during aging[J].J.Appl.Polym.Sci.1997,64(7):1411-1422
    [51] Ma X,Yu J. The plastcizers containing amide groups for thermoplastic starch [J].Carbohydr.Polym.2004,57(2):197-203
    [52] Xiaofei Ma,Jiugao Yu,Jin F.Urea and formamide as a mixed plasticizer forthermoplastic starch [J].Polym.Int.2004,53(11):1780-1785
    [53] Ogawa K,Aso K,Ono S,et al.Effects of the noncyclic cyanamides on theretrogradation of waxy corn starch [J].Bulletin of the Chemical Society of Japan,2000,73(5):1283-1284
    [54]何小维,黄强.淀粉基生物降解材料[M].北京:中国轻工业出版社,2008:79-80
    [55]曾广胜,林瑞珍,郑良杰,等.废纸浆增强玉米淀粉基复合材料的制备及其力学性能研究[J].功能材料,2012,43(16):2218-2221
    [56] Ma X,Yu J,Kennedy J F.Studies on the properties of natural fibers-reinforcedthermoplastic starch composites [J].Carbohydr.Polym.2005,62(1):19-24
    [57] Carvalho AJ F,Zambon M D,Curvelo AAS,et al. Size exclusion chromatographycharacterization of thermoplastic starch composites1. Influence of plasticizer and fibrecontent [J].Polym.Degrad.Stab.2003,79(1):133-138
    [58]姚东明.剑麻纤维增强热塑性淀粉复合材料的研究[D].华南理工大学图书馆:华南理工大学,2012
    [59] López J P,Mutjé P,Carvalho AJ F,et al. Newspaper fiber-reinforced thermoplasticstarch biocomposites obtained by melt processing:Evaluation of the mechanical,thermal and water sorption properties [J].Industrial Crops and Products,2013,44:300-305
    [60]田雅娟,刘纾言,刘岚,等.热塑性淀粉/黄麻复合材料的研究[J].塑料工业,2009,37(10):28-31
    [61]冀玲芳,李树材,李梅.热塑性淀粉/纤维共混物性能的研究[J].塑料工业,2005,33(5):46-48
    [62] Ayadi F,Dole P. Stoichiometric interpretation of thermoplastic starch water sorptionand relation to mechanical behavior [J].Carbohydr.Polym.2011,84(3):872-880
    [63] Averous L, Fringant C,Moro L. Plasticized starch–cellulose interactions inpolysaccharide composites [J].Polymer,2001,42(15):6565-6572
    [64] Bénézet J C,Stanojlovic-Davidovic A,Bergeret A,et al. Mechanical and physicalproperties of expanded starch,reinforced by natural fibres [J]. Industrial Crops andProducts,2012,37(1):435-440
    [65] Saiah R,Sreekumar PA,Gopalakrishnan P,et al. Fabrication and characterization of100%green composite:Thermoplastic based on wheat flour reinforced by flax fibers [J].Polym.Compos.2009,30(11):1595-1600
    [66] Moriana R,Karlsson S,Ribes‐GreusA.Assessing the influence of cotton fibers on thedegradation in soil of a thermoplastic starch‐based biopolymer[J].Polym.Compos.2010,31(12):2102-2111
    [67] Müller C M O,Laurindo J B,Yamashita F. Effect of cellulose fibers on the crystallinityand mechanical properties of starch-based films at different relative humidity values [J].Carbohydr.Polym.2009,77(2):293-299
    [68] Soykeabkaew N,Laosat N,Ngaokla A,et al. Reinforcing potential of micro-andnano-sized fibers in the starch-based biocomposites [J].Compos.Sci.Technol.2012,72(7):845-852
    [69] Müller P,Renner K,Móczó J,et al. Thermoplastic starch/wood composites:Interfacialinteractions and functional properties [J].Carbohydr.Polym.Early View Online beforePublishing
    [70]张洁,郝晓东.HAAKE转矩流变仪及其应用[J].塑料科技,2003,157(5):41-43
    [71]史铁钧,吴德峰.高分子流变学基础[M].北京:化学工业出版社,2009:93-95
    [72]杨文斌,刘其松,陈恩惠,等.竹粉/聚丙烯复合材料转矩流变特性研究[J].世界竹藤通讯,2009,7(4):14-18
    [73]冯彦洪,李展洪,瞿金平,等.聚乳酸/剑麻复合材料流变性能表征[J].化工学报,2011,62(1):269-275
    [74] Vallejos M E,CurveloAAS,Teixeira E M,et al.Composite materials of thermoplasticstarch and fibers from the ethanol–water fractionation of bagasse [J]. Industrial Cropsand Products,2011,33(3):739-746
    [75]郭安福,李剑锋,李方义,等.基于SEM和EDS的生物质缓冲包装制品微观组织结构研究[J].包装工程,2012,33(21):27-30
    [76]Allaoui S,Aboura Z,Benzeggagh M L. Effects of the environmental conditions on themechanical behaviour of the corrugated cardboard [J].Compos.Sci.Technol.2009,69(1):104-110
    [77] Aboura Z,Talbi N,Allaoui S,et al.Elastic behavior of corrugated cardboard:experiments and modeling [J]. Compos.Struct.2004,63(1):53-62
    [78]毕中臣,曹小龙,谢勇.蜂窝纸板缓冲机理探讨[J].湖南工业大学学报,2011,25(6):38-41
    [79]贺丹华,王双飞,黄崇杏.蜂窝纸板力学性能及应用情况的研究[J].包装工程,2007,28(10):116-118
    [80]金国斌,徐兰萍.纸浆模塑件生产工艺方法综合研究[J].包装工程,2004,25(3):1-3
    [81] Li F,Guan K,Liu P,et al. Ingredient of biomass packaging material and compare studyon cushion properties [J].Int.J.Polymer.Sci. Early View Online before Publishing
    [82]李媛媛.发泡植物纤维模压制品的关键生产技术[D].重庆工商大学图书馆:重庆工商大学,2008
    [83] Guan J,Hanna MA.Functional properties of extruded foam composites of starch acetateand corn cob fiber [J].Industrial Crops and Products,2004,19(3):255-269
    [84] Glenn G M,Orts W J,Nobes GAR. Starch,fiber and CaCO3effects on the physicalproperties of foams made by a baking process [J].Industrial Crops and Products,2001,14(3):201-212
    [85]何蕊,陈太安,戈应仓.麻秆芯纤维发泡缓冲包装材料的制备工艺[J].西南林业大学学报,2011,31(3):73-76
    [86]张秀梅,徐伟民.高粱秸秆发泡包装材料的微观结构研究[J].武汉工业学院学报,2006,25(1):50-52
    [87]李刚,李方义,管凯凯,等.生物质缓冲包装材料制备及性能实验研究[J].功能材料,2013,44(13):1969-1973
    [88]武娟娟,康勇刚.淀粉-纤维复合发泡缓冲材料的研究[J].包装工程,2011,32(3):50-52
    [89] Marechal V,Rigal L.Characterization of by-products of sunflower culture–commercialapplications for stalks and heads [J].Industrial Crops and Products,1999,10(3):185-200
    [90] Ganjyal G M,Reddy N,Yang Y Q,et al.Biodegradable packaging foams of starchacetate blended with corn stalk fibers [J]. J.Appl. Polym. Sci.2004,93(6):2627-2633
    [91]吕禹.生物质缓冲包装材料成型机理及缓冲特性研究[D].山东大学图书馆:山东大学,2012
    [92] Noguchi T,Miyashita M,Inagaki Y,et al. A new recycling system for expandedpolystyrene using a natural solvent.Part1. A new recycling technique [J].PackagingTechnology and Science,1998,11(1):19-27
    [93]李忠正,孙润仓,金永灿.植物纤维资源化学[M].北京:中国轻工业出版社,2012
    [94]潘婵,方继敏,杨红刚.草浆造纸黑液用于粘结剂生产的研究[J].安全与环境工程,2004,11(6):24-26
    [95] Vazquez G,Antorrena G,Gonzalez J,et al. Lignin-phenol-formaldehyde adhesives forexterior grade plywoods [J].Bioresource technology,1995,51(2):187-192
    [96] Cetin N S, zmen N.Use of organosolv lignin in phenol–formaldehyde resins forparticleboard production:I. Organosolv lignin modified resins [J].Int.J.Adhes.Adhes.2002,22(6):477-480
    [97] Cetin N S, zmen N.Use of organosolv lignin in phenol-formaldehyde resins forparticleboard production:II.Particleboard production and properties [J].Int.J.Adhes.Adhes.2002,22(6):481-486
    [98]张艳芳,曾祥钦.磺化木素改性脲醛树脂的研制[J].贵州大学学报,2004,33(1):82-84
    [99]李仕华,吴利民.气相法白炭黑在复合材料中的应用[J].有机硅氟咨询,2003,(3):31-32
    [100] Cassagnau P.Melt rheology of organoclay and fumed silica nanocomposites [J].Polymer,2008,49(9):2183-2196
    [101] Feller J F.Functional Fillers for Plastics [J].Macromol.Chem. Phys.2007,208(3):324
    [102]雷芳,陈福林,岑兰,等.白炭黑增强增韧PP基木塑复合材料的研究[J].塑料,2008,37(1):67-69
    [103]周扬波,贾志欣,贾德民,等.丁苯胶/气相法白炭黑纳米复合材料的微观形态与力学性能[J].石油化工,2005,34(8):782-785
    [104] Zhang M Q,Rong M Z,Zhang H B,et al.Mechanical properties of low nano‐silicafilled high density polyethylene composites[J].Plast.Eng.Sci.2003,43(2):490-500
    [105] Prasertsri S,Rattanasom N. Fumed and precipitated silica reinforced natural rubbercomposites prepared from latex system:Mechanical and dynamic properties [J]. Polym.Test.2012,31(5):593-605
    [106] Bouaziz A,Jaziri M,Dalmas F,et al. Nanocomposites of silica reinforcedpolypropylene: Correlation between morphology and properties [J]. Polym.Eng.Sci.Early View Online before Publishing
    [107] Bikiaris D,Panayiotou C. LDPE/starch blends compatibilized with PE-g-MAcopolymers [J].J.Appl Polym Sci,1998,70(8):1503-1521
    [108] Ma X,Yu J.Formamide as the plasticizer for thermoplastic starch [J].J.Appl PolymSci,2004,93(4):1769-1773
    [109] Stepto R F T.The processing of starch as a thermoplastic[J].MacromolecularSymposia,2003,201(1):203-212
    [110] Poutanen,K., Forssell, P. Modification of starch properties with plasticizers [J].Trends Polym. Sci.1996,4(4):128-132
    [111]姚东明,何和智.尿素甘油共塑化热塑性淀粉[J].化工进展,2011,30(9):2018-2034
    [112] Dai H,Chang P R,Peng F,et al.N-(2-Hydroxyethyl) formamide as a new plasticizerfor thermoplastic starch [J].Journal of polymer research,2009,16(5):529-535
    [113] Curvelo A A S,De Carvalho A J F,Agnelli J A M. Thermoplastic starch–cellulosicfibers composites: preliminary results [J].Carbohydr.Polym.2001,45(2):183-188
    [114] Rodriguez-Gonzalez F J,Ramsay BA,Favis B D. Rheological and thermal propertiesof thermoplastic starch with high glycerol content [J].Carbohydr.Polym.2004,58(2):139-147
    [115] Erhan S.The use of infrared spectroscopy for following drug-membrane interactions:probing paclitaxel (Taxol)-cell phospholopid surface recognition [J].Electronic Journalof Biomedicine,2009,3:19-35
    [116] Prachayawarakorn J,Ruttanabus P,Boonsom P.Effect of cotton fiber contents andlengths on properties of thermoplastic starch composites prepared from rice and waxyrice starches[J].J.Polym.Environ.2011,19(1):274-282
    [117]黄海涛,邬洪源,吴也平.尿素-壳聚糖微胶囊的制备[J].齐齐哈尔医学院学报,2006,27(17):2101-2102
    [118] van Soest J J G,Tournois H,de Wit D,et al. Short-range structure in (partially)crystalline potato starch determined with attenuated total reflectance Fourier-transformIR spectroscopy [J].Carbohydr. Res.1995,279:201-214
    [119] Dai H G,Chang Peter R,Yu J G,et al. Relationship of thermoplastic starchcrystallinity to plasticizer structure [J].Starch-St rke,2010,62(2):86-89
    [120] Hartel R W. Crystallization in foods [M].Gaithersburg Md:Aspen Publication,2001:23
    [121] Chauhan G S, Sharma P,Bains G S.Effect of extrusion cooking on X‐RayDiffraction characteristics of rice and rice-legume blends[J].Int.J.Food.Prop.2003,6(1):127-133
    [122] Van Soest J J G,Hulleman S H D,de Wit D,Crystallinity in starch bioplastics [J].Industrial Crops and Products,1996,5(1):11-22
    [123] Da Roz A L,Carvalho A J F,Gandini A,et al. The effect of plasticizers onthermoplastic starch compositions obtained by melt processing [J].Carbohydr.Polym.2006,63(3):417-424
    [124]柳明珠,刘再满,丁生龙,等.热塑性淀粉的制备及其结构与性能[J].应用化学,2004,21(3):235-238
    [125]高延敏,赵琴,李磊,等.小分子增塑剂对热塑性淀粉中氢键的作用[J].江苏科技大学学报,2012,26(3):245-248
    [126] Liu H, Yu L, Xie F, et al.Gelatinization of cornstarch with differentamylose/amylopectin content [J].Carbohydr.Polym.2006,65(3):357-363
    [127] Liu P,Xie F,Li M,et al. Phase transitions of maize starches with different amylosecontents in glycerol-water systems [J].Carbohydr.Polym.2011,85(1):180-187
    [128] Liu P,Yu L,Wang X,et al. Glass transition temperature of starches with differentamylose/amylopectin ratios [J].Journal of cereal science,2010,51(3):388-391
    [129] Bikiaris D,Panayiotou C.LDPE/starch blends compatibilized with PE-g-MAcopolymers [J].J.Polym.Sci.1998,70(8):1503-1521
    [130] Francis S.The degradable-plastics debate [J]. Plastics Compounding,1989,11:20-38
    [131] Dintcheva N T, La Mantia F P.Durability of a starch-based biodegradable polymer[J].Polym.Degrad.Stab.2007,92(4):630-634
    [132] Narayan R.Bioplastics from renewable resources laboratory to market[C].Abstr PapAm Chem Soc.115516TH ST, NW,WASHINGTON,DC20036USA:AmerChemical Soc,2004,227:U279-U279
    [133] Tran P,Graiver D,Narayan R.Biocomposites synthesized from chemically modifiedsoy oil and biofibers [J].J.Appl.Polym.Sci.2006,102(1):69-75
    [134] Raquez J M,Nabar Y,Narayan R,et al.New developments in biodegradablestarch-based nanocomposites [J].Int.Polym.Process.2007,22(5):463-470
    [135] Bogoeva-Gaceva G,Avella M,Malinconico M,et al.Natural fiber eco-composites [J].Polym.Compos.2007,28(1):98-107
    [136] Prachayawarakorn J,Sangnitidej P,Boonpasith P.Properties of thermoplastic ricestarch composites reinforced by cotton fiber or low-density polyethylene[J].Carbohydr.Polym.2010,81(2):425-433
    [137] BismarckA,Mishra S,Lampke T. Plant fibers as reinforcement for green composites[J].Natural Fibers,Biopolymers,and Biocomposites. Edited by K. Mohanty,M.Misra,LT Drzal,2005:37-109
    [138] Wollerdorfer M,Bader H.Influence of natural fibers on the mechanical properties ofbiodegradable polymers [J].Industrial Crops and Products,1998,8(2):105-112
    [139] Kaith B S,Jindal R,Jana A K,et al. Development of corn starch based greencomposites reinforced with Saccharum spontaneum L fiber and graftcopolymers–Evaluation of thermal,physic-chemical and mechanical properties [J].Bioresour.Technol.2010,101(17):6843-6851
    [140] Alvarez V A,Vázquez A.Thermal degradation of cellulose derivatives/starch blendsand sisal fibre biocomposites [J].Polym.Degrad.Stab.2004,84(1):13-21
    [141] Puglia D,Tomassucci A,Kenny J M. Processing,properties and stability ofbiodegradable composites based on Mater‐Bi and cellulose fibres [J]. Polymers forAdvanced Technologies,2003,14(11‐12):749-756
    [142] ASTM,2001.American Society for Testing and Materials Standards.E104-85.Standard Practice Relative Humidity by Means of Aqueous Solutions.ASTM,WestConshohocken,PA.
    [143]刘凯,何北海,黎小敏,等.利用新型纤维形态分析仪分析杉木CTMP浆纤维形态[J].中国造纸,2009,28(12):14-17
    [144]彭云云,武书彬.蔗渣半纤维素的热裂解特性及动力学研究.造纸科学与技术,2009,28(3):14-18
    [145]韩文佳.高密度植物纤维功能材料制备、性能和机理研究[D].华南理工大学图书馆:华南理工大学,2011年
    [146] Ulloa C A,Gordon A L,García X A.Thermogravimetric study of interactions in thepyrolysis of blends of coal with radiata pine sawdust [J].Fuel Process.Technol.2009,90(4):583-590
    [147] Yang H,Yan R,Chin T,et al.Thermogravimetric analysis-Fourier transform infraredanalysis of palm oil waste pyrolysis [J].Energy Fuels,2004,18(6):1814-1821
    [148] Yang W B,Zhang M X,Chen E H.Torque Rheological Properties of Bamboo Flour/PPComposites [J].Advanced Materials Research,2012,391:138-142
    [149]刘晓玲,杨文斌,邱仁辉.竹塑复合材料流变行为分析[J].林业科技开发,2009,23(4):59-62
    [150] Prachayawarakorn J,Ruttanabus P,Boonsom P.Effect of cotton fiber contents andlengths on properties of thermoplastic starch composites prepared from rice and waxyrice starches [J].J.Polym.Environ.2011,19(1):274-282
    [151] Sarifuddin N,Ismail H,Ahmad Z.Effect of fiber loading on properties of thermoplasticsago starch/kenaf core fiber biocomposites [J].BioResources,2012,7(3):4294-4306
    [152] Girones J,Lopez J P,Mutje P,et al.Natural fiber-reinforced thermoplastic starchcomposites obtained by melt processing [J].Compos.Sci.Technol.2012,72(7):858-863
    [153]李蔷.哈克转矩流变仪在PVC配方研究中的应用[J].上海塑料,2008,(3):30-33
    [154] Pawlak A, Mucha M.Thermogravimetric and FTIR studies of chitosan blends[J].Thermochimica acta,2003,396(1):153-166
    [155] Dean K M,Do M D,Petinakis E,et al.Key interactions in biodegradable thermoplasticstarch/poly(vinyl alcohol)/montmorillonite micro-and nanocomposites[J].Compos.Sci.Technol.2008,68(6):1453-1462
    [156] Girones J,Lopez J P,Mutje P,et al.Natural fiber-reinforced thermoplastic starchcomposites obtained by melt processing [J].Compos.Sci.Technol.2012,72(7):858-863
    [157] Hearle J W S,Morton W E.Physical properties of textile fibres [M].Manchester:TheTextile Institute,2008:203
    [158] Ca igueral N,Vilaseca F,Méndez J A,et al.Behavior of biocomposite materials fromflax strands and starch-based biopolymer [J].Chemical Engineering Science,2009,64(11):2651-2658
    [159] Dias A B,Müller C M O,Larotonda F D S,et al.Mechanical and barrier properties ofcomposite films based on rice flour and cellulose fibers [J]. LWT-Food Science andTechnology,2011,44(2):535-542
    [160] Prachayawarakorn J,Ruttanabus P,Boonsom P.Effect of cotton fiber contents andlengths on properties of thermoplastic starch composites prepared from rice and waxyrice starches [J].J.Polym.Environ.2011,19(1):274-82
    [161]梁基照.聚合物复合材料增强增韧理论[M].广东:华南理工大学出版社,2012
    [162] Belhassen R,Boufi S,Vilaseca F,et al.Biocomposites based on Alfa fibers andstarch-based biopolymer [J]. Polym.Adv.Technol.2009,20(12):1068-1075
    [163] Martins I M G,Magina S P,Oliveira L,et al.New biocomposites based onthermoplastic starch and bacterial cellulose [J].Compos.Sci.Technol.2009,69(13):2163-2168
    [164]马骁飞.耐回生热塑性淀粉的结构与性能研究[D].天津:天津大学,2004
    [165] Lee C K,Cho M S,Kim I H,et al.Preparation and physical properties of thebiocomposite, cellulose diacetate/kenaf fiber sized with poly (vinyl alcohol)[J].Macromolecular Research,2010,18(6):566-570
    [166]郭慎学.再谈利用蔗渣生产刨花板必须除髓[J].林业建设,2001,(5):17-19
    [167] De Carvalho A J F,Curvelo A A S,Agnelli J A M.Wood pulp reinforced thermoplasticstarch composites [J].Int.J.Polymer.Mater.2002,51(7):647-660
    [168] Sarifuddin N,Ismail H,Ahmad Z.Effect of fiber loading on properties of thermoplasticsago starch/kenaf core fiber biocomposites [J].BioResources,2012,7(3):4294-4306
    [169] Kaewtatip K,Thongmee J.Studies on the structure and properties of thermoplasticstarch/luffa fiber composites [J]. Mater.Des.2012,40:314-318
    [170]马骁飞,于九皋.纤维增强尿素和甲酰胺混合塑化热塑性淀粉[J].精细化工,2004,21(5):366-369
    [171] Zhang Y,Han J H. Plasticization of pea starch films with monosaccharides and polyols[J].J.Food Sci.2006,71(6):253-261
    [172] Alvarez V A,Vázquez A.Thermal degradation of cellulose derivatives/starch blendsand sisal fibre biocomposites [J].Polym.Degrad.Stab.2004,84(1):13-21
    [173] Prachayawarakorn J,Sangnitidej P,Boonpasith P.Properties of thermoplastic ricestarch composites reinforced by cotton fiber or low-density polyethylene [J].Carbohydr.Polym.2010,81(2):425-433
    [174] Guimar es J L,Wypych F,Saul C K,et al.Studies of the processing andcharacterization of corn starch and its composites with banana and sugarcane fibersfrom Brazil [J].Carbohydr.Polym.2010,80(1):130-138
    [175]逯柳,李琴,张明,等.竹粉粒径对竹粉/PHB生物复合材料性能的影响[J].浙江林业科技,2011,31(4):16-20
    [176]潘峤,姚正军,周金堂,等.麦秸纤维含量和粒径大小对聚乳酸力学性能和结晶度的影响[J].高分子材料科学与工程,2012,28(8):101-109
    [177]周兴平,解孝林,李国耀.剑麻纤维的表面改性及其复合材料的研究进展[J].工程塑料应用,2000,28(8):44-47
    [178]盛雨峰,温变英,李晓媛,等.蔗渣纤维表面处理方法对蔗渣纤维/聚乳酸复合材料力学性能的影响[J].复合材料学报,2012,(6):1-9
    [179] Freakley P K,Idris WYW. Visualization of flow during the processing of rubber in aninternal mixer[J].Rubber Chem.Technol.1979,52(1):134-145
    [180] Cheng B,Zhou C,Yu W,et al. Evaluation of rheological parameters of polymer meltsin torque rheometers[J].Polym.Test.2001,20(7):811-818
    [181]金日光,马秀清.高聚物流变学[M].上海:华工理工大学出版社,2012:171
    [182]李思远,杨伟,杨鸣波.木塑复合材料挤出成型工艺及性能的研究[J].2003,31(11):22-24
    [183]涂启梁,付时雨,詹怀宇,等.蔗渣甲酸法木素脱出动力学的研究[J].中国造纸学报,2008,23(2):15-18
    [184] Vilay V,Mariatti M,Mat Taib R,et al.Effect of fiber surface treatment and fiberloading on the properties of bagasse fiber–reinforced unsaturated polyester composites[J].Compos.Sci.Technol.2008,68(3):631-638
    [185] Cao Y,Shibata S,Fukumoto I.Mechanical properties of biodegradable compositesreinforced with bagasse fibre before and after alkali treatments [J].Composites part A:Applied science and Manufacturing,2006,37(3):423-429
    [186] Sun Y,Cheng J.Hydrolysis of lignocellulosic materials for ethanol production:areview[J]. Bioresour.Technol.2002,83(1):1-11
    [187]王建清.包装材料学[M].北京:中国轻工业出版社,2009:98-99
    [188] Mali S,Debiagi F,Grossmann M V E,et al.Starch,sugarcane bagasse fibre,andpolyvinyl alcohol effects on extruded foam properties:Amixture design approach [J].Ind.Crops Prod.2010,32(3):353-359
    [189] Nimz H H.Wood Adhesion Chemistry and Technology [M].New York:Dekker,1983:119-176
    [190] JAN E G,Dama V A N,MARTIEN J A.Process for production of high density/highperformance binderless boards from whole coconut husk:Part2:Coconut huskmorphology,composition and properties [J].Ind.Crops Prod.2006,24:96-104
    [191] Shibata S,Cao Y,Fukumoto I.Press forming of short natural fiber-reinforcedbiodegradable resin:Effects of fiber volume and length on flexural properties [J].Polym.Test.2005,24(8):1005-1011
    [192] Brunauer S,Emmett P H,Teller E.Adsorption of gases in multimolecular layers [J].J.Am.Chem.Soc.1938,60(2):309-319
    [193] Barrett E P,Joyner L G,Halenda P P.The determination of pore volume and areadistributions in porous substance [J].J.Am.Chem.Soc.1951,73(1):373-380
    [194]杨睿,周啸,罗传秋,等.聚合物近现代仪器分析[M].第三版.北京:清华大学出版社,2010:216-225
    [195] Lv Y N,Ou J Z,Chen K J. Utilization of bagasse pith and magnesium bisulfite pulpingspent liquor for a new packaging material [A]. Wang LJ,Ni Y H,Hou Q X,and LiuZ.The Second International Papermaking and Environment Conference [C].Beijing:China Light Industry Press,2009:179-182
    [196] Gun'ko V M,Mironyuk I F,Zarko V I,et al.Morphology and surface properties offumed silicas [J].J.Colloid Interface Sci.2005,289(2):427-445
    [197] Kantala C,Wimolmala E,Sirisinha C,et al.Reinforcement of compatibilized NR/NBRblends by fly ash particles and precipitated silica [J].Polym.Adv.Technol.2009,20(5):448-458
    [198] Schell E H.Evaluation of a fragility test method and some proposals for simplifiedmethods (Digital simulation of fragility test method for packaging equipment)[J].Shock Vibrat.Bull.1969,40(4):163-170
    [199] Shibata S.Effects of forming processing conditions on the flexural properties ofbagasse and bamboo plastic composites [J].BioResources,2012,7(4):5381-5390
    [200] van Dam J E G,van den Oever M J A,Keijsers E R P,et al. Process for productionof high density/high performance binderless boards from whole coconuthusk[J].Ind.Crop. Prod.2006,24(2):96-104
    [201]马庭,王一临,万军,等.常用缓冲包装材料静态压缩特性试验研究[J].包装工程,2002,23(2):4-8
    [202] Klapiszewski,Zdarta J,Szatkowski T,et al. Silica/lignosulfonate hybrid materials:Preparation and characterization [J].Cent.Eur.J.Chem.2014,12(6):719-735
    [203] Wang M J, Morris M D, Kutsovsky Y.Effect of fumed silica surface area on siliconerubber reinforcement [J].KGK.Kautschuk,Gummi,Kunststoffe,2008,61(3):107-117
    [204]芦鑫,冯淑环,明媚,等.可降解植物纤维的评价方法分析[J].农产品加工(学刊),2009,(10):30-33
    [205]杜艳丽,赖承钺,蒋宇翔,等.改性淀粉材料生物降解性分析体系的建立及应用[J].化学研究与应用,2008,20(4):422-425
    [206]杨星星.可降解淀粉基缓冲材料的制备及其性能研究[D].南京:南京农业大学,2009
    [207]全桂静,赵航.半纤维素酶高产菌株的筛选及产酶条件的研究[J].沈阳化工大学学报,2010,24(1):50-57
    [208]顾文杰,徐有权,徐培智,等.酸性土壤中高效半纤维素降解菌的筛选与鉴定[J].微生物学报,2012,52(10):1251-1259
    [209]王宜磊,邓振旭.透明圈法快速筛选半纤维素分解菌[J].生物技术,2000,10(1):37-39
    [210]贺军军,罗萍,李勤奋,等.甘蔗渣淀粉功能降解菌筛选及s2g5-1和s3g4-8的鉴定[J].安徽农业科学,2011,39(13):7711-7714
    [211] Kangpei Y,Vrijmoed L L P,Ming8guang F.Survey of coastal mangrove fungi forxylanase production and optimized culture and assay conditions[J].微生物学报,2005,45(1):91-96
    [212]王洪媛,范丙全.三株高效秸秆纤维素降解真菌的筛选及其降解效果[J].微生物学报,2010,50(7):870-875
    [213]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979:129-135
    [214] Kruk M,Jaroniec M,Gadkaree K P.Nitrogen adsorption studies of novel syntheticactive carbons [J].J.Colloid Interface Sci.1997,192(1):250-256
    [215] Luyt AS,Messori M,Fabbri P,et al.Polycarbonate reinforced with silica nanoparticles[J].Polym.Bull.2011,66(7):991-1004
    [216]李凡,杨焕,郭子琦,等.聚丁二酸丁二醇酯(PBS)降解菌的筛选及降解特性研究[J].东北师大学报(自然科学版),2011,43(1):127-131
    [217] VercelhezeAE S,OliveiraALM,Rezende M I,et al. Physical Properties,photo-andbio-degradation of baked foams based on cassava starch,sugarcane bagasse fibers andmontmorillonite[J].J.Polym.Environ.2013,21(1):266-274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700