用户名: 密码: 验证码:
表面活性剂对堆肥过程中微生物胞外酶的作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆肥过程是由大量微生物活动组成的一个复杂的生物化学过程,堆肥的物料成分复杂,除一小部分小分子的物质可以被微生物直接利用以外,大部分的有机物是以高聚物的形式存在,只有通过微生物所分泌的胞外酶将其分解为溶解性有机物质,才能渗入到细胞中供微生物代谢利用。由于堆肥物料中高聚物的存在形式是十分丰富的,因此,各种微生物产生的胞外酶也是多种多样的。如果能提高堆肥过程中一系列胞外酶的酶活,必将加快堆肥的进程,提高堆肥的效率。
     本研究将一种生物表面活性剂鼠李糖脂和一种化学合成的“温和型”非离子表面活性剂吐温80用于堆肥过程中,采用模拟堆肥实验、固态发酵实验、酶的内源荧光法及荧光探针等方法,从多个方面研究了两种表面活性剂对堆肥过程中微生物胞外酶的作用及其机理。
     在富含纤维素的废物稻草和麸皮的堆肥过程中,鼠李糖脂和吐温80对纤维素酶和木聚糖酶的活力有不同程度的增强和稳定作用,相应的,加速了纤维素和半纤维素的降解。堆肥过程中,主要来自于纤维素和半纤维素降解产生的水溶性有机碳,在含有表面活性剂的堆体中的含量要高于对照堆体,这有利于堆肥中微生物的生长,使得含有表面活性剂的堆体中微生物的种群数量要高于对照堆体。通过对比吐温80和鼠李糖脂对堆肥过程中的一系列参数的效果可以看出,鼠李糖脂对堆肥过程的促进作用要略好于吐温80。本实验的结果表明,“温和型”的表面活性剂,如吐温80和鼠李糖脂,对于富含纤维素废物的堆肥过程具有明显的促进作用。
     吐温80和鼠李糖脂对真菌简青霉(Penicillium simplicissimum),放线菌栗褐链霉菌(Streptomyces badius),细菌铜绿假单胞菌(Pseudomonas aeruginosa)和枯草芽孢杆菌(Bacillus subtilis)胞外酶有不同的作用效果,这和表面活性剂的种类、微生物的种类、酶的种类都有一定的关系。总体来看,吐温80对于大多数微生物和酶来说都是一种提高酶活的促进剂,其适用条件更加广泛,而鼠李糖脂起作用的范围要相对小一些,但对一些酶却有突出的作用效果,例如木聚糖酶。吐温80和鼠李糖脂对微生物的生长没有抑制作用。
     酶的稳定性随着pH值的变化是不同的,纤维素酶在pH值3~7的条件下都较为稳定,基本不失活,而木聚糖酶在pH值7~9的条件下较为稳定,失活速度缓慢。稻草基质对纤维素酶的吸附失活作用随着pH值的增大而增强,而对木聚糖酶的吸附失活作用受pH值的影响不是很大;表面活性剂吐温80和鼠李糖脂在整体上都表现出对两种酶的稳定作用,但在细节上有一些不同。在酸性及中性(pH值3~7)条件下,吐温80对木聚糖酶的稳定作用要好于鼠李糖脂,而在碱性条件下,鼠李糖脂的效果要明显好于吐温80。
     通过内源荧光法研究酶蛋白分子构型的变化,得出了淀粉酶、蛋白酶、纤维素酶和木聚糖酶在不同pH值条件下的稳定性,表面活性剂吐温80和鼠李糖脂对淀粉酶、纤维素酶和木聚糖酶都有不同程度的稳定作用,扩大了它们保持酶分子稳定的pH值范围,而对蛋白酶的作用不明显。
     通过采用芘作为荧光探针,研究鼠李糖脂和吐温80与4种微生物胞外酶,淀粉酶、蛋白酶、纤维素酶和木聚糖酶之间的作用关系。鼠李糖脂和木聚糖酶之间有较强的作用力,纤维素酶次之,而淀粉酶和蛋白酶与鼠李糖脂之间的作用力不明显。吐温80与纤维素酶和木聚糖酶之间的作用力能使它们较好的结合,而与淀粉酶、蛋白酶之间的作用力反而不利于吐温80胶束的形成。和鼠李糖脂相比,吐温80和酶之间的作用力较小,随着吐温80的浓度的增大,它和酶之间的作用力逐渐越大,尤其在其浓度超过临界胶束浓度时。
     综上所述,一方面,表面活性剂吐温80和鼠李糖对堆肥过程中微生物的各种胞外酶具有不同程度的促进作用和稳定作用,从而加快了有机质的降解,提高了堆肥的效率;另一方面,这种促进产酶和稳定酶活的作用的大小和表面活性剂的种类、微生物的种类、酶的种类、环境pH值、堆肥物料等条件有一定的关系,不能从一而论。由于生物表面活性剂的多样性、可以由微生物原位产生、无污染等众多优点,使其在堆肥化处理有机固体废物中具有非常好的应用前景。
Composting is considered as a useful process for the disposal of municipal and agricultural solid waste. During the composting, the raw material is transformed through a variety of biological and biochemical processes in which enzymes play an important role. Enzymes that catalyze the degradation of biomacromolecules, such as starch, protein, cellulose, hemicellulose and lignin, are extracellular enzymes since the biomacromolecules are too large to be transported across the cellular membrane. Therefore, it is obvious that the enhancement of the extracellular enzyme activities will promote the degradation of the biomacromolecules, which will in turn speed up the composting process.
     In the present study, a biosurfactant rhamnolipid and a soft chemical surfactant Tween 80 were added into the composting process. The composting experiment, solid state fermentation, endogenetic fluorescence of enzymes and fluorescence probe were used to investigate the effects and mechanism of the two surfactants on the extracellular enzymes from the microorganism during the composting process.
     During the composting of waste rich in cellulose content, both rhamnolipid and Tween 80 had the increasing and stabilizing effects on CMCase and xylanase activities to different extents, and accordingly speeded up the decomposition of cellulose and hemicellulose. Therefore, the water soluble carbon (WSC) contents, mainly containing glucose and xylose released from the decomposition of cellulose and hemicellulose, in the treatments with surfactants were higher than that in the control during the whole composting process, which partially contributed to the lager microbial community populations than the control. The comparison between the effects of Tween 80 and rhamnolipid on enzyme activities, WSC contents and decomposition of substrate indicated that rhamnolipid is a little superior to Tween 80 during the composting process. The present study revealed that soft surfactants, such as rhamnolipid and Tween 80, might be used in the composting of waste rich in cellulose in order to speed up the composting process.
     The effect of surfactants Tweeen 80 and rhamnolipid on extracellular enzymes of fungi Penicillium simplicissimum, actinomycetes Streptomyces badius, bacteria Pseudomonas aeruginosa and Bacillus subtilis were related to the types of surfactants, kinds of microorganisms and classification of enzymes. In the whole, Tween 80 is a stimulatory agent for most of the microorganisms and enzymes, while the stimulatory effects of rhamnolipid is confined to a smaller range but it has a prominent effect on some specific enzymes, such as xylanase. Neither Tween 80 nor rhamnolipid had a prohibitory effect on the growth of microorganism.
     The stability of enzymes varied with pH values. Cellulase was the most stable between pH 3 and 7 and almost did not lose its activity, while xylanase was the most stable between pH 7 and 9 and the activity decreased slowly. The activity cut-down of enzymes due to adsorption by the substrate straw varied with enzymes and pH values. The adsorption of cellulase on straw increased with pH value going higher, while pH value did not have an obvious effect on the adsorption of xylanase. Both Tween 80 and rhamnolipid decreased the adsorption of enzymes on straw and stabilized the activities of cellulase and xylanase.
     The stabilities of amylase, protease, cellulase and xylanse in different pH conditions were investigated by endogenetic fluorescence of enzymes. Tween 80 and rhamnolipd increased the stability of amylase, cellulase and xylanase to different extends and widened the pH range in which the enzymes kept their molecule structure, but did not have an obvious effect on protease.
     The actions between surfactants, Tween 80 and rhamnolipid, and four enzymes, amylase, protease, cellulase and xylanase, were studied by fluorescence probe pyrene. The action between rhamnolipid and xylanase was the most strong, with cellulase taking a second place, but the action between rhamnolipid and amylase and protease was not distinct. The actions between Tween 80 and cellulase and xylanase made them combining together well, but amylase and protease went against the micelle formation of Tween 80. Compared with rhamnolipid, the action force between Tween 80 and enzymes was on the small side, but with the increasing of concentration, the action force increased, especially the concentration going over the critical micelle concentration.
     In conclusion, surfactants Tween 80 and rhamnolipid promoted and stabilized the extracellular enzymes of microorganism in the composting process, which accelerate the degradation of organic matter and improved the composting efficiency, on the other hand, the promoting and stabiling effects were related to type of surfactants, kind of microorganisms, classification of enzymes, pH values and the substrate. In addition, biosurfactant, with the advantage of diversity, being produced in situ and non-toxicity, has a perspective in composting of solid waste.
引文
[1] Jonathan C H, Richard D, Kuchen R. Fundamentals and application of windrow composting. Journal of Environmental Engineering, 1990, 116(4):747-763
    [2] 赵由才. 生活垃圾资源化原理与技术. 北京:化学工业出版社,2002,140-168
    [3] 魏源送,王敏健,王菊思. 堆肥技术及进展. 环境科学进展,1999,7(3):11-23
    [4] 李国学,张福锁. 固体废物堆肥化与有机复混肥生产. 北京:化学工业出版社,2000,16-68
    [5] Zaccheo P, Ricca G, Crippa L. Organic matter characterization of composts from different feedstocks. Compost Science & Utilization, 2002, 10(1): 29-38
    [6] 罗宇煊,张甲耀,马瑛. 有害废物堆肥技术及堆肥生态系统研究进展. 上海环境科学,1999,18(10):478-481
    [7] 陈世和. DANO 动态堆肥装置的特性研究. 上海环境科学,1991,10(12):10-13
    [8] 陈世和,张所明. 城市垃圾堆肥原理与工艺. 上海:复旦大学出版社,1990,1-28
    [9] Hu T J, Zeng G M, Huang D L, et al. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process. Journal of Hazardous Materials, 2007, 141: 736-744
    [10] 李艳霞,王敏键,王菊思. 环境温度对污泥的影响. 环境科学,1999,20(11):63-66
    [11] 中华人民共和国标准. 粪便无害化卫生标准. GB7959-87
    [12] 胡天觉,曾光明,黄国和,等. 好氧堆肥中不同吸附料对氨吸附效果及堆肥性质的影响. 环境科学,2005,26(1):190-195
    [13] Richard T L, Hamelers H V M, Veeken A, et al. Moisture relationships in composting processes. Compost Science & Utilization, 2002, 10(4): 286-302
    [14] Fang M, Wong J W, Li G X, et al. Changes in biological parameters during co-composting of sewage sludge and coal ash residues. Bioresoure Technology, 1995, 64: 55-61
    [15] 高定,黄启飞,陈同斌. 新型堆肥调理剂的吸水特性及应用. 环境工程,2002,20(3):48-50
    [16] 王伟,曾光明,钟华,等. 腐殖质对堆肥中高效降解菌的吸附传输的影响. 中国环境科学,2006,26(5):528-531
    [17] Bernal M P, Parede C, Sanchez–Monedero M A, et al. Maturity and stability parameters of composts prepared with a wide of organic wastes. Bioresource Technology, 1998, (63): 91-99
    [18] Fernands L, Sartaj M. Comparative Study of Static Piel Composting Using Natural, Forced and Passive Aeration Methods. Compost Science & Utilization, 1997, 5(44): 65-77
    [19] Furhacher M, Haberl R. Composting of sewages sludge in a rotating vessel. Water Science Technology, 1995, 32(11): 121-125
    [20] Nopharatana A, Pullammanappallil P C, Clarke W P. A dynamic mathematical model for sequential leach bed anaerobic digestion of organic fraction of municipal solid waste, Biochemical Engineering Journal, 2003, 13: 21-33
    [21] Macgregor S T. Composting process control based on interaction between microbial, heat output and temperature. Appl Environ Microbial, 198l, 4: 1321-1329.
    [22] Glenn J. Transitions at a biosolids composting site. BioCycle, 1998, 39(10): 48-51
    [23] Zhou S W, Zaied H, Weghe H. Composting animal excreta-effect on oxygen concentration,on kinetic reaction and on emission behaviour. Landtechnik, 1999, 54(3): 178-179
    [24] Dewes T. Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure. J. Agricultural Science. 1996, 127: 501-509
    [25] 刘存芳,袁兴中,曾光明,等. 城市有机垃圾间歇厌氧消化 pH 控制动力学研究. 环境科学,2006,27(8):1687-1691
    [26] Nakasaki K, Yaguchi H, Sasaki Y, et al. Effects of pH control on composting of garbage. Waste Management & Research, 1993, 11: 117-125
    [27] Vuorinen A H, Saharinen M H. Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agriculture, Ecosystems and Environment. 1997, 66: 19-29
    [28] 钟华,曾光明,黄国和,等. 鼠李糖脂对铜绿假单胞菌降解颗粒有机质的影响. 中国环境科学,2006,26(2):192-196
    [29] Chefetz, Hatcher P G, Hadar Y, et al. Chemical and biological characterization of organic matter during composting of municipal solid waste. Environ. Qual, 1996,25: 776-785
    [30] Gaillard V, Chenu C, Recous S, et al. Carbon, nitrogen and microbial gradients induced by plant residues decomposting in soil. European Journal Of Soil Science, 1999, 15(12): 567-578
    [31] Inbar Y,Chen Y,Hadar Y,et al. New approaches to compost maturity. Biocycle, 1990, 64-69
    [32] Hirai M F, Chanyasak V, Kubota H. A standard measurement for compost maturity. BioCycle, 1983:54-56
    [33] Chanyasak V, Katayama A. Effects of compost maturity on growth komatsuna in Neubauer's pot:Growth inhibitory factors and assessment of degree of maturity by org-C/org-N ratio of water extracts. Soil Sci. Plant Nutr, 1983, 29: 251-259
    [34] 戴芳,曾光明,吴小红,等. 生物表面活性剂在农业废物好氧堆肥中的应用. 环境科学,2005,26(4):181-185
    [35] 曾光明,黄国和,袁兴中,等. 堆肥环境生物与控制. 北京:科学出版社,2006,137-188
    [36] 朱能武. 堆肥微生物学研究现状与发展前景. 氨基酸和生物资源,2005,27(4): 36-40
    [37] Haug R T. The practical handbook of compost engineering. BocaRaton, Lewis Publishers, USA, 1993, 24-65
    [38] Kaiser J. Modelling composting as a microbial ecosystem: a simulation approach. Ecological Modelling, 1996, 91: 25-37
    [39] Tuomela M, Vikman M, Hatakka M. Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 2000, 72: 169-183
    [40] Godden B, BallA S, Helvenstein P, et al. Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General Microbiology, 1992, 138: 2441-2448
    [41] 徐亚同,史家樑,张明. 污染控制微生物工程. 北京:化学工业出版社,2001,48-54
    [42] 陈洪章. 纤维素生物技术. 北京,化学工业出版社,2005,8-36
    [43] Saddler J N, Broanell H H, Clermont L P, et al. Enzymatic hydrolysis of cellulost and various pretreated wood fractions. Biotech and Bioeng, 1982, 24: 1389~1402.
    [44] 谢君,任路,李维,等. 白腐菌液体培养产生木质纤维素降解酶的研究. 四川大学学报(自然科学版),2000,37:161-166
    [45] 郁红艳,曾光明,黄国和,等. 简青霉 Penicillium simplicissimum 木质素降解能力研究. 环境科学,2005,26(2):167-171
    [46] Han Y W, Yu P L, Smith S K. Alkali treatment and fermentation of straw for animal feed. Biotech and Bioeng, 1978, 20: 1015~1026
    [47] Tassinari T, Macy C, Spano L. Energy requirement and process design consideration in compression milling pretreat of cellulosic wastes for enzymatic hydrolysis. Biotech and Bioeng, 1980, 22: 1689-1705
    [48] Zeng G M, Yu H Y, Huang H L, et al. Laccase activities of soil inhabiting fungus Penicillium simplicissimum in relation to lignin degradation.World Journal of Microbiology and Biotechnology, 2006, 22: 317-324
    [49] Tuomela M., Vikman M., Hatakka A. Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 2000, 72: 169-183.
    [50] 林云琴,周少奇. 白腐菌降解纤维素和木质素的研究进展. 环境技术,2003,4:29~33.
    [51] 席北斗,刘鸿亮. 堆肥中纤维素和木质素的生物降解研究现状. 环境污染治理技术与设备,2002,3(3):19~23.
    [52] 席北斗,刘鸿亮,孟伟,等. 垃圾堆肥高效复合微生物菌剂的制备. 环境科学研究,2003,16(2):58-61.
    [53] Mastry E I. Utilization of Egyptian rice straw in production of cellalases and microbial protein: effect of various pretreatment on yields of protein and enzyme activity. J Sci Food Agric, 1983, 34: 725~732
    [54] 陈石根,周润琦. 酶学. 上海:复旦大学出版社,2005,6-39
    [55] 郭杰炎,蔡武城. 微生物酶. 北京:科学出版社,1986,13-65
    [56] 王斐,郑天凌,洪华生. 细菌胞外酶的生态作用. 海洋科学,1999,23(3):33-37
    [57] 宋福行,焦念志. 细菌胞外酶的调控因素. 海洋科学,1999,25(9):16-18
    [58] Gianfreda L, Rao M. Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme and Microbial Technology, 2004, 35: 339-354
    [59] Pointing S B, Vrijmoed L L P. Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World J Microbiol Biotechnol, 2000, 16: 317-318
    [60] Reddy C A. The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol, 1995,6: 320-328
    [61] Tang L, Zeng G M, Wang H, et al. Amperometric detection of lignin-degrading peroxidase activities from Phanerochaete chrysosporium. Enzyme and Microbial Technology, 2005, 36: 960-966
    [62] 黄丹莲,曾光明,黄国和,等. 白腐菌固态发酵条件最优化及其在降解植物生物质的研究. 环境科学学报,2005,25(2):232-237
    [63] Archibald F S, Paice M G, Jurasek L. Decolorization of kraft bleachery effluent chromophores by Coriolus (Trametes) versicolor. Enzyme Microb Technol, 1990, 12: 846-853
    [64] Limura Y, Hartikainen P, Tatsumi K. Dechlorination of tetrachloroguaiacol by laccase of white-rot basidiomycete Coriolus versicolor. Appl Microbiol Biotechnol, 1996, 45: 434-439.
    [65] Cameron M D, Aust S D. Degradation of chemicals by reactive radicals produced by cellobiose dehydrogenase from Phanerochaete chrysosporium. Arch Biochem Biophys, 1999, 367: 115-121
    [66] Bumpus J A. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol, 1989, 55: 154-8
    [67] Bogan B W, Lamar R T. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extra cellular ligninolytic enzymes. Appl Environ Microbiol, 1996, 62: 1597–1603.
    [68] Zeddel A, Majcherczyk A, Hutterman A. Degradation of polychlorinated biphenyls by white-rot fungi Pleurotus ostreatus and Trametes versicolor in a solid state system. Toxicol Environ Chem, 1993, 40: 225-266
    [69] Novotny C, Vyas B R M, Erbanova P, et al. Removal of various PCBs by various white-rot fungi in liquid cultures. Folia Microbiol, 1997, 42: 136-140
    [70] Jiang X Y, Zeng G M, Huang D L, et al. Degradation of pentachlorophenol in soil by composting with immobilized Phanerochaete chrysosporium. World Journal of Microbiology and Biotechnology, 2006, 22:909-913
    [71] Lin J E, Wang H Y, Hickey R F. Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotechnol Bioeng, 1990, 35: 1125-1134
    [72] Bumpus J A, Tatarko M. Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: identification of initial degradation products and the discovery of a TNT-metabolite that inhibits lignin peroxidase. Curr Microbiol, 1994, 28: 185-90
    [73] Sutherland J B, Selby A L, Freeman J P, et al. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol, 1991, 57: 3310–3316
    [74] VanWyk J P H. Saccharification of paper products by cellulase from Penicillium funiculosum and Trichoderma reesei. Biomass Bioeng, 1999, 16: 239-242
    [75] Metcalfe A C, Krsek M, Gooday G W, et al. Molecular analysis of a bacterial chitinolytic community in an upland pasture. Appl Environ Microbiol, 2002, 68:5042-5050
    [76] Singh C J. Optimization of an extra cellular protease of Chrysosporium keratinophilum and its potential in bioremediation of keratinic wastes. Mycopathologia, 2002, 156:,151-156
    [77] Garg A P, McGarthy A J, Roberts J C. Biobleaching effect for Streptomyces thermoviolaceus xylanase preparations on birchwood kraft pulp. Enzyme Microbial Biotechnol, 1996, 18: 261-267
    [78] Christov L P, Prior B A. Repeated treatments with Aureobasidium pullulans hemicellulases and alkali enhance biobleaching of sulphite pulps. Enzyme Microb Biotechnol, 1996, 18 :244-245
    [79] Whiteley C G, Heron P, Pletschke B, et al. The enzymology of sludge solubilisation utilising sulphate reducing systems. Properties of proteases and phosphatases. Enzyme Microbial Technol, 2002, 31: 419-424
    [80] Copinet A, Bliard C, Onteniente J P, et al. Enzymatic degradation and deacetylation of native and acetylated strach-based extruded blends. Polym Degrad Stabil, 2001, 71: 203-212
    [81] Deguchi T, Kakezawa M, Nishida T. Nylon degradation by lignindegrading fungi. Appl Environ Microbiol, 1997, 63: 329-231
    [82] Zeng G M, Huang D L, Huang G H, et al. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technology, 2007, 98: 320-326
    [83] Tarafdar C, Yadav R S, Niwas R. Relative efficiency of fungal intraand extracellular phosphatases and phytase. Plant Nutr Soil Sci, 2002; 165: 17-19
    [84] Crabbe J R, Campbell J R, Thompson L, et al. Biodegradation of a colloidal ester-based polyurethane by soil fungi. Int Biodeter Biodegr, 1994, 33: 103-13
    [85] Kay M J, McCabe R W, Morton L H J. Chemical and physical changes occurring in polyester polyurethane during biodegradation. Inter Biodet Biodegrad, 1993, 31: 209-225
    [86] Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, et al. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol, 1999, 51, 134-40
    [87] Kawagoshi Y, Fujita M. Purification and properties of the polyvinyl alcohol-degrading enzyme 24-pentanedione hydrolase obtained from Pseudomonas vesicularis var. povalolyticus. World J Microbiol Biotechnol, 1998, 14: 95-100
    [88] Larking D M, Crawford R L, Christie G B Y, et al. Enhanced degradation of polyvinyl alcohol by Pycnoporus cinnabarinus after pretreament with Fenton’s reagent. Appl Environ Microbiol, 1999, 65:,1798-1800
    [89] Tiquia S M. Evolution of extracellular enzyme activities during manure composting. J Appl Microbiol, 2002, 92: 764-775
    [90] Tiquia S M, Wan J H C, Tam N F Y. Microbial population dynamics enzyme activities during composting. Compost Sci Util, 2002, 10: 150-161
    [91] Benitez E, Nogales R, Elvira C, et al. Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida. Bioresource Technol, 1999, 67: 297-303
    [92] 徐燕莉. 表面活性剂的功能. 北京:化学工业出版社,2000,1-34
    [93] 尤华,陆兆新,冯红霞. 曲霉液体发酵产原果胶酶的条件优化研究. 微生物学通报,2003, 30(1):26-30
    [94] Ebune A, Al-Asheh S and Duvnjak Z. Effects of phosphate, surfactant and glucose on phytase production and hydrolysis of phytic acid in canola meal by Aspergillus ficuum during solid-state fermentation. Bioresour Technol, 1995, 54: 241-247
    [95] Ramesh M V, Lonsane B K. Solid state fermentation for production of a-amylase by Bacillus megaterium 16M. Biotechnol Lett, 1987, 9(5): 323-328
    [96] Pushalkar S, Rao K K and Menon K. Production of b β -glucosidase by Aspergillus terreus. Curr Microbiol, 1995, 30: 255-258
    [97] 顾赛红,孙建义,李卫芬,等. 里氏木霉(Trichoderma reesei)产β2 葡聚糖酶和木聚糖酶的条件研究. 浙江大学学报(农业与生命科学版),2003,29(5):545-549
    [98] Jager A, Coran S, Kirk T K. Production of ligninases and degradation of lignin in agitated submerged culture of Phanerochate chrysosporium. Appl Environ Microbiol, 1985, 50: 1274-1278
    [99] Han Y W, Gallagher D J, Wilfred A G. Phytase production by Aspergilllus ficuum on semisolid substrate. J Ind Microbiol, 1987, 2: 195-200
    [100] Pardo A G. Effect of surfactants on cellulase production by Nectria catalinensis, Current Microbiology, 1996, 33: 275-278
    [101] Reese E T, Manguire A. Surfactants as stimulants of enzyme production by microorganisms. Appl Microbiol, 1969, 17:242-245.
    [102] Takahashi J G. Yamada K. Effect of non-ionic surface active agents on mycelial form and amylase production of A. niger. Nippon Nozei Kogaku Korishi,1960, 34: 1043-1045
    [103] Goes A P, Sheppard J D. Effect of surfactants on a-amylase production in a solid substrate fermentation process. J Chem Technol Biotechnol, 1999, 74: 709-712
    [104] 张群发,舒远才,郝军. 康氏木霉、纤维素转化蔗髓纤维素成糖及生产 SCP. 微生物学通报,1991,18(4):214-220
    [105] 周敬红,王双飞,韦小英,等. 蔗糖白腐菌处理的电镜观察. 中国造纸学报,1999,14:15-19
    [106] 全易,夏天喜,刘红.酶水解小麦秸秆纤维素研究. 江苏工业学院学报,2003,15(1):4-6
    [107] Ooshima H, Sakata M, Harano Y. Enhancement of enzymatic hydrolysis of cellulose by surfactant. Biotech and Bioeng, 1986, 28: 1727-1734.
    [108] Park J W, Takahata Y, Kajiuchi T, et al. Effects of nonionic surfactant on enzymatic-hydrolysis of used newspaper. Biotech and Bioeng, 1992, 39: 117-120
    [109] Helle S S, Duff S J B, Cooper D G. Effect of surfactants on cellulose hydrolysis. Biotech and Bioeng, 1993, 42: 611-617.
    [110] Reese E T. Inactivation of cellulase by shaking and its prevention by surfactant. J Appl Biochem, 1980, 2: 36-39.
    [111] Eriksson T, B?rjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 2002, 31: 353-364
    [112] Castanon M, Wilke C R. Effects of the surfactant Tween 80 on enzymatic hydrolysis of newspaper. Biotech and Bioeng, 1981, 23: 1365-1372
    [113] Kurakake M, Ooshima H, Kato J, et al. Pretreatment of begasse by nonionic surfactant for the enzymatic hydrolysis. Bioresource Technol, 1994, 49: 247-251.
    [114] Kaar W E, Holtzapple M. Benefits from Tween during enzymic hydrolysis of corn stover. Biotechnol Bioeng, 1998, 59: 419-427
    [115] 时进钢,袁兴中,曾光明,等. 生物表面活性剂的合成与提取研究进展.? 微生物学通报,2003,30(1):68-72
    [116] Zhang Y M, Miller R M. Enhances octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfacetant. Appl Environ Microbiol, 1992, 58: 3276-3282
    [117] Garti N. What can nature offer from an emulsifier point of view: trends and progress?. Colloids and Surfaces, 1999, 152: 125-146
    [118] 王伟,曾光明,黄国和,等. 鼠李糖脂对菌体在堆肥介质中吸附与传输的影响研究. 环境科学学报,2005,25(7):965-970
    [119] Makkar R S, Cameotra S S. Biosurfactant production by a thermophilic Bacillus subtilis. Journal of Industrial Microbiology & Biotechnology, 1997, 18: 37-42
    [120] Li Q, Logan B E. Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Res, 1999, 33(4): 1090-1100
    [121] Bai G Y, Brusseau M L, Miller R M. Influence of rhamnolipid biosurfactant on the transport of bacteria through a sandy soil. Appl Environ Microbiol, 1997, 63: 1866-1873
    [122] Bognolo G. Biosurfactants as emulsifying agents for hydrocarbons. Colloids and Surfaces, 1999, 152: 41-52
    [123] 方云,夏咏梅. 生物表面活性剂. 北京:中国轻工业出版社,1992,25-36
    [124] 陈坚,华兆哲,伦世仪. 生物表面活性剂在环境生物工程中的应用. 环境科学,1996,17(4):84-87
    [125] Ishigami Y. Biosurfactants face increasing interest. Inform, 1993, 4: 1156-1163
    [126] Arino S, Marchal R, Vandecasteele J P. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol, 1996, 45: 164-168
    [127] Catherine N M, Gibbs B F. Correlation of Nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol, 1989, 55(11): 3016-3019
    [128] Santos L G, Kappeli O,Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with Glucose as carbon source. Appl Environ Microbiol, 1984, 48(2): 301-305
    [129] 吴清平,蔡芷荷,张菊梅,等. 表面活性素的结构特性及其生物合成机理. 微生物学通报,1998,25(6):351-353
    [130] Zhang Y, Miller R M. Enhanced Octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environmental Microbiology, 1992, 58: 3276-3282
    [131] Rocha C, Infante C. Enhanced oily sludge biodegradation by a tension-active agent isolated from Pseudomonas aeruginosa USB-CS1. Appl Microbiol Biotechnol, 1997, 47: 615-619
    [132] 傅海燕,曾光明,黄国和,等. 堆肥过程中产生生物表面活性剂的细菌筛选. 环境科学学报,2004,24(5):936-938
    [133] Makkar R S, Cameotra S S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol, 2002, 58: 428-434
    [134] Fleck L C, Bicca F C, Zachia Ayub M A. Physiological aspects of hydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites. Biotechnology Letters, 2000, 22: 285-289
    [135] 钱欣平,阳永荣,孟琴. 生物表面活性剂对微生物生长和代谢的影响. 微生物学通报,2002,29(3):75-78
    [136] 徐成勇,鲁时瑛,周莲,等. 发酵法生产生物表面活性剂. 微生物学通报,2003,30(3):87-90
    [137] Davis D A, Lynch H C, Varley J. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb Technol, 1999, 25: 322-329
    [138] 卢国满,刘红玉,曾光明,等. 产生物表面活性剂菌株梨头霉菌(Absidia orchidis)的筛选及发酵条件优化. 环境科学学报,2006,26(9):1426-1432
    [139] Rahman T J, McClean S, Marchant R, et al. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnology Progress, 2002, 18(6): 1277-1290
    [140] Benincasa M, Contiero J, Manresa M A, et al. Rhamnolipid production by Pseudomonas aeruginose LBI growing on soapstock as the sole carbon source. Journal of Food Engineering, 2002, 54: 283-300
    [141] Fox S L, Bala G A. Production of Surfactin from Bacillus subtilis ATCC 21332 using potato substrates. Biosource Technology, 2000, 75: 235-240
    [142] Juan C M, Jeffrey K, Alba T. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseusomonas aeruginosa UG2 on corn oil. Journal of Chromatography A, 1999, 864: 211-220
    [143] Lin S C, Chen Y C, Lin Y M. General approach for the development of hign-performance liquid chromatography methods for biosurfactant analysis and purification. Journal of Chromatgraphy A, 1998, 825:149-159
    [144] Davis D A, Lynch HC, Varley J. The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 culture. Enzyme Microb Technol, 2001, 28: 346-354
    [145] 徐志伟,尤勤,孙炳寅. 生物表面活性剂的工业应用. 生物技术,1995,5(3):6-7
    [146] 梅建风,闵航. 生物表面活性剂及其应用. 工业微生物,2001,31(1):54-57
    [147] 范立梅. 生物表面活性剂及其应用. 生物学通报,2000,35(8):21-22
    [148] Zouboulis A I, Matis K A, Lazaridis N K, et al. The use of biosurfactants in flotation: application for the re-moval of metal ions. Minerals Engineering, 2003, 16: 1231-1236
    [149] Harvey S, Elashi I, Valdes J J, et al. Enhanced removalof Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnol, 1990, 8: 228-230
    [150] Zeng G M, Zhong H, Huang G H, et al. Physicochemical and microbiological effects of biosurfactant on the remediation of HOC-contaminated soil. Progress In Natural Science, 2005, 15(7): 577-585
    [151] Noordman W H, Wachter J H J, Boer G J, et al. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availa-bility. J Biotechnol, 2002, 94: 195-212
    [152] Rahman K S M, Banat I M, Thahira J, et al. Bioreme-diation of gasoline contaminated soil by a bacterial con-sortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technol, 2002, 81: 25-32
    [153] 华兆哲,陈坚,伦世仪. 石油烷烃降解与生物表面活性剂生产的相关性研究及进展. 石油化工,1998,27(12):925-929
    [154] 马瑛,张甲耀,侯祖军,等. 堆肥化生物修复技术处理有毒有害固体废弃物的模拟研究. 环境科学,1997,18(4):65-69
    [155] Deziel E, Paquette G, Villemur R, et al. Biosurfactant production by a soil Pseudomonas strain growing on polycyclic hydrocarbons. Appl Environ Microbial, 1996, 62: 1908-1912
    [156] Chandrasekaran R, Radha A. Melecular architectures an-d functional properties of gellan gum and related polys-accharides. Trends Food Sci. Technol, 1995, 6: 143-148
    [157] Wick L Y, Colangelo T, Harms H. Kinetics of mass-transfer limited bacterial growth on solid PAHs. Environ Sci Technol, 2001, 35: 354-361
    [158] Wick L Y, Ruiz de, Munain A, et al. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl .Microbiol Biotechnol, 2002, 58: 378-385
    [159] Johnsen A R, Karlson U. Evaluation of bacterial strate-gies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol, 2004, 63: 452-459
    [160] Torrens J L, Herman D C, Miller-Maier R M. Biosurfactant (Rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of Cadmium from various soils under saturated flow conditions. Environ Sci Technol, 1998, 32: 776-781
    [161] Mulligan C N, Yong R N, Gibbs B F, et al. Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environ Sci Technol, 1999, 33: 3812-3820
    [162] 时进钢,袁兴中,曾光明,等. 鼠李糖脂对沉积物中 Cd 和 Pb 去除作用. 环境化学,2005,24(1):55-5
    [163] Chefetz B, Hatcher P G, Y Hadar, et al. Chemical and biological characterization of organic matter during composting of municipal solid waste. J Environ Qual, 1996, 25:7 76-785
    [164] Tengerdy R P, Szakacs G. Bioconversion of lignocellulose in solid substrate fermentation. Biochemical Engineering Journal, 2003, 13(3): 169-179
    [165] Pérez J, Muňoz-Dorado J, Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 2002, 5: 53-63
    [166] Tengerdy RP , Szakacs G. Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J, 2003, 13(3): 169-179
    [167] Eiland F, Klamer M, Lind A M, et al. Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microb Ecol, 2001, 41: 272-280
    [168] Cotrufo M F, Ineson P, Roberts J D. Decomposition of birch leaf litters with varying C-to-N ratios. Soil Biol Biochem, 1995, 27: 1219-1221
    [169] Eklind Y, Kirchmann H. Composting and storage of organic household waste with different litter amendments. I: carbon turnover. Bioresource Technol, 2000, 74: 115-124
    [170] Vuorinen A H. Effect of bulking agent on acid and alkaline phosphomonoesterase and β-D-glucosidase activities during manure composting. Bioresource Technol, 2000, 75: 113-138
    [171] Bolta S V, Mihelic R, Lobnic F, et al. Microbial community structure during composting with and without mass inocula. Compost Sci Util 2003, 11: 6-15
    [172] 李建武,萧能,余瑞元,等. 生物化学实验原理和方法. 北京,北京大学出版社,2001,125-130
    [173] 何丽一. 平面色谱方法及应用. 北京,化学工业出版社,2000,41-120
    [174] Chantigny M H, Prévost D, Angers D A, et al. Microbial biomass and N transformations in two soils cropped with annual perennial species. Biol Fertil Soil, 1996, 21(4): 239-244
    [175] Ghose T K. Measurement of cellulase activities. Pure Appl Chem, 1987, 59: 257-268
    [176] Goering H K, Van Soest P J. Forage fiber analyses. USDA Agricultural research service handbook No. 379. US Department of Agriculture, Washington, USA, 1970, 26-68
    [177] Zhang X F, Wang H T, Zhou H Y, et al. Co-composting of flower waste and cattle manure in pilot scale. Acta Scientiae Circumstantiae, 2003. 23(3): 360-365
    [178] Charest M H, Antoun H, Beauchamp C J. Dynamics of water-soluble carbon substances and microbial populations during the composting of de-inking paper sludge. Bioresouse Technol, 2004, 91: 53-67
    [179] Srivastava R A K, Baruah J N. Culture conditions for production of thermostable amylase by Bacillus stearothermophilus. Appl Environ Microb, 1986, 52: 179-184
    [180] Laouar L, Bernard J M, Lowe, K C. Yeast permeabilization with surfactants. Biotechol Lett, 1992, 14: 719-720
    [181] US EPA http://www.epa.gov/oppbppd1/biopesticides/ingredients/factsheets/ factsheet_110029.htm
    [182] Hankin L, Anagnostakis S L. The use of solid media for detection of enzyme production by fungi. Mycologia, 1975, 67: 597-607
    [183] Williams A G, Withers S E. Staining reactions for the detection of hemicellulose-degrading bacteria. FEMS Microbiol Lett, 1983, 20: 253-258
    [184] Teather R M, Wood P J. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Env Microbiol, 1982, 43: 777-780
    [185] Bernfeld P. Amylase, α and β. Methods Enzymol, 1951, 1: 149-159
    [186] Thangam E B, Rajkumarl G S. Purification and characterization of alkaline protease from Alcaligenes faecalis. Biotechnol Appl Biochem, 2002, 35: 149-154
    [187] Ruzicka S, Norman M D P, Harris J A. Rapid ultrasonication method to determine ergosterol concentration in soil. Soil Biol Biochem, 1995, 27: 1215-1217
    [188] Eklind Y, Kirchmann H. Composting and storage of organic household waste with different litter amendments. I: carbon turnover. Bioresource Technol, 2000,74: 115-124
    [189] Veeken A H M, Adani F, Nierop K G J, et al. Degradation of biomacromolecules during high-rate composting of wheat straw- amended feces. J Environ Qual, 2001, 30: 1675-1684
    [190] Lee S S, Kim H S, Moon Y H, et al. The effects of a non-ionic surfactant on the fermentation characteristics, microbial growth, enzyme activity and digestibility in the rumen of cows. Anim Feed Sci Tech, 2004, 115: 37-50
    [191] Zeng G M, Shi J G, Yuan X Z, et al. Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enzyme and Microbial Technology, 2006, 39(7): 1451-1456
    [192] Montgomery H J, Monreal C M, Young J C, et al. Determinination of soil fungal biomass from soil ergosterol analyses. Soil Biol Biochem, 2000, 32: 1207-1217
    [193] Klamer M, B??th E. Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2v6,9. Soil Biol Biochem, 2004, 36: 57-65
    [194] 沈萍. 微生物学. 北京:高等教育出版社,2000,106-148
    [195] Shi J G, Zeng G M, Yuan X Z, et al. The stimulatory effects of surfactants on composting of waste rich in cellulose. World Journal of Microbiology and Biotechnology, 2006, 22(11): 1121-1127
    [196] Sheppard J D, Jumarie C, Cooper D G, et al. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochimica Biophysica Acta, 1991, 1064:13-23.
    [197] Cooper D G, Pillon D W, Mulligan C N, et al. Biological additives for improved mechanical dewatering of fuel-grade peat. Fuel, 1986, 65: 255-259
    [198] 张志波,曾光明,时进钢,等. 吐温 80 和鼠李糖脂对铜绿假单胞菌和枯草芽孢杆菌产蛋白酶的影响. 环境科学学报,2006,26(7):1152-1158
    [199] 李里特,王海,石波. Streptomyces Olivaceovirdis E-86 木聚糖酶在玉米芯成分上吸附特性的研究. 食品科技,2002,23(6):9-12
    [200] Nath D, Rao M. pH dependent conformational and structural changes of xylanase from an alkalophilic thermophilic Bacillus sp (NCIM 59). Enzyme and Microbial Technology, 2001, 28: 397-403
    [201] 徐金森. 现代生物科学仪器分析入门. 北京:化学工业出版社,2004,109-111
    [202] 徐桂英,栾玉霞,刘静,等. 稳态荧光法研究表面活性剂/大分子相互作用.物理化学学报.2005,21(5):577-582
    [203] 高峰,朱昌青,王伦. 耐尔蓝-十二烷基苯磺酸钠-蛋白质体系的荧光反应及其分析应用. 分析化学. 2003,31(3):1085-1088
    [204] Helbert W, Chanzy H, Husum T L, et al. Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity. Biomacromolecules, 2003, 4: 481-487
    [205] 陈亮,吴重亮,陈东辉. 芘荧光探针法研究壳聚糖絮凝机理. 环境保护科学,2002,28(6):34-37
    [206] 钱国栋,王民权,汪茫,等. 芘单体荧光研究SiO2凝胶形成及其微结构. 材料研究学报. 1998,12(1):102-104
    [207] Savelli G, Spreti N, Profio D. Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions. Current Opinion in Colloid & Interface Science, 2000, 5: 111-117
    [208] Fágáin C ó. Enzyme stabilization—recent experimental progress. Enzyme and Microbial Technology, 2003, 33: 137-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700