用户名: 密码: 验证码:
双炉膛电站直流炉辐射图像处理及燃烧诊断与优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来很长时间内我国仍将以燃煤发电为主。在电站燃煤锅炉中,燃烧工况组织不合理造成的燃烧不均匀、火焰中心偏斜、火焰刷墙等是导致炉膛结焦、炉管爆裂、炉膛灭火、炉膛爆炸等运行事故的重要原因。将炉内燃烧火焰图像处理技术应用到炉膛火焰监视装置中,对炉内燃烧进行温度分布可视化监视和燃烧诊断与优化控制,对于改善现有锅炉炉膛燃烧安全性和经济性具有重要意义。本文的研究对象为一台300MW双炉膛煤粉燃烧直流锅炉,针对该锅炉进行了炉内燃烧火焰辐射图像处理和燃烧诊断与优化控制的研究。具体工作如下:
     大型电站锅炉内的燃烧火焰具有大尺寸、强脉动的特点,一般的方法难以实现炉内三维温度场的可视化,而双炉膛锅炉不仅重建的温度分布数量是单炉膛锅炉的2倍,而且由于其结构的特殊性(为中间连通型),使得重建炉内三维温度场更为复杂。基于本课题组已有的研究成果能够很好地解决这一问题:首先利用DRESOR法为炉内三维温度场的重建提供充分的辐射成像信息,其次采用辐射温度成像模型建立火焰温度图像(由成像装置检测得到)与炉内温度场之间的线性关系,最后基于一种改进的Tikhonov正则化方法重建炉内三维温度分布。针对该双炉膛直流炉的模拟研究结果表明:即使测量误差的均方差达到0.11,仍然能够达到很好的重建效果。
     在获得炉内三维温度场重建结果的基础上本文开发了一套炉膛燃烧监控系统,基于BCB和OpenGL混合编程在计算机中实现了炉内三维温度场的可视化,基于现场总线技术首次在电厂DCS控制系统中实现了大型电站锅炉炉内三维温度场可视化。DCS中温度场可视化画面实时刷新时间不超过5s,现场运行操作人员可通过DCS画面直观地了解炉膛燃烧工况(如火焰中心位置、温度高低及火焰中心偏斜等),有助于减轻运行人员工作强度,提高锅炉安全运行水平。
     在不同燃烧工况下开展了该直流炉炉内分层黑度和温度场特征参数检测的实验研究,研究结果表明:在煤质不变的情况下炉内各层黑度与各层平均温度均与负荷成正比;当进行层间燃料量调整时,煤粉浓度增加的区域分层黑度与层间温度均增加;当锅炉氧量降低时,炉膛下两层黑度增加,上两层黑度有所减少,此时炉膛火焰中心区域的辐射换热水平增加,全炉膛平均温度增加。在进行炉内温度场特征参数检测得到典型工况样本的基础上,以各层各角燃烧器燃料量及一次风、二次风量、燃尽风量等作为输入变量,以炉内各层平均温度及相应的温度中心坐标作为输出变量建立RBF网络动态模型,该模型具有良好的自适应能力,能够有效克服现有模型的不足。
     通过安装在炉本体上的多个CCD探头,经图像处理技术能够得到反映炉内不同区域燃烧强度大小的多层辐射能信号。本文提出利用炉内多层辐射能信号进行炉膛燃烧精细化诊断的设想,并对该炉一次灭火事故进行了详细分析。研究结果表明:多层辐射能信号相比现有的锅炉运行参数能够更迅速更全面地反映炉内燃烧工况的变化,可为帮助查明灭火事故原因提供一个有力的诊断工具。
     为便于将多层辐射能信号引入机组控制系统,本文提出一种将多层辐射能信号进行融合处理得到总辐射能信号的自适应算法,该算法能够克服因某些CCD火焰探头出现周期性积灰、结焦情况导致某些分层辐射能失真带来的不利影响,融合后的总辐射能能够很好地反映负荷的变化趋势,并超前负荷变化30s以上,适合引入机组在线控制系统。本文提出了基于RBF网络自适应整定引入总辐射能反馈信号的燃烧串级控制系统PID参数的控制策略,仿真研究表明该控制算法能快速响应主汽压的阶跃扰动,迅速克服燃料量内扰,其控制效果明显优于常规PID串级控制。
     最后本文介绍了基于总辐射能信号反馈进行风煤比优化控制的原理,针对该直流炉进行了氧量-总辐射能关联特性检测实验,将检测结果应用于该直流炉风煤比优化控制方案设计,在260MW稳定负荷和295MW至280MW变负荷两种工况下进行了风煤比优化控制实验研究。研究结果表明机组DCS控制系统能够自动调整氧量寻求炉内最大辐射能,两种工况下锅炉效率分别提高了0.11和0.35个百分点,经济效益显著,具有良好的产业化应用前景。
The coal acts an important role in our country’s energy structure. In the utility boilers using coal as the input fuel, the uneven combustion, the bias of the flame center, the rushing of the flame to the walls etc., which result from the unreasonable organization of combustion condition, are the important reason leading to the boiler combustion operation failure such as fouling on the furnace wall, the leakage of the water-wall tubes, the flame extinction and the explosion of the furnaces. The image processing techniques had a successful application in the combustion diagnosis of utility boilers, so it is much meaningful to apply the technique into the boiler furnace’s monitoring systems to show the flame’s temperature distribution and optimize the combustion control in furnace in order to improve the boiler’s economical efficiency and security. In this paper, the combustion diagnosis and control based on the radiative image processing techniques in a 300 MW twin-furnace once-through boiler had been done.
     Because of large scale and intensive pulsation of combustion flame in furnace, it is difficult to realize the 3-D temperature visualization in a utility boiler. Because The number of 3-D temperature values of a twin-furnace boiler is twice as those of a single-furnace boiler and the two furnaces is linked each other, it is more difficult to reconstruct the 3-D temperature distribution in the twin-furnace boiler. Based on the research findings of the research group led by Prof. Zhou Huai-chun, Huazhong University of Science & Technology, this difficult problem can be solved effectively: at first, the radiative imaging information could be obtained using the DRESOR method; second, the linear relationship of the 3-D temperature distribution and the flame radiative temperature image could be constructed using the radiative temperature imaging model; in the end, an improved Tikhonov regularization method was used to reconstruct the 3-D temperature distribution in the twin-furnace boiler. The simulation study showed that the reconstruction result was good even with the reconstruction error up to 0.11.
     The hardware and software design of a monitoring system in the twin-furnace boiler are introduced in detail. Through the system, the 3-D temperature distribution in the furnaces could be visualized in industrial computer based on the BCB and OpenGL hybrid programming and could be visualized in the utility unit's DCS control system based on the fieldbus for the first time. The refreshment ratio of the visualization is less than 5 seconds. It helps power plant operators to see the combustion condition such as the position of the flame center, the value of the average temperature and the bias of the flame center, et al more directly and to enforce the combustion adjustment more effectively.
     The multiple layer flame emissivity and characteristic parameters of the 3-D temperature distribution (include the average temperature, the temperature center coordinates of each cross section in furnace) had been measured under different combustion condition. The measurment results showed: the each layer flame emissivity and each layer average temperature is proportional to the unit load; under varied layer fuel quantity, the layer flame emissivity and layer average temperature increase at the areas where the coal density increase; when the oxygen contents decrease, the flame emissivity of the lower two layers increase and the flame emissivity of the higher two layers decrease a little, the radiative heat exchange of the flame center areas increase and the average temperature in full furnace increase at the same time. Based on the typical measurement samples, the dynamic RBF neural network model which using the coal consumption, primary air quantity and second air quantity of each burners as the input variables and the the characteristic parameters of temperature distribution as the output can be constructed. The dynamic model has a good adaptability and overcome the disadvantages of current such models.
     The Multiple Radiant Energy Signals (MRES) which reflect the combustion intensity of different areas in furnace are obtained by the computer image processing techniques through several Charge Coupled Devices (CCD) cameras installed in the boiler furnaces. In this paper, the idea of using the MRES as the combustion detailed diagnosis tool was put forward. By the analysis of a flame-extinction incident it could be shown that MRES reflects the incident more quickly and comprehensively than other parameters of the boiler, so MRES can play an important role in the combustion diagnosis of large scale coal-fired boilers. The similar incident has not happened after taking the corresponding protective action.
     A new algorithm of fuse MRES into Integral Radiant Energy Signal (IRES) had been put forward. IRES can maintain the maximum correlation with the unit load. The correlation coefficient between them is more than 0.92 and the IRES varies 30s earlier than the unit load. So IRES processed by this algorithm is suitable to been introduced into the unit’s control system. A new control method of tuning the combustion cascade control system’s PID parameters using the RBF neural network is put forward. The result of the simulation research shows that the cascade control system based on the new method can respond the step input of the main steam and overcome the fuel disturbance more quickly and more effectively than the traditional combustion cascade control system. It is featured by strong robustness and self-adaptability.
     The principle of air-coal ratio optimization control were introduced in this paper. The experiment reflecting the associative relationship of oxygen content and IRES in the boiler was done and the results were applied into the scheme design of air-coal ratio optimization control circuit. The optimization experiments under the 260MW stable load and from 295MW to 280MW varied load conditions showed that the maximum IRES can be obtained automatically and the boiler efficiency increased 0.11 and 0.35 percentage respectively.
引文
[1]李蒙,胡兆光.全面建设节能型社会的战略思路[J].中国电力, 2005, 38(9): 6-10
    [2]常志鹏.“绿色煤电”是我国电力工业发展的重要选择.北京:新华网, 2005
    [3]周怀春.基于火焰图像处理的煤粉炉内燃烧过程研究:博士后出站报告[D].武汉:华中理工大学, 1996
    [4]罗万金.电厂热工过程自动调节[M].北京:水利电力出版社, 1991
    [5]李遵基.热工自动控制系统[M].北京:中国电力出版社, 1997
    [6]张师帅.基于辐射能信号反馈的锅炉燃烧与机组负荷控制:博士学位论文[D].武汉:华中科技大学, 2002
    [7]黄群星.炉内弥散介质辐射传递特性及燃烧过程优化控制研究:博士学位论文[D].杭州:浙江大学, 2005
    [8]常瑞丽.利用辐射能信号进行锅炉燃烧控制优化的研究:硕士学位论文[D].杭州:浙江大学, 2006
    [9]罗自学.引入辐射能信号的锅炉燃烧检测及优化控制:博士学位论文[D].武汉:华中科技大学, 2007
    [10]王飞.基于计算机图像处理技术的火焰温度场测量和燃烧诊断:博士学位论文[D].杭州:浙江大学, 2000
    [11]王补宣,李天铎,吴占松.图象处理技术用于发光火焰温度分布测量的研究[J].工程热物理学报, 1989, 10(4): 446-448
    [12]吴占松.发光火焰的图像处理及其在燃烧检测中的应用:博士学位论文[D].北京:清华大学, 1988
    [13] Ohtake K, Okazaki K. Optical CT Measurement and mathematical prediction of multi-temperature in pulverized coal combustion field[J]. International Journal of Heat and Mass Transfer, 1988, 31(2): 397-405
    [14] Young B C, McCollor D P, Weber B J, et al. Temperature measurements of Beulah lignite char in a novel laminar-flow reactor[J]. Fuel, 1988, 67(1): 40-44
    [15] He J M, Zhang Z X, Yang G G. The measurement of temperature-field of combustion flame by CT and the middle IR spectral region optical-fiber sensor technique[J]. International Symposium on Photoelectronic Detection and Imaging: Technology and Applications proceedings, 1993: 341-350
    [16] Hernberg R, Stenberg J, Zethraeus B. Simultaneous in-situ measurement of temperature and size of burning char particles in a fluidized-bed furnace by means of fiberoptic pyrometry[J]. Combustion and Flame, 1993, 95(1-2): 191-205
    [17]王飞,薛飞,马增益,等.运用彩色CCD测量火焰温度场的试验研究及误差分析[J].热能动力工程, 1998,13(2): 81-84
    [18]薛飞,李晓东,倪明江,等.基于面阵CCD的火焰温度场测量方法研究[J].中国电机工程学报, 1999, 19(1): 39-41
    [19]卫成业,严建华,商敏儿,等.利用面阵CCD进行火焰温度分布测量(I) -二维投影温度场的测量[J].热能动力工程, 2002, 17(1): 58-61
    [20]周怀春,娄新生,肖教芳,等.炉膛火焰温度场图象处理试验研究[J].中国电机工程学报, 1995, 15(5): 295-300
    [21]周怀春,韩曙东,郑楚光,等.两种辐射温度图像监测方法的模拟比较分析及其适用性评价[J].中国电机工程学报, 2002, 22(6): 109-114
    [22] Zhou H C, Lou X S, Xiao J F, et al. On a monitoring method of two-dimensional temperature distribution in furnaces for combustion diagnostics[J]. The 3rd Asia-Pacific International Symposium on Combustion and Energy Utilization, 1997
    [23] Zhou H C, Chen H B. Equation relating 2-D monochromatic radiative images and 3-D temperature distributions in pulverized-coal-fired furnaces for combustion visualization[J]. The 1st Asia-Pacific Conference on Combustion, 1997: 70-73
    [24] Zhou H C, Yuan P, Sheng F, et al. Simultaneous estimation of the profiles of the temperature and the scattering albedo in an absorbing, emitting, and isotropically scattering medium by inverse analysis[J]. International Journal of Heat and Mass Transfer, 2000, 43 (23): 4361-4364
    [25] Zhou H C, Sheng F, Han S D, et al. Reconstruction of temperature distribution in a 2-D absorbing-emitting system from radiant images[J]. JSME International Journal, Series B, 2000, 43(1): 104-109
    [26] Zhou H C, Sheng F, Han S D, et al. A fast algorithm for calculation of radiative energy distributions received by pinhole image-formation process from a 2-D rectangular enclosure[J]. Numerical Heat Transfer, Part A: Applications, 2000, 38(7): 757-773
    [27] Zhou H C. Advances in flame image processing and reconstruction of temperature distributions in coal-fired furnaces[J]. Proceedings of the International Conference on Energy Conversion and Application (ICECA'2001), Jun 17-20 2001
    [28] Zhou H C, Han S D, Lou C, et al. A new model of radiative image formation used in visualization of 3-D temperature distributions in large-scale furnaces[J]. Numerical Heat Transfer, Part B: Fundamentals. 2002, 42(3): 243-258
    [29] Zhou H C, Han S D, Sheng F, et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72(4): 361-383
    [30] Zhou H C, Hou Y B, Chen D L, et al. An inverse radiative transfer problem of simultaneously estimating profiles of temperature and radiative parameters from boundary intensity and temperature measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 74(5): 605-620
    [31] Li H S, Zhou H C, Lu J D, et al. Computation of 2-D pinhole image-formation process of large-scale furnaces using the discrete ordinates method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 78(3/4): 437-453
    [32] Zhou H C, Han S D. Simultaneous reconstruction of temperature distribution, absorptivity of wall surface and absorption coefficient of medium in a 2-D furnace system[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2645-2653
    [33] Zhou H C, Chen D L, Cheng Q. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 83(3/4): 459-481
    [34] Zhou H C, Cheng Q. The DRESOR method for the solution of the radiative transfer equation in gray plane-parallel media[J]. Proceedings of the Fourth International Symposium on Radiative Transfer. New York: Begell House, Inc. 2004: 181-190
    [35] Lou C, Zhou H C. Deduction of the two-dimensional distribution of temperature in across section of a boiler furnace from images of flame radiation[J]. Combustion and Flame, 2005, 143(1/2): 97-105
    [36] Zhou H C, Lou C, Cheng Q, et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1699-1706
    [37] Zhou H C, Cheng Q, Huang Z F, et al. The influence of anisotropic scattering on the radiative intensity in a gray, plane-parallel medium calculated by the DRESOR method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 104(1): 99-115
    [38] Lou C, Zhou H C, Yu P F, et al. Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2771-2778
    [39] Yang W J, Taniguchi H, Kudo K. Radiative heat transfer by the Monte Carlo method. In: Hartnett J P and Irvines F T, eds. Advances in heat transfer, San Diego: Academic Press, 1995(27): 1-215
    [40] Kudo K, Kuroda A, Eid A, et al. Radiative load problem using the singular value decomposition technique. JSME International Joumal, Series B, 1996, 39(4): 808-814
    [41]盛锋,周怀春,韩曙东,等.基于图像处理及辐射传热逆问题求解的二维炉膛温度场重建[J].中国电机工程学报, 1999, 19(10): 1-5
    [42]盛锋.基于辐射成像逆问题求解的温度场重建方法研究:博士学位论文[D].武汉:华中科技大学, 2000
    [43]韩曙东,周怀春,盛锋,等.基于具有明显测量误差的辐射图象的二维炉膛温度分布重建和快速特征识别研究[J].中国电机工程学报, 2000, 20(9): 67-71
    [44]娄春,韩曙东,刘浩,等.一种煤粉燃烧火焰辐射成像新模型[J].工程热物理学报, 2002, 23(S1): 93-96
    [45]周怀春,韩曙东,盛锋,等.炉膛燃烧温度场三维可视化监测方法模拟研究[J].动力工程, 2003, 23(1): 2154-2159
    [46]曾佳,娄春,程强,等.大型电站锅炉炉内三维燃烧温度场可视化实验研究[J].工程热物理学报, 2004, 25(3): 523-526
    [47] Kurihara N, Nishikawa M. A combustion diagnosis method for pulverized coal boilers using flame imagere cognition technology[J]. IEEE Transaction on Energy Conversion, 1986, 1(2): 99-103
    [48] Shimoda M, Sugano A, Kimura T, et al. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame[J]. IEEE Transactions on Energy Conversion, 1990, 5(4): 640-645
    [49] Collins S. Advanced flame monitors take on combustion control. Power, 1993(10): 75-77
    [50] Mitsubishi Heavy Industrials, Ltd. Specification of flame detector[D]. 1997
    [51] Correia D P, Ferrao P, Calderira-Pires A. Advanced 3D emission tomography flame temperature sensor[J]. Combustion Science and Technology, 2001(163): 1-24
    [52] Huang Y, Yan Y. Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis[J]. Transactions of the Institute of Measurement and Control, 2000, 22(5): 371-384
    [53] Huang Y, Yan Y, Riley G. Vision-based measurement of temperature distribution in a 500-kW model furnace using the two-colour method[J]. Measurement, 2000, 28(3): 175-183
    [54] Lu G, Yan Y, Ward D D. Advanced monitoring, characterisation and evaluation of gas-fired flames in a utility boiler[J]. Journal of the Institute of Energy, 2000, 73(494): 43-49
    [55] Bheemul H C, Lu G, Yan Y. Three-dimensional visualization and quantitative characterization of gaseous flames[J]. Measurement Science & Technology, 2002, 13(10): 1643-1650
    [56] Lu G, Yan Y, Riley G, et al. Concurrent measurement of temperature and soot concentration of pulverized coal flames[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(5): 990-995
    [57] Yan Y, Lu G, Colechin M. Monitoring and characterisation of pulverised coal flames using digital imaging techniques[J]. Fuel, 2002, 81(SI): 647-655
    [58] Lu G, Yan Y, Colechin M. A digital imaging based multifunctional flame monitoring system[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(4):1152-1158
    [59] Bheemul H C, Lu G, Yan Y. Digital imaging-based three-dimensional characterization of flame front structures in a turbulent flame[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(3): 1073-1078
    [60] Brisley P M, Lu G, Yan Y, et al. Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera[J]. IEEE Transactions on Instrumentation and Measurement[J]. 2005, 54(SI): 1417-1421
    [61] Lu G, Yan Y. Temperature profiling of pulverized coal flames using multicolor pyrometric and digital imaging techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(4): 1303-1308
    [62] Lu G, Yan Y, Colechin M, et al. Monitoring of oscillatory characteristics of pulverized coal flames through image processing and spectral analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(SI): 226-231
    [63]何万青,余岳峰,张银桥,等.基于图像处理和数字视频技术的锅炉多路火焰检测系统[J].热力发电, 2000(3): 45-48
    [64]孙江,徐伟勇,余岳峰,等.据煤粉火焰图像判断燃烧状况的计算机判断算法[J].热力发电, 1997(1): 14-18
    [65]徐伟勇,余岳峰,孙江,等.数字图像处理技术在火焰检测上的应用[J].中国电力, 1994(10): 41-44
    [66]王飞,马增益,卫成业,等.根据火焰图像测量煤粉炉截面温度场的研究[J].中国电机工程学报, 2000, 20(7): 40-43
    [67]卫成业,王飞,严建华,等.利用代数重建技术根据火焰辐射图像测量煤粉火焰断面温度场[J].计量学报, 2001, 22(2): 116-121
    [68]卫成业,王飞,马增益,等.基于炉内火焰辐射图象处理的断面温度场的重建方法研究[J].动力工程,2001, 21(1): 1046-1049
    [69]卫成业,严建华,商敏儿,等.利用面阵CCD进行火焰温度分布测量(II)-三维截面温度场的测量[J].热能动力工程, 2002, 17(2): 161-165
    [70]王飞,马增益,严建华,等.利用火焰图像同时重建温度场和浓度场的试验研究[J].动力工程, 2003, 23(3): 2404-2408
    [71]王飞,马增益,严建华,等.利用火焰图像重建三维温度场的模型和实验[J].燃烧科学与技术, 2004, 10(2): 140-145
    [72] Wang F, Wang X J, Ma Z Y, et al. The research on the estimation for the NOx emissive concentration of the pulverized coal boiler by the flame image processing technique[J]. Fuel, 2002, 81(16): 2113-2120
    [73]刘浩,周怀春,娄春,等.燃煤锅炉炉膛断面温度场可视化实验研究[J].热科学与技术, 2003, 2(3): 250-254
    [74]吴峰,艾育华,娄春,等.蜡烛火焰三维温度场重建实验研究[J].工程热物理学报, 2003, 24(5): 894-896
    [75]程强,娄春,姜志伟,等.工业炉三维温度场可视化试验研究[J].昆明:全国能源与热工2004年学术年会
    [76]姜凡,刘石,卢钢,等.双色法火焰监测分析技术用于火焰温度场的实测试验[J].中国电机工程学报, 2002, 22(12): 133-137
    [77]刘禾,崔槐利,周茵,等.电站锅炉火焰图像检测系统[J].现代电力, 2001, 18(3): 75-78
    [78]苏红雨,杨华元,卜树英,等.电站锅炉炉膛温度分布测量仪的研制[J].计量学报, 2000, 21(1): 134-140
    [79]彭小奇,周海叶,宋海鹰. CCD三色测温的插值修正方法[J].中国电机工程学报, 2004, 24(8): 166-169
    [80]甄成刚,韩璞,牛玉广.炉膛火焰图像处理技术及温度场重构[J].动力工程, 2003, 23(4): 2548-2551
    [81] Zhou H, Cen K F, Fan J R. Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms[J]. International Journal of Energy Research 2005, 29(6): 499-510
    [82] Zhou H, Cen K F, Mao J B. Combining neural network and genetic algorithms to optimize low NOx pulverized coal combustion[J]. Fuel, 2001, 80(15): 2163-2169
    [83] Zhou H, Cen K F, Fan J R. Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks[J]. Energy, 2004, 29(1): 167-183
    [84] Mortensen J H, Moelbak T, Andersen P, et al. Optimization of boiler control to improve the load-following capability of power-plant units[J]. Control Engineering Practice, 1998, 6(12): 1531-1539
    [85] Prieto-Ferndadez I, Santurio-Diaz J M, Folgueras-Diaz B, et al. Generating a representative signal of coal ash content to anticipate combustion control in a thermal power station[J]. Applied Radiation and Isotopes, 2004, 60(5): 725-731
    [86] Prieto-Fernandez I, Luengo-Garcia J C, Alonso-Hidalgo M, et al. Generating a representative signal of coal moisture content to anticipate combustion control in thermal power stations[J]. Fuel Processing Technology 2002, 76(3): 241-255 JUN 1 2002
    [87]王勇,刘文江,袁廷奇,等.基于火焰摄动谱分布的动态燃烧优化[J].化工自动化及仪表, 2003, 30(3): 61-62
    [88]周怀春,娄新生,尹鹤龄,等.采用辐射能信号的电站锅炉燃料调节对象建模及控制仿真研究[J].中国电机工程学报, 1996, 16(4): 226-229
    [89]张师帅,周怀春,黄勇理,等.采用辐射能反馈信号的火电单元机组负荷控制系统仿真研究[J].中国电机工程学报, 2001, 21(2): 85-88
    [90]张师帅,周怀春,贾涛,等.基于炉膛辐射能信号的主汽压特性及仿真研究[J].华中科技大学学报, 2002, 30(2): 54-56
    [91]张师帅,周怀春,彭敏,等.基于炉膛辐射能信号的电站燃煤机组燃烧控制研究[J].中国电机工程学报, 2002, 22(11): 156-160
    [92]李益国,沈炯,王培红,等.基于单向解耦的火电机组负荷最优预见控制方法[J].动力工程, 2004, 24(5): 664-668
    [93]马涛,徐向东,王鑫鑫.基于辐射能检测的智能燃烧进化优化系统研究[J].热能动力工程, 2004, 19(3): 281-284
    [94]李阳春,卫成业,罗志浩,等.以炉膛辐射信号为中间被调量的串级模糊调节策略研究[J].中国电机工程学报, 2001, 21(6): 80-83
    [95]于达仁,范轶,徐志强.炉膛辐射能信号和热量信号的信息融合方法[J].中国电机工程学报, 2003, 23(4): 158-161
    [96] Modest M F. Radiative heat transfer, second edition[M]. San Diego: Academic Press,2003
    [97] Reginska T. A regularization parameter in discrete ill-posed problems[J]. SIAM Journal on Scientific Computing, 1996, 17(3): 740-749
    [98] Reginska T. Regularization of discrete ill-posed problems[J]. BIT Numerical Mathematics 2004, 44(1): 119-133
    [99] Holloway J P, Shannon S, Sepke S M, et al. A reconstruction algorithm for a spatially resolved plasma optical emission spectroscopy sensor[J]. Journal of Quantitative Spectroscopy & Radiative Transfer 2001, 68(1): 101-115
    [100]贾涛,程强,韩曙东, et al.一种火焰辐射图像探头的标定方法[J].热力发电, 2002(05): 23-25
    [101] Keyvan S, Rossow R, Romero C. Blackbody-based calibration for temperature calculations in the visible and near-IR spectral ranges using a spectrometer[J]. Fuel, 2006, 85(5-6): 796-802
    [102] Upson C, Faulhaber T, Kamins D, et al. The application visualization system - A computational environment for scientific visualizaiton[J]. IEEE Computer Graphics and Applications, 1989, 9(4): 30-42
    [103] Dyer D S. A data-flow toolkit for visualization[J]. IEEE Computer Graphics and Applications, 1990, 10(4): 60-69
    [104] Walton J. Visualization of sphere packs using a data-flow toolkit[J]. Journal of Molecular Graphics, 1994, 12(4): 275-281
    [105]王继龙.计算机科学领域的可视化技术[J].计算机与现代化, 2000(6): 19-21
    [106]王常力,罗安.分布式控制系统(DCS)设计与应用实例[M].北京:电子工业出版社, 2004
    [107]孙波. OpenGL编程实例学习教程[M].北京:北京大学出版社, 2000
    [108]周德芳,刘京南,余玲玲.基于OpenGL实现三维重构点云处理[J].电子工程师, 2003, 29(10): 1-3
    [109]石教英,蔡文立.科学计算可视化算法与系统[M].北京:科学出版社, 1996
    [110] Thomesse J P. Fieldbuses and interoperability[J]. Control Engineering Practice 1999, 7(1): 81-94
    [111] Patzke R. Fieldbus basics[J]. Computer Standards & Interfaces, 1998, 19(5-6):275-293
    [112]陈杭君. PROFIBUS现场总线技术在宁海电厂的应用[J].中国电力, 2005, 38(7): 57-60
    [113]卞和营,杨承.现场总线控制系统FCS必将取代集散型控制系统DCS[J].甘肃科技, 2006, 22(7): 33-35
    [114] Modicon modbus protocol reference guide. Modicon Inc, 1996
    [115]龚建伟,熊光明. Visual C++/Turbo C串口通信编程实践[M].北京:电子工业出版社, 2004
    [116]孟开元. Modbus通信协议中CRC校验的快速C语言算法[M].福建电脑, 2004, 11:63-64
    [117]刘林华,余其铮,阮立明,等.煤粉燃烧产物的辐射特性[J].动力工程, 1996, 16(6): 14-21
    [118] Bhattacharya S P, Wall T F. Development of emittance of coal particles during devolatilisation and burnoff[J]. Fuel, 1999, 78(5): 511-519
    [119] Ruan L M, Tan H P. Solutions of Radiative Heat Transfer in Three-Dimensional Inhomogeneous Scattering Media[J]. Journal of Heat Transfer, 2002, 124(5): 985-988
    [120]蔡小舒,罗武德.光谱法测量煤粉火焰温度和黑度的研究[J].工程热物理学报, 2000, 21(6): 779-792
    [121]姜志伟,周怀春,娄春,等.基于图像处理的火焰温度及辐射率图像检测法[J].华中科技大学学报, 2004, 32(9): 49-51
    [122] Jiang Z W, Zhou H C, Lou C, et al. A Detecting method of flame temperature and emissivity image based on color image processing[J]. The 4th International Symposium on Measurement Techniques for Multiphase Flows, 2004(2): 361-365
    [123]娄春,周怀春,姜志伟.燃煤锅炉中火焰黑度的在线检测与分析[J].中国电机工程学报, 2006, 26(4): 6-9
    [124]韩才元.煤粉燃烧[M].北京:科学出版社, 2001
    [125] Wang X F, Zhou H C. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces[J]. Journal ofEnvironmental Science(China), 17(2): 305-308
    [126]王淅芬,周怀春.四角切圆炉膛三维温度分布优化控制建模研究[J].工程热物理学报, 2004, 25(4): 695-698
    [127]黄群星,马增益,严建华,等. 300MW电厂锅炉炉膛截面温度场中心的实时监测研究[J].中国电机工程学报, 2003, 23(3): 156-160
    [128]李汉舟,潘泉,张洪才,等.基于数字图像处理的温度检测算法研究[J].中国电机工程学报, 2003, 23(6): 195-199
    [129]刘禾,刘建松,朱伟波.基于神经网络的燃烧二维温度场测量模型[J].动力工程, 2005, 25(2): 249-253
    [130] Dayhoff J E. Neural network architectures: an introduction[M]. New York: Van Nostrand Reinhold, 1990
    [131] N?rgaard M, Ravn O, Poulsen N K, et al. Neural networks for modelling and control of dynamic systems: a practitioner's handbook[M]. London: Springer, 2000
    [132]申春梅,孙锐,吴少华. 1GW单炉膛双切圆炉内煤粉燃烧过程的数值模拟[J].中国电机工程学报, 2006, 26(15): 51-57
    [133]郭建民,刘石,姜凡. 300MW旋流对冲燃煤锅炉燃烧与排放数值模拟[J].锅炉技术, 2006, 37(4): 44-48
    [134]杨浩兴.基于炉膛火焰图像处理的工业锅炉炉膛平均辐射能的计算机算法[J].广西科学, 1999, 6(1): 41-43
    [135]张师帅,周怀春,彭敏,等.基于火焰图像处理的炉膛辐射能信号的检测及分析[J].热能动力工程, 2002, 17(2): 166-168
    [136]杨超.电站锅炉双炉膛燃烧火焰图像处理及辐射能检测应用研究:硕士学位论文[D].武汉:华中科技大学, 2003
    [137]王耀青,刘微.在线调节风/煤比实现经济燃烧控制[J].中国电力, 1997, 30(2): 14-19
    [138] Zhou H C, Zhang S S, Huang Y L, et al. Monitoring of 2-D combustion temperature images in a 670 t/h utility boiler and simulation on its application in combustion control[J]. Developments in Chemical Engineering and Mineral Processing, 2000, 8(3/4): 311-322
    [139] Luo Z X, Zhou H C, Wu L B, et al. RES introduced through flame image processing and visualization of 3-D temperature distribution in a coal-fired boiler furnace[J]. Proceedings of the ASME Power Conference, 2005 PART A: 795-800
    [140]罗自学,梁培露,周怀春,等.引入辐射能信号的锅炉氧量寻优控制研究[J].中国电机工程学报, 2006, 26(23): 100-103
    [141]周怀春.炉内火焰可视化检测原理与技术[M].北京:科学出版社, 2005
    [142]李洪志.信息融合技术[M].北京:国防工业出版社, 1996
    [143]罗自学,杨超,周怀春.炉膛辐射能信号的提取机理及其应用研究[J].动力工程, 2005, 25(3): 374-377
    [144]刘志远,吕剑虹,陈来九.智能PID控制器在电厂热工过程控制中的应用前景[J].中国电机工程学报, 2002, 22(8): 128-134
    [145]刘吉臻,李建强,张栾英,等.用RBF网络整定的火电厂主汽温PID串级控制系统[J].动力工程, 2006, 26(1): 89-92
    [146]南京工学院,西安交通大学热能动力教研室.电厂锅炉原理.北京:电力工业出版社, 1982
    [147]王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社, 2005
    [148]汪胡桢主编.现代工程数学手册(第IV卷)[M].武汉:华中理工大学出版社, 1987
    [149] Warwick K, Hunt K J. Neural network applications in control[M]. United Kingdom: The Institution of Electrical Engineers, 1995
    [150]王耀青,刘微,刘竞.燃烧系统最佳风/煤比曲线在线自学习算法[J].华中理工大学学报, 1996, 24(3): 83-87
    [151]张家琛.火电厂仿真[M].北京:水利电力出版社, 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700