用户名: 密码: 验证码:
汽轮机组微波谐振腔湿度测量方法实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大型火力发电厂中,汽轮机内蒸汽湿度、透平油中含水率和氢冷发电机中氢气湿度都直接影响着机组的安全经济运行。凝汽式汽轮机的末几级工作在湿蒸汽区。湿蒸汽会对汽轮机运行带来湿汽损失和叶片侵蚀两方面的问题。透平油含水率过高会使油的抗乳化度降低而失去润滑性能,不能在轴承内形成稳定的油膜,引起轴颈和轴承的非正常磨损、“烧瓦”、“抱瓦”等事故。氢冷发电机内氢气湿度增大,将导致发电机定子绝缘及金属结构件腐蚀,严重时造成接地或相间短路等重大事故。因此,蒸汽湿度、透平油中含水率和氢气湿度准确测量与确定是一个重要的研究方向,对机组的安全经济运行提供帮助与指导。
     本文以微波谐振腔微扰测湿技术应用研究为课题,主要在汽轮机排汽湿度、透平油含水率和发电机冷却氢气湿度检测技术和实验研究两个方面开展研究工作。
     分析了汽轮机排汽、透平油和湿氢气的介电特性,分别导出了含湿介质等效介电常数与介质湿度关系的表达式;提出了基于微波谐振腔微扰技术测量汽轮机透平油含水率的微波谐振腔微扰法,阐述了该测量方法的原理;确定了适用于测量介质湿度的谐振腔类型、谐振腔工作模式、导出了选定谐振腔类型和工作模式的谐振腔频偏与介质湿度的关系。
     研究了微波谐振腔微扰法测湿技术实现及测量装置研制中的一些关键问题。对微波谐振腔测湿装置进行了设计,根据微波频段不同波长与水的介电常数对应关系及工作波长对谐振腔尺寸的要求确定了工作频率;谐振腔作为测量装置的传感器,是测量装置的关键部件,其结构及电磁特性优劣对测量精度有很大影响,借助ANSOFT HFSS软件对谐振腔的结构进行了优化设计;对设计的谐振腔进行了高频电磁特性分析。
     设计了汽轮机排汽湿度在线测量系统并安装在保定热电厂200MW机组;对该系统采样装置进行了设计工况下的模拟计算,确定了采样位置与实验测量方法。设计、搭建透平油实验系统,为研究谐振腔温度与频偏的关系、透平油含水率与频偏的关系提供了实验平台。
     利用自建实验系统,实验得到了透平油测量谐振腔温度与频偏的关系曲线(谐振腔温度漂移补偿曲线)、拟合并得出了关联公式;进行了透平油含水率与谐振腔频偏关系实验,分析了影响测量的主要因素;并对含水透平油电学特性进行了实验与分析;进行了汽轮机排汽湿度在线测量工业试验,测量结果稳定,实验工况下,与现场真空状态相比,谐振腔频偏基本稳定在113KHz,实验表明,谐振腔测湿方法可行。
In large power plant, wet steam in turbine and water in turbine oil and wet hydrogen in hydrogen-cooled generator will decrease safety and economic of turbine generating unit.
     The last several stage of condensing steam turbine, the presence of wet steam leads to problems of blade erosion and losses in turbine efficiency.
     High level water ratio in turbine oil would introduce the oil demulsibility reduced, and then the lubrication performance and stable thick oil film can’t be formed. The abnormal wear of journal and bear, burned liner and stick to liner would occur.
     High wetness in hydrogen of hydrogen-cooled generator would introduce corrosion of generator stator insulation and metal structures. Even cause major accident such as grounding and inter phase short circuit.
     So the accurate measurement of steam wetness and water ratio and wetness in hydrogen is a important research direction which can provide guiding for safe and economic operation of unit.
     Wetness measurement by the method of microwave resonant cavity perturbation is studied in the paper. Research is focused on detection technique and experimental study for turbine exhaust wetness and water ration in turbine oil and wetness in hydrogen of hydrogen-cooled generator.
     The dielectric characteristics of turbine exhaust and turbine oil with water and wet hydrogen is studied
     The expression of relationship between aquifer medium effective permittivity and medium wetness is derived. A method of wetness measurement based on microwave resonator perturbation is presented. The measurement method principle is described, and the coincided resonator type and working mode for different wetness is determined, and the relationship between frequency offset in resonator with chosen working mode and medium wetness is derived.
     Key problems of this measurement technology in the microwave resonant cavity perturbation method implementation and measurement device development are studied. When designing the microwave resonator perturbation, the working frequency is determined based on the relationship between different wave length and water dielectric constant and the resonator proper size according to the working wave length.
     As the sensor of measurement device, the resonator is the key parts of measuring device, its construction and electromagnetic property is important to measuring accuracy, the resonator construction is optimum designed by ANSOFT HFSS, and the high frequency electromagnetic characteristic of the resonator is analyses.
     On-line turbine exhaust wetness measurement system is designed and installed on the 200mw unit in Baoding power plant.
     The design condition of sampling device is numerical simulated, and the sampling location and measurement method is determined. The experimental system of turbine oil is designed and put up which provide experimental platform for studying the relationship between resonator temperature and frequency offset, and the relationship between water ratio in turbine oil and frequency offset
     Using the self-building experimental system, the curve between resonator temperature and frequency offset is obtained by experience. The correlation formulas are obtained by smooth curve fitting. The water ratio in turbine oil and frequency offset has been experimentally investigated. The main factors are analyzed. Electrical properties of turbine oil with water have been experimentally investigated. Industrial test for turbine exhausts wetness on-line measurement system provided a stable result. In the experimental operating conditions, frequency offset kept a stable population in 100 kHz according to the vacuum state in field. The experience shows the moisture content measurement is feasible.
引文
[1]施红辉.湿蒸汽透平级动叶片水滴侵蚀破坏的理论与实验研究:[博士学位论文].西安:西安交通大学,1989
    [2]张荻.湿蒸汽透平级动叶水滴运动、液固撞击及水蚀疲劳特性研究:[博士学位论文].西安:西安交通大学,2001
    [3] Moore M.J., Sieverding C.H. . Two-phase steam flow in turbine and separators,Hemisphere Publishing Corporation, 1976,73~77
    [4]翦天聪.汽轮机原理.北京:水利电力出版社,1992,65~67
    [5]沈士一,庄贺庆,康松,庞立云等.汽轮机原理.北京:水利电力出版社,1992,56
    [6]曹祖庆,潘武威,钱为民.汽轮机原理.北京:中国工业出版社,1962,49
    [7]俞茂铮,黄跃.汽轮机末级隔板中的水分沉积规律及去湿方法.汽轮机技术,1988,5:44~46
    [8]蔡颐年.蒸汽轮机.西安:西安交通大学出版社,1988.156~158
    [9]罗竹杰,吉殿平.火力发电厂用油技术.北京:中国电力出版社,2006.70
    [10]吴季兰.汽轮机设备及系统.北京:中国电力出版社,1998
    [11]唐福顺,李晓堂,陈保惠,等.汽轮机油乳化原因及处理措施.汽轮机技术,1999,41(1):36~37
    [12]李祥苓.主机油中进水原因分析及防范措施.电力安全技术,2003,5(5):41
    [13]高俊昌,曹秀章.汽轮机油带水的原因及治理.华东电力,1997,10:35~36
    [14]吕明.发电机氢气湿度标准制定及实施.电力标准化与计量,2005,2:32~34
    [15]张颖峰.氢气湿度对发电机的影响及解决措施.工厂动力,1994,3:40~45
    [16]黄成平.氢冷汽轮发电机运行与检修.北京:水利电力出版社,1989,79
    [17]蔡颐年,王乃宁.湿蒸汽两相流.西安:西安交通大学出版社,1985,6~8
    [18]傅丰,赵在三,郁鸿凌.气液双相流体干度测量的研究与发展.动力工程, 1991,5:11~17
    [19] Darazs M. The Determination of the dryness fraction of saturated steam.Report COAL 8409,National Institute for Coal Research,1984,25
    [20]王乃宁.汽轮机蒸汽湿度测量的研究和进展.上海机械学院学报,1982,2:13~16
    [21] Dykas S. Numerical calculation of the steam condensing flow. Seminar/Summer School on“CFD for Turbo machinery Applications”,2001, 5(4), 519~535
    [22]韩中合,杨昆.汽轮机中蒸汽湿度测量方法的研究现状.华北电力大学学报,2002,10(4):44~47
    [23] Dibelius G.,Dorr A.. Erfahrungen mit der bestimmung der dampffeuchte bei den Abnahmeversuchen in kernkraftwerk biblis , VGB Kraftwerkstechnik Heft9,1977,62
    [24] Williams G J. Instruments for wet steam measurements. Sixth Thermo Dynamics and Fluid Mechanics Convention, In: Mech.Engrs.1976.116
    [25] Moore M J, Langford R W.The measurement of wetness fraction in operating turbines, Sixth Thermo Dynamics and Fluid Mechanics Convection, Insth. Mech. Engrs, 1976.152
    [26]张兆基,杜秉乾,曾功德.蒸汽湿度的测量.热力发电,1984,6:1~5
    [27]李炎锋.流动湿蒸汽湿度测量的理论与实践:[博士学位论文],西安:西安交通大学,1999
    [28] Yang S R, Wang J G., Chen F, Zhang C J. Automatic wetness fraction monitoring for steam flow. Proc. of 11th IFAC World Congress, Tallinn, Estonia, 1990: 176~179
    [29] Waly J S, Desai K J. Moisture measurements in a low-pressure steam turbine using laser light scattering probe. ASME, Journal of Engineering for Power, 1978.10
    [30] Keritmeir F. An investigation of flow in a low pressure wet steam model turbine and its use for determining wetness losses, Insth. Mech. Engrs, 1979
    [31] Yu P Y W, Varty R L. Laser-doppler measurement of the velocity and diameter of bubbles using the triple-peak technique, International Journal of Multiphase Flow, 1988 , 14(6):765~756
    [32] Hesler S H, Maurer R H, Shuster L H, et al. Optical probe for measurement of steam wetness fraction in LP turbine. International Joint Power Generation Conference. ASME, 1998, 2:213~219
    [33] Petr V, Kolovrratnik M. Contribution to the wet steam flow problems in LP Steam turbines. In : Proc.of 2nd European Conference on Turbomachinery-Fluiddynamics and Thermodynamics, Antwerpen, Belgium, 1997
    [34]张弘,蔡小舒,王夕华.汽轮机内湿蒸汽实验测量技术现状.热力透平,2007,36(1):1~7
    [35] Gyarmath G, Lesch, F. Fog droler observation in laval nozzles in an experinent turbine, Proc. I. Mech. E, Part 3G(Ⅲ),1970
    [36] Petr V. Measurement of an average size and number of droplets during spontaneous condensation of supersaturated steam, Proc. Instn. Mech. Engrs., 1970
    [37] Moore M J. Gas dynamics of two-phase media and energy losses to wet steam lect. ser. 70, Von-Karman-Inst. for Fluid Dynamics, Brussel, 1974
    [38] Smith A. Experimental knowledge on wet steam turbines, Lect. Ser. 72, Von-Karman-Inst. for Fluid Dynamics, Brussel, 1974
    [39]汪丽莉,蔡小舒.汽轮机湿蒸汽两相流中水滴尺寸研究进展.上海理工大学学报,2003,25(4):307~382
    [40]蔡小舒,卫敬明,王乃宁,郑刚等.光学探针测量汽轮机徘汽的实验研究,动力工程,1992,12(1):54~~58
    [41]蔡小舒,王乃宁.能同时测量低压汽轮机内流场和湿度的联合探针的研制及实验研究.动力工程,1999,19(3):55~58
    [42]蔡小舒,迂丽莉,欧阳新,苏明旭.低压汽轮机内湿蒸汽两相流测量,上海汽轮机,2002,1:23~29
    [43]施红辉、徐廷相.消光法微粒直径测量仪研制中的几个问题的分析,西安交通大学学报,1985.12
    [44]林之融,庄锦祥.光学式水蒸汽湿度测量仪的研制.厦门大学学报(自然科学版),996,35(4):518~521
    [45] Bohn D. Beschreibung des streulichtmessverfahrens zur Tropfengroessenspektrometrometrie. VGB, 1995
    [46] Tanuma T, Sakamoto T. The Removal of Water from Steam Turbine Stationary Blades by Suction Slots. C423/022 IMechE, 1991., 179~199
    [47] Bohn D. Holzenthal K. Measurement of the wetness fraction and droplet size distribution in a condensation turbine. Aachen: Aachen University of Technology, 1997
    [48] Wicks M, Dukler A E. Initu measurements of drop size distribution in two-phase flow-A new method for electrically conducting liquids. 3rd Int Heat Transfer Conference [C], Chicago, 1969, 5:39~43
    [49] Stastny M. Structure of secondary liquid phase downstream of moving blades in LP cylinder stages of steam turbines[C]. ImechE Conference on Steam Turbines forthe 1980’s , London:No C188/79, 1979, 371~~384
    [50] Laali A R,Courant J J. Calculation and measurement of fog droplet size: comparison between nuclear and fossil fired turbine, design, repair and refurbishment of steam turbine of ASME. 1991, 13
    [51] Dobkes A L, Zil’Ber T M. Studying the characteristics of wet steam in turbine flow sections[J]. Translated from Teploenergetika, 1992, 39 (1):56~60
    [52] Willianms G J, Lord M J. Measurement of coarse water distribution inLP cylinders of operating steam turbines. Proc. of Inst. Mech. Engnrs., 1976, 190(4):59~69
    [53]蔡小舒,汪丽莉,潘咏志.一种新型的测量汽轮机内湿蒸汽两相流的集成化探针系统.工程热物理学报,2001,22(6):52~57
    [54]张杏梅,王可华,仲卫东等.关于电厂运行中汽轮机油质量标准的运用.山东电力技术.2001,6:18~21
    [55]中华人民共和国水利电力部.电力系统油质试验方法.水利电力出版社.1984.7
    [56]郭洪波,张志强,于达仁等.透平油微水含量在线检测方法研究综述.汽轮机技术.2001,43(2):65~68
    [57]刘文滨.含水分析仪.计量技术,2002,2:14~15
    [58]茅有福,许德霖.高分子薄膜电容式湿敏元件的结构与特性.中国电子学会首届全国湿敏元件与传感器学术会议,北京,1989:275~277
    [59] Ralston A RK, Buncick M C, Denton D D, et al. Effects of aging on polyimide : a model for dielectric behavior(of relative humidity sensors).Solid-State Sensors and Actuators,1991.Digest of Technical Papers,TRANSDUCERS’91,1991 International Conference on,1991:759~763
    [60] Melcher J. Dielectric effects of moisture in polyimide . IEEE Transactions oil Electrical Insulation.1989,24(1):31~38
    [61] Melcher J,Yang Deben, Arlt G . Dielectric effects of moisture in polyimide Electrical Insulation, IEEE Transactions on [see also Dielectrics and Electrical Insulation, IEEE Transactions on], 1989, 24(1):31~38
    [62]丁振荣,陈卫民.基于CAV424的油品含水率在线测量仪的研制.工业仪表与自动化装置,2004,8(5):26~28
    [63]田丽平,田春梅,董子明.γ射线含水分析仪在分队计量中的应用.油气田地面工程,2004,23(10):23~24
    [64]王国庆,张健.原油含水分析仪技术发展现状.油气田地面工程,2004,23(5): 33~34
    [65]曾发江,蒋明民,苑韬等.物质所含水微波检测方法探讨.郑州轻工业学院学报,2000,15 (4):118~120
    [66]唐英.氢冷汽轮发电机氢气湿度问题分析.东方电机,2002,3O(4):370~372
    [67]杨玉顺,王滨,尚希禹,等.干湿表测量氢冷发电机氢气湿度的研究.工程热物理学报,1998,19(2):154~157
    [68]白亚民,吕明.发电机氢气湿度监测及应用仪表的调查与研究.华北电力技术,2001,8:1~4
    [69]叶昌林.发电机氢气湿度监测技术的研究与应用.东方电气评论,1995,9(1):45~48
    [70]俞明芳.发电机氢气湿度在线检测的应用.浙江电力,1997,5:52~54
    [71]罗秉铎,刘重光.微波测湿实用技术.北京:电子工业出版社,1990.69~98
    [72] Rouleau J F,Goyette J,Bose T K. Performance of a microwave sensor for the precise measurement of water vapor in gases. IEEE Transactions on Dielectrics and Electrical Insulation. 2000,7(6):825~831
    [73]李玉忠.恶劣环境条件下的湿度测量.国外分析仪器技术与应用,2001, 1:33~37
    [74]韩中合,张淑娥,田松峰等.汽轮机排汽湿度谐振腔微扰测量法的研究.中国电机工程学报,2003,23(12):199~202
    [75]黄正华.减小水矿化度对测量原油含水率的影响.油气田地面工程,1999,18 (1):24~26
    [76] Haller B R, Unsworth R G. Wetness measurements in a model multistages low pressure steam turbine, Technology of Turbine Plant Operating with Wet Steam. BNES, London, 1988
    [77] Kleitz A, Lssli A R. Fog droplet size measurement and calculation in wet steam turbine, Technology of Turbine Plant Operating with Wet Steam. BNES, London, 1988
    [78] Kleitz A, Laali A A, Courant J J. Water droplet sizing in LP and HP wet steam turbines. Fluid Machinery Forum, ASME, 1991,99~104
    [79] Stastny M. An experimental research into flow of wet steam through the large stage of a full scale turbine. Sixth thermodynamics and fluid mechanics convention In. Mech. Engrs. 1976
    [80] Thorpe A D, Wood M R. Coarse-water distribution within the low-pressure stages of a 350MW Steam Turbine. Inst. Mech. Eng., Wet Steam 2, The Institution, 1970
    [81] Dobkes A L, Zil’Ber T M. Studying the characteristics of wet steam in turbine flow sections. Translated from Teploenergetika, 1992, 39(1):56~60
    [82]斯蒂弗H G著,徐华舫译.气体动力学基本原理(F)—高速流体中的凝结现象.北京:科学出版社, 1988:12~16
    [83]李宗谦,佘京兆.微波技术.西安:西安交通大学出版社,1991:13~25
    [84]李英.微波、毫米波传感器与非电量检测.北京:电子工业出版社,1991,24~144
    [85]罗秉铎,刘重光.微波测湿实用技术.北京:电子工业出版社,1990,16
    [86]克里切夫斯基(Кричевский,Е.С.).水分检测的原理与装置.北京:中国计量出版社,1986,43
    [87]韩中合.汽轮机排汽湿度谐振腔微扰测量技术的研究:[博士学位论文],保定:华北电力大学,2005
    [88]陈振国.微波技术基础与应用.北京:北京邮电大学出版社,1996,148~152
    [89]马守全.微波技术基础.北京:中国广播电视出版社,1989
    [90]殷之文.电介质物理学.北京:科学出版社,1989,7~106
    [91] Rouleau J F,Goyette J,Bose T K. Optimization study of a microwave differential technique for humidity measurement in gases. IEEE Trans. On Instrumention and Mea--surement,2001,50(3):839~845
    [92]赖发春,瞿燕.用锁相放大器测量热敏电阻的温度特性.福建师范大学学报(自然科学版),2002,18(2):45~47
    [93]廖承恩.微波技术基础.北京:国防工业出版社,1984:298~312
    [94]陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [95]中华人民共和国国家技术监督局. JB 2829-80.机械工业部设计标准,北京:中国标准出版社,1982,9(6)
    [96] Seleznev Y S. A method for determining droplet size distributions in two-phase. Flows Fluid Mechanics-Soviet Research, 1980, 9(6)
    [97] Ounis H, Ahamadi G, McLaughlin J B. Brownian diffusion of submicrometer particles in the viscous sublayer. Journal of Colloid and Interface Science, 1991,143(1):266~277
    [98] Li A, Ahmadi G., Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Science and Technology, 1992, 16:209~226
    [99]艾伦[英],喇华璞,等译.颗粒大小测定.北京:中国建筑出版社,1984
    [100]哈尔滨汽轮机厂.汽轮机调节系统的设计.北京:电力工业出版社.1980: 57~63
    [101]温念珠.电力用油实用技术.北京:中国水利水电出版社,1998,29~31,46
    [102]金虎杰,韩德万,王成贵.液体电阻率与温度和浓度之间关系的测量.延边大学学报,2003,29(1):73~75
    [103]潘兆柏,杨晓方,刘文.电学特性原油含水分析仪的应用.油气田地面工程,2000,3:53~55
    [104]王升龙.汽轮机排汽湿度在线监测方法及应用研究:[博士学位论文],保定:华北电力大学,2005
    [105]罗竹杰,吉殿平.火力发电厂用油技术.北京:中国水利水电出版社,2006,42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700