用户名: 密码: 验证码:
两种基因型水稻根际微域中重金属镉形态差异及其有效性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国最重要的粮食作物之一,但是由于近些年来农田重金属镉污染的日益加剧,所以稻米的食品安全问题越来越为人们所关注。根际环境作为有别于一般土体的特殊土壤环境,直接影响了重金属镉在土壤中的形态及其有效性,对研究重金属镉水稻污染具有重要意义。本论文围绕土壤-镉-水稻-微生物之间的相互关系,对镉胁迫下两种不同基因型水稻的生长及生理生化特性、水稻体内镉的迁移分配规律、镉在水稻毫米级根际微域中的形态变化、不同供铁条件下两个水稻品种的根系分泌物差异以及对镉吸收的影响等开展了研究,获得以下主要研究结果:
     1.以我国东南地区水稻土黄斑田为供试土壤,籼稻四喜占(Sixizhan)和粳稻浙农54(Zhenong54)为供试水稻品种,采用多隔层三室根箱法开展盆栽试验(通过尼龙撩网插片的使用,把水稻根际土壤划分成根室,lmm、2mm、3mm、5mm近根际以及>5mm远根际等毫米级微域),通过改良的Tessier重金属分级提取法研究测定重金属镉在根际微域的形态变化(交换态、铁锰氧化态、有机质结合态、残留态)。实验结果表明,重金属镉各个形态含量,尤其是可交换态镉含量在根际微域中存在距离根系不同远近的差异,含量基本呈现根室、近根际<远根际的趋势;两个水稻品种在近根际不同毫米级微域以及根室中也存在着基因型的差异。就可交换态镉而言,浙农54的最低含量出现在近根际1或2mm处,而四喜占出现在根室,这与植物营养学中提到的营养因子根际梯度递减效应有所不同,说明重金属污染物的根际效应具有其特异性。相对应的是,两个水稻品种根际微域的土壤生物量碳含量趋势正好与土壤可交换态镉相反。由此可见,根室、近根际微域中有适宜的根系分泌物水平、根际微生物活性以及植物对交换态镉的吸收能力,这可能是诱导重金属镉形态变化的根本原因。
     2.从阐明重金属镉在不同基因型水稻植株体内的生态行为角度出发,深入研究了重金属镉对两种不同基因型水稻生长抑制和抗氧化酶活性变化的差异,以及重金属镉在不同水稻品种体内迁移积累规律的差异。研究发现分蘖期镉胁迫下四喜占较浙农54受毒害严重,株高、干重以及POD和CAT酶的活性较无镉对照都有一定程度的下降,镉由根转移至茎、叶所占的比例较大;而至收获期,四喜占地上部分对镉的积累则显著减少。浙农54相较于四喜占有相反趋势,分蘖期时浙农54受毒害较轻,表现为株高、干重以及酶活性无明显抑制作用或高浓度时有抑制作用,且镉由根转移至地上部分的比例不大,而至收获期时,浙农54茎对锅的积累显著增加,最终导致浙农54籽粒含镉量较四喜占大。因此,不同品种或同一品种不同发育时期对镉胁迫的敏感性和耐受性不同,若仅研究镉胁迫对水稻某一时期的影响,结果有其局限性。
     3.研究了缺铁和供铁条件下两种水稻品种根际分泌物的差异及其对植株吸收重金属镉的影响。结果表明,不同基因型水稻根际分泌物对供铁水平的响应差异与植株对镉的吸收有一定关系。两个水稻品种在缺铁和供铁条件下表现出的大致趋势相同:在缺铁处理中,水稻根系有机酸分泌的量较供铁处理都有显著的增加,植株对重金属镉的积累量也较供铁处理有显著的增加,但地上部分和根部干重较供铁处理有所下降。尽管趋势相同,但是两个水稻品种之间还是有一定的差异,其中四喜占缺铁处理时根系分泌物总量较浙农54缺铁处理根系分泌物总量大;四喜占根部和地上部对重金属镉的积累量均显著大于浙农54,加铁处理无显著差异;加铁处理的浙农54的地上部分和根部干重大于四喜占。
     4.实验对镉胁迫下不同水稻基因型对镉、锌、钙、硫的吸收积累差异及三者与镉吸收积累之间的关系进行了研究。结果表明,锌、钙、硫对不同基因型水稻的生长及镉吸收有一定影响,并与不同生长阶段相关。不同处理中土壤镉的添加浓度极显著影响了两个品种水稻对镉的吸收和镉在地上部的积累(p<0.001),同时镉在地上部的积累还存在基因型和不同生长阶段的差异。整体而言,收获期时两个品种水稻地上部锌和硫含量较分蘖期都有减少,但收获期时两个品种地上部钙的含量却有所增加;加锌和加钙处理对水稻植株地上部干重有一定程度的增加,其中以分蘖期Teqing最为显著。
Rice (Oryza sativa L.) is one of the most important staple cereal crops in a large part of the world, especially in China. However, anthropogenic activities, such as agricultural practices, transportation, industrial activities and waste disposal have increased the concentrations of toxic elements such as cadmium (Cd) in agricultural soils. Cadmium has no metabolic role in living organisms, and is highly toxic and non-biodegradable. However it can be effectively absorbed and transported within rice plants. Thus, it can readily enter into the food chain, resulting in phytotoxicity and consequently causes serious threats to human health.
     This dissertation aimed to understand the behavior of Cd speciation in rhizosphere microzone, determining the genetic difference between two rice cultivars in its growth, physiological-biochemical characteristics, absorption and accumulation regulation in the different rice tissues. The main experiments and conclusions are as follow:
     1. To investigate rhizosphere effects on the chemical behavior of Cd, a glasshouse experiment was conducted in rhizobox, where two rice cultivars were grown in a soil spiked with cadmium at concentrations of3.9±0.5and8.3±0.5mg per kg soil until ripening stage. Chemical forms of cadmium with respect to root surface were then assessed using sequential extraction procedure (SEP). The results showed significant difference of Cd species, especially EXC-Cd (exchangeable-Cd) between two rice cultivars as affected by rice roots. The soil lowest EXC-Cd of Zhenong54appeared at near-rhizosphere area with a little difference under two Cd levels (lower Cd level showed the lowest EXC-Cd in1mm as higher Cd level showed in2mm) while Sixizhan had its lowest EXC-Cd at the root compartment. Both cultivars presented slight changes of FMO-Cd (Fe/Mn oxide-bound fraction) at ripening stage while the control treatments without plants had a significant increasing of FMO-Cd at ripening stage, indicating a transformation from less bioavailable form (FMO-Cd) to more bioavailable forms (EXC-Cd). Soil total microbial biomass carbon in the vicinity of the root surface had the opposite trends to some extent with EXC-Cd. Thus, the change of Cd speciation in the rhizosphere was mainly because of the suitable root exudates level, the microbial activities and the rice ability to absorb EXC-Cd in rhizosphere.
     2. Plant Growth and physiological-biochemical characteristics under Cd pressure were investigated and the absorption regulation in the different rice tissues was studied. The results indicated that in tillering stage Sixizhan transferred more Cd from the root to the shoot, the height, dry weight and activities of Antioxidant enzyme system of Sixizhan were all decreased at some extent. Thus Cd caused more severe damage than Zhenong54in tillering stage. While in the harvesting stage, Sixizhan had less Cd accumulation in the shoots. However, Zhenong54had the just opposite trend Sixizhan had. Zhenong54had less Cd in the shoot and suffered less severe damage in the tillering stage, while Cd accumulation obviously increased in the harvesting stage, which finally caused larger grain Cd content in Zhenong54than in Sixizhan. Therefore, it is not appropriate to evaluate the effect of Cd pressure on rice just in one growth period because the Cd effects were different among different cultivars and among different growth periods.
     3. In order to evaluate the root exudates difference between rice cultivars under different iron conditions and the exudates effect on Cd absorption by rice, a Hydroponic experiment was conducted under different Cd and Fe concentrations. The results showed that genetic-induced root exudates under different Fe conditions can finally affect the rice Cd absorption. The two rice cultivars indicated almost the same trend with or without Fe added:rice root exudates content (low molecular weight organic acid) was enlarged when Fe was not added, and the rice Cd accumulation was also increased whereas the dry weight of rice shoot and root were decreased. Despite those some trend, the two rice cultivars had their difference in different situations:with no Fe added, Sixizhan had larger root exudates amount than Zhenong54did, the Cd accumulation in its shoot and root was also obviously larger than Zhenong54s'; when Fe was added, the shoot and root dry weight of Zhenong54was larger than Sixizhan.
     4. A green house experiment was conducted to study the different rice Cd absorption between different rice cultivars when exogenous Zn, Ca and S added. It was found that rice growth and plant Cd absorption difference between two rice cultivars were affected by exogenous Zn, Ca and S, and was changed with the rice growth period. Different added Cd levels obviously affected the rice Cd absorption and Cd distribution in different rice shoots (p<0.001). At mean time, Cd accumulation in rice shoots was varied between rice cultivars and rice growth period. Overall, the Zn and S contents in two rice cultivars decreased in harvesting stage, whereas the Ca contents increased; the Zn and Ca treatment increased rice shoot dry weight, especially in Teqing cultivar.
引文
Adams, M.A., Chen, Z.L., Landman, P., Colmer, T.D.,1999. Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal. Biochem.,266:77-84.
    Aebi, H.,1984. Catalase in vitro. Methods Enzymol.,105:121-126.
    Alloway B.J.,1990. Cadmium. In Heavy Metals in Soils. B.J. Alloway (Ed.). Wiley, New York, USA. pp,100-124.
    Almas, A.R., Bakken, L.R., Mulder, J.,2004. Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biol. Biochem.,36(5):805-813.
    Alva, A.K., Huang, B., Paramasivam, S.,2000. Soil pH affects copper fractionation and phytotoxity. Soil Sci. Soc. Am. J.,64:955-962.
    Andersson, A., Nilsson, K.O.,1974. Influence of lime and soil pH on Cd availability to plants. Am. Biol.,3:198.
    Anderson, T.A., Coats, J.R.,1994. Bioremediation through Rhizosphere Technology. American Chemical Society, Washington D.C. pp,93-99.
    Anderson, T.A., Gunthrie, E.A., Walton, B.T.,1993. Bioremediation in the rhizosphere. Environ. Sci. Technol.,27:2630-2636.
    Angus, S.,1999. Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol.,121:1375-1382.
    Anthony C.,1997. Methyl mercury contamination and emission of the atmosphere from soil amended with municipal sewage sludge. Environ. Qual.,26:1650-1655.
    Arahou, M., Diem, H.G.,1997. Iron deficiency induces cluster (proteoid) root formation in Casuarina guauca. Plant Soil,196:71-79.
    Archambault, D., Marentes, E., Buckley, W., Clarke, J., Taylor, G.,2001. A rapid, seedling-based bioassay for identifying low cadmium-accumulating individuals of durum wheat (Triticum turgidum L.). Euphytica,117:175-182.
    Armstrong, W.,1964. Oxygen diffusion from the roots of some British bog plants. Nature, 204:801-802.
    Armstrong, W., Armstrong, J., Peter, M.,1991. Convective gas-flows in wetland plant aeration. In:Jackson, M.B., Davies, D.D., Lambers, H.,(eds.). Plant Life under Oxygen Deprivation. SPB Academic Publishing bv, The Hague, The Netherlands, pp,283-302.
    Armstrong, W., Beckeet, P.M.,1987. Internal aeration and the development of stellar anoxia in submerged root:A multishelled mathematical model combing axial diffusion of oxygen in the cortex radial gasses to the stele, the wall layer and the rhizosphere. New Phytol.,105:221-245.
    Bais, H.P., Park, S.W., Weir, T.L., Callaway, R.M., Vivanco, J.M.,2004. How plants communicate using the underground information superhighway. Trends Plant Sci., 9(1):26-32.
    Bais, H.P., Walker, T.S., Schweizer, H.P., Vivanco, J.M.,2002. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol. Biochem.,40(11):983-995.
    Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D., Reeves R.D.,1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl.,11:41-49.
    Becher, M., Talke, I.N., Krall, L., Kramer, U.,2004. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J.,37:251-268.
    Bernal, M.P., McGrath, S.P., Miller, A.J.,1994. Comparison of chemical changes in the rhizosphere of the Nickel hyperaccumulater Alyssum murale and the non-accumulator Raphanus sativus. Plant Soil,164(4):251-259.
    Bertin, C., Yang, X., Weston, L. A.,2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil,256(1):67-83.
    Brown, J.C.,1978. Mechanism of iron uptake by plants. Plant cell Environ.,1:249-257.
    Brady. D., Duncan, J.R.,1994. Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzyme Microb. Technol.,16(7):633-638.
    Chaney, R.L., Ryan, J.A., Li, Y.M.,2000. Transfer of cadmium through plants to the food chain. In:Syers, J.K.. and Goldfeld, M., (Eds.). Environmental Cadmium in the Food Chain:Source, Pathways and Risks. Proceeding of the SCPOPE Workshop. Scientific Committee on Problems of the Environment/International Council of Scientific Unions (SCOPE/ICSU). Pari. Sep. pp,13-16.
    Chanmugathas, P., Bollag, J-M.,1987. Microbial mobilaization of cadmium in soil under aerobic and anaerobic conditions. J. Environ. Qual.,16(2); 161-167.
    Chaoui, A., Mazhoudi, S., Ghorbal, M.H., El Ferjani, E.,1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci.,127:139-147.
    Chen, C.C., Dickson, J.B., Turner. F.T.,1980. Iron coating on rice roots:mineralogy and quantity influencing factors. Soil Sci. Soc. Am. J.,44:635-639.
    Chen, H.F., Kao, C.H.,2000. Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci.,156,111-115.
    Cieslinski, G., van Rees, K.C.J., van Szmigielska, A.M., Huang, P.M.,1997. Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solution. J. Plant Nutr.,20:753-764.
    Cieslinski, G., van Rees, K.C.J., van Szmigielska, A.M., Krishnamurti, G.S.R., Huang, P.M.,1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil,203(1):109-117.
    Clarke, J.M., Leisle, D., DePauw, R.M., Thiessen, L.L.,1997. Inheritance of cadmium concentration in five durum wheat crosses. Crop Sci.,37,1722-1726.
    Clemens, S.,2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie,88,1707-1719.
    Cohen, C.K., Fox, T.C., Garvin, D.F, Kochain, L.V.,1998. The role of iron-deficiency stress responses in stimulation heavy metal transport in plants. Plant Physiol.,116: 1063-1072.
    Colmer, T.D.,2003. Long-distance transport of gases in plants:a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ.,26:17-36.
    Conlin, T.S.S., Crowder, A. A.,1989. Location of radial oxygen loss and zones of potential iron uptake in a grass and two non-grass emergent species. Can. J. Bot.,67: 717-722.
    Connolly, E.L., Fett, J.P., Guerinot, M.L.,2002. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell,14:1347-1357.
    COWI A/S,2003. Cadmium review. Nordic Council of Ministers.
    Cui, Y.S., Dong, Y.T., Li, H.F., Wang Q.G.,2004. Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize. Environ. Int..30(3):323-328.
    Cunninngham, S.D.,1995. Phytorcmediation of contaminated soil. Trend Biotechnol., 13(9):393-397.
    Curl, E.A., Truelove, B.,1986. The Rhizosphere. Springer, Berlin, New York, pp,286.
    Dar, G.H.,1996. Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresour. Technol.,56:141-145.
    Darrah, P.R.,1991. Models of the rhizosphere. Plant Soil,138:147-158.
    Del Rio, M., Ruedas, G., Medina, S., Victor, V.M., De La Fuente, M.,1998. Improvement by several antioxidants of macrophage function in vitro. Life Sci.,63: 871-881.
    Dinkelaker, B., Romheld, V., Marschner. H.,1989.Citric-acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ.,12:285-292.
    Ebbs, S.D., Lasat, M.M., Brady, D.J., Cornish, J., Gordon, R., Kochian, L.V.,1997. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual., 26(5):1424-1430.
    Elroy, A.C., Truelove, B.,1986. The Rhizosphere. New York:Springe Verlag Beidelberg. pp,25-73.
    Elzahabi, M., Yong, R.N.,2001. pH influence on sorption characteristics of heavy metal in the vadose zone. Eng. Geol.,60:61-68.
    Ernst, W.H.O.,1996. Bioavailability of heavy metals and decontamination of soils by plants. Appl. Geochem.,11:163-167.
    Fan, J.L., Hu, Z.Y., Ziadi, N., Xia, X., Wu, C.Y.H.,2010. Excessive sulfur supply reduces cadmium accumulation in brown rice(Oryza sativa L.). Environ. Pollut., 158(2):409-415.
    Fergusson JE.,1990. The heavy elements:chemistry, environmental impact and health effects [M]. Pergamon Press, pp,210-231,340-350.
    Foehse, D., Claassen, N., Jungk, A.,1988. Phosphorus efficiency of plants. I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil,110:101-109.
    Foy, C.D., Chaney, R., White, M.C.,1978. The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol.,29:511-566.
    Foyer, C.H., Lelandais, M., Kunert, K.J.,1994. Photooxidative stress in plants. Physiol. Plant,92:696-717.
    Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M.,1997. Hydrogen peroxide-and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol. Plant,100:241-254.
    Fridovich I. The biology of oxygen radical. Science,1978,201:875-880.
    Gajhede, M.,2001. Plant peroxidases:substrate complexes with mechanistic implications. Biochem. Soc. Trans.,29:91-98.
    Gallego, S.M., Benavides, M.P., Tomato, M.L.,1996. Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress. Plant Sci.,121: 151-159.
    Gambrell R. P.,1994. Trace and Toxic Metals in Wetland. A Review. Environ. Qual.,23: 883-819.
    Grant, C.A., Bailey, L.D., Therrien, M.C.,1996. Effect of N, P, and KCl fertilizers on grain yield and Cd concentration of malting barley. Fert. Res.,45:153-161.
    Grayston, S.J., Vaughan, D., Jones, D.,1997. Rhizosphere carbon flow in trees, in comparison with annual plants:the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol.,5:29-56.
    Greipsson, S.,1994. Effects of iron plaque on roots of rice on growth and metal concentration of seeds and plant tissues when cultivated in excess copper. Comm. Soil Sci. Plant Anal,25:2761-2769.
    Greipsson, S.,1995. Effects of iron plaque on roots of rice on growth of plants in excess zinc and accumulation of phosphorus in plants in excess copper or nickel. J. Plant Nutr.,18(8):1659-1665.
    Greipsson, S., Crowder, A. A.,1992. Amelioration of copper and nickel toxicity by iron plaque on roots of rice (Oryza sativa L.). Can. J. Bot.,70:824-830.
    Grzebisz, W., Kocialkowski, W.Z., Chudzinski, B.,1997. Copper geochemistry and availability in cultivated soils contaminated by a copper smelter. J. Geochem. Explor. 58,301-307.
    Guerinot, M.L.,2000. The ZIP family of metal transporters. Biochim. Biophys. Acta, 1465,190-198.
    Gunilla, J.,2002. Cadmium in arable crops:the influence of soil factors and liming, Doctoral thesis, Swedish university of Agriculture Sciences.
    Guo, T.R., Zhang, G.P., Zhou, M.X., Wu, F.B., Chen, J.X.,2007. Influence of Aluminum and Cadmium Stresses on Mineral Nutrition and Root Exudates in Two Barley Cultivars. Pedosphere,17(4):505-512.
    Hall, J.L., Williams, L.E.,2003. Transition metal transporters in plants. J. Exp. Bot.,54: 2601-2613.
    Harris, N.S., Taylor, G.J.,2001. Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation. J. Exp. Bot.,52:1473-1481.
    Harris, N.S., Taylor, G.J.,2004. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. BMC Plant Biol.,4:4.
    Harter, R.D.R., Naidu, R.,1995. Role of metal-organic complexation in metal sorption by soils. Adv. Agron.,55:219-264.
    He, Y., Xu, J.M., Tang, C.X., Wu, Y.P.,2005. Facilitation of pentachlorophenol degradation in the rhizosphere of ryegrass (Lolium perenne L.). Soil Biol. Biochem., 37:2017-2024.
    Heath, R.L., Packer, L.,1968. Photoperoxidation in isolated chloroplasts. Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.,125,189-198.
    Hiltner, L.U.,1904. Neuere erfahrungen und probleme dufdem gebietder bodenbakteriologie und unter besondererberu cksichtigung der grundungung und brache. Arb Dtsch Land Wirt. Ges.,98,59-78.
    Hooda, P.S., Alloway, B.J.,1996. The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils. J. Agric. Sci. (Cambridge),127:289-294.
    Hu, L.F., McBride, M.B., Cheng, H., Wu, J.J., Shi, J.C., Xu, J.M., Wu, L.S.,2011. Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oiyza sativa L.) genotypes. Environ. Res.,111(3):356-361.
    Huang, W., Yu, H., Weber, W.J., Jr,1998. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments. I. A comparative analysis of experimental protocols. J. Contam. Hydrol.,31:129-148.
    Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F., Cobbett, C.S.,2004. P-Type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell,16:1327-1339.
    Ishikawa, S., Ae, N., Yano, M.,2005. Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oiyza sativa). New Phytol.,168: 345-350.
    Jones, D.L.,1998. Organic acids in the rhizosphere-a critical review. Plant Soil,205(1): 25-44.
    Jones, D.L., Darrah, P.R., Kochian, L.V.,1996. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil,180:57-66.
    Kahle, H.,1993. Response of roots of trees to heavy metals. Environ. Exp. Bot.,33:99-119.
    Kanazawa, S.,2000. Changes in antioxidative in cucumber cotyledons during natural senescence:comparison with those during dark-induced senescence. Physoil. Plant, 109:211-216.
    Kashem, M.A.,2001. Metal availability in contaminated soils:I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosyst,61:247-255.
    Kelly, J.M., Parker, G.R., McFee, W.W.,1979. Heavy metal accumulation and growth of seedlings of five forest species as influenced by soil cadmium level. J. Environ. Qual.,8:361-364.
    Kennedy, C.D.,1986. The action of divalent Zn, CA, Hg, Cu and Pb on the transrootpotential and H+ efflux of excised roots. Exp. Bot.,38:800-817.
    Korshunova, Y.O., Eide, D., Clark, W.G., Guerinot, M.L., Pakrasi, H.B.,1999. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol.Biol.,40:37-44.
    Krishnamurti, G.S.R., Cieslinski, G., Huang, P.M.,1997. Kinetics of cadmium release from soils as influenced by organic acids-implication in cadmium availability. J. Environ. Qual., 26:271-277.
    Krishnamurti G. S. R., Naidu R.,2002. Solid-solution speciation and phytoavailability of copper and zinc in soils. Environ. Sci. Technol.,36:2645-2651.
    Kukier, U., Chaney, R.L.,2002. Growing rice grain with controlled cadmium concentrations. J. Plant Nutr.,25(8):1793-1820.
    Kuo, S.,1986. Concurrent sorption of phosphate and zinc, cadmium or calcium by a hydrousferric oxide. Soil Sci. Am. Pro.,35:722-725.
    Kurz. H., Schulz, R., Romheld, V.,1999. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. J. Plant Nutr. Soil Sci.,162:323-328.
    Laetitia, P.B.H., Nathalie. L., Alain. V., Cyrille, F.,2002. Heavy metal toxicity:cadmium permeates through calcium channels and disturbs the plant water status. Plant J.,32: 539-548.
    Lagrimini, L.M.,1991. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol.,96:577-583.
    Lasat, M.M., Pence, N.S., Garvin, D.F., Ebbs, S.D., Kochian, L.V.,2000. Molecular physiology of zinc transport in the hyper-accumulator Thlaspi caerulescens. J. Exp. Bot.,51:71-79.
    Liao, M.,2006. Effects of organic acids on adsorption of cadmium onto kaolinite, goethite, and bayerite. Pedosphere,16(2):185-191.
    Lin, Q., Chen, Y.X., Chen, H.M., Yu, Y.L., Luo, Y.M., Wong, M.H.,2003. Chemical behavior of Cd in rice rhizosphere. Chemosphere,50:755-761.
    Lin, Q., Chen, Y.X., He, Y.F., Tian, G.M.,2004. Root-induced changes of lead availability in the rhizosphere of Oryza sativa L. Agr. Ecosyst. Environ.,104(3): 605-613.
    Lin, C.C., Kao, C.H.,2000. Effect of NaCl stress on H2O2 metabolism in rice leaves.
    Plant Growth Regul.,30:151-155.
    Lindsay W.L.,1979. Chemical Equilibria in Soils. Wiley, New York, USA.
    Liu, D., Jiang, W., Wang, W., Zhai, L.,1995, Evaluation of metal ion toxicity on root tip cells by the Allium test. Israel J. Plant Sci.,43:125-133.
    Liu, H.J., Zhang, J.L., Zhang, F.S.,2007. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environ. Exp. Bot.,59:314-320.
    Liu, J.G., Li, K.Q., Xu, J.K., et al,2003a. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crop Res., 83:271-281.
    Liu, J.G., Li, K.Q., Xu, J.K., et al,2003b. Lead toxicity, uptake, and translocation in different rice cultivars. Plant Sci.,165:793-802.
    Liu, J.G., Liang, J.S., Li, K.Q.. Zhang. Z.J., Yu, B.Y., Lu, X.L., Yang, J.C., Zhu, Q.S., 2003. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere,52: 1467-1473.
    Liu, M.C., Li, H.F., Xia, L.J., Yang, L.S.,2000a. Differences of cadmium uptake by rice genotypes and relationship between the iron oxide plaque and cadmium uptake. Acta Sci. Circumst.,20:592-596.
    Liu, M.C., Li, H.F., Xia, L.J., Yang, L.S.,2001. Effect of Fe, Mn coating formed on roots on Cd uptake by rice varieties. Acta Ecol. Sin.,21:598-602.
    Liu, W.J., Zhang, X.K., Yin, J., Liu, Y.S., Zhang, F.S.,2000b. Cadmium bioavailability in rhizosphere of paddy soil. Agro-environ. Prot.,19:184-187.
    Liu, W.J., Zhu, Y.G., Smith, F.A.,2005. Effects of iron and manganese plaques on arsenic uptake by rice seedlings(Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant soil.277:127-138.
    Lombi, E., Tearll, K.L.. Howarth, J.R., Zhao, F.J., Malcolm, J.H., Steve, P.M., Grath, I., 2002. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol.,128:1359-1367.
    Lorenz, S.E., Hamon, R.E., McGrath, S.P.,1994. Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation. Eur. J. Soil Sci.,45(4):431-438.
    Marschner, H.,1995. Mineral nutrition of higher plants. London:Academic Press.
    Marschner, H., Romheld, V., Cakmak. H.,1987. Root-induced of nutrient availability in the rhizosphere. J. Plant Nutr.,10:1175-1184.
    McLaughlin, M.J., Palmer, L.T., Tiller, K.G., Beech, T.A., Smart, M.K.,1994. Increased soil salinity causes elevated cadmium concentrations in field-grown potato tubers. Environ. Qual.,23:1013-1018.
    McLaughlin, M.J., Parker, D.R., Clarke, J.M.,1999. Metals and micronutrients-food safety issues. Field Crop Res.60:143-163.
    McKenna. I.M., Chaney, R.L., Williams, F.M.,1993. The effects of cadmium and zinc interaction on the accumulation and tissue distribution of zinc and cadmium in Lettuce and spinach. Environ. Pollut.,79:113-120.
    Mench, M., Baize, D., Mocquot, B.,1997. Cadmium availability to wheat in five soil series from the Yonne district, Burgundy, France. Environ. Pollut.,95:93-103.
    Mench, M., Martin, E.,1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil,132:187-196.
    MercKx, R., Van GinKel, J.H., Sinnaeve, J., Cremers, A.,1986. Plant induced changes in the rhizosphere of maize and wheat Ⅱ. Complexation of Cobalt, Zinc and Manganse in the rhizosphere of maize and wheat. Plant Soil,96:95-107.
    Merrington, G., Winder, L., Green, I.,1997. The bioavailability of Cd and Zn from soils amended with sewage sludge to winter wheat and subsequently to the grain aphid Sitobion avenae. Sci. Total Environ.,205(2-3):245-254.
    MiGirr, L.G., Brien, P.J.O.,1985. Mechanisms of membrane lipid peroxidation. Recent Advances in Biol. Membr. Stud..319-344.
    Mitch M. L.,2002. Phytoextraction of toxic metals:a review of biological mechanism. J. Environ. Qual.,31:109-120.
    Morel, J.L., Habib, L.S., Guckea, A.,1991. Influence of maize root mucilage on soil aggregate stability. Plant Soil,136:111-119.
    Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A., Richaud, P., 2009. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol.,149:894-904.
    Naidu, R., Bolan, N.S., Kookana, R.S., Tiller K.G.,1994. Ionic strength and pH effects on surface charge and Cd sorption characteristics of soil. J. Soil Sci.,45:419-429.
    Naidu R., Kookana R.S., Sumner M.E., Harter R.D., Tiller K.G.,1997. Cadmium sorption and transport in variable charge soils:a review. J. Environ. Qual.,26:602-617.
    Noctor, G., Foyer, C.H.,1998. Ascorbate and glutathione. Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol.,49:249-279.
    Norvell, W.A., Wu, J., Hopkins, D.G, Welch, R.M.,2000. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Sci. Soc. Am. J.,64:2162-2168.
    Nriagu J.O.,1980. Cadmium in the Environment [M]. New York:Wiley Interscience. pp, 10-12.
    Nye, P.H., Tinker, P.B.,1977. Solute Movement in The Soil-Root System. Blackwell Scientific Publishers, Oxford, pp,342.
    Oades, J.M.,1987. Mucilages at root surface. J. Soil Sci.,29:1-16.
    Obata H., Umebayashi M.1997 Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. J. Plant Nutr.,20:97-105.
    Oliver, D.P., Hannam, R., Tiller, K.G., Wilhelm, N.S., Merry, R.H., Cozens, G.D.,1994. The effects of zinc fertilization on cadmium concentration in wheat grain. J. Environ. Qual.,23:705-711.
    Onyatta, J.O., Huang P.M.,1999. Chemical speciation and bioavailability index of cadmium for selected tropical soils in Kenya. Geoderma,91:87-101.
    Ostergren, J.D., Brown Jr., G.E., Parks, G.A., Persson, P.,2000b. Inorganic ligand effects on Pb(Ⅱ) sorption to goethite (a-FeOOH):Ⅱ. Sulphate. J. Colloid Interface Sci.,225: 483-493.
    Ostergren, J.D., Trainor, T.P., Bargar, J.R., Brown Jr., G.E., Parks, G.A.,2000a. Inorganic ligand effects on Pb(Ⅱ) sorption to goethite (α-FeOOH):I. Carbonate. J. Colloid Interface Sci.,225(2):466-482.
    Patra, J., Lenka, M., Panda, B.B.,1994. Tolerance and co-tolerance of the grass chloris barbata Sw. to mercury, cadmium and zinc. New Phytol.,128:165-171.
    Qiu, R.L., Zhao, X., Tang, Y.T., Yu, F.M., Hu, P.J.,2008. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere,74:6-12.
    Radotic K., Ducic T., Mutavdzic D.,2000. Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ. Exp. Bot.,44:105-113.
    Rauret, G.,1998. Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta,46:449-455.
    Rawyler, A., Arpagaus, S., Braendle, R.,2002. Impact of oxygen stress and energy availability on membrane stability of plant cells. Ann. Bot. (Lond.),90:499-507.
    Reddy, C.N., Patrick, W.H.,1977. The effect of redox potential and pH on the uptake of cadmium and lead by rice plants, J. Environ. Qual.,6:259-262.
    Rosenfield, C.L., Reed, D.W., Kent, M.W.,1991. Dependency iron reduction on development of an unique root morphology in Ficus benjamina L. Plant Physiol.,95: 1120-1124.
    Rovira, A.D., Fester, R.C., Martin, J.K.,1979. Note on terminology:origin, nature and nomenclature of the organic materials in the rhizosphere [M]. In:Harley, J.C.& R. Scott-Russell (eds.). The soil-root interface. London:Aeademic Press.
    Saeki, Y., Yamakawa, T., Ikeda, M., Ishizuka, J.,1996. Effects of root exudates of Rj2Rj3-and Rj4-genotype soybean on growth and chemotaxis of Bradyrhizobium japonicum. Soil Sci. Plant Nutr.,42:413-417.
    Salah, S.A., Barrington, S.F.,2006. Effect of soil fertility and transpiration rate on young wheat plants (Triticum aestivum) Cd/Zn uptake and yield. Agr. Water Manage., 82(1-2):177-192.
    Sanita di Toppi, L., Gabbrielli, R.,1999. Response to cadmium in higher plants. Environ. and Exp. Bot.,41:105-130.
    Shaw, B.P.,1995. Effects of mercury and cadmium on the activities of anti oxidative enzymes in the seedlings of Phaseolus Qureus. Biol. Plant.,37:587-596.
    Shuman, L.M.,1985. Fractionation method for soil microelements. Soil Sci.,140:11-22.
    Shuman, L.M., Wang, J.,1997. Effectof rice variety on zinc, cadmium, iron, and manganese content in rhizosphere and non-rhizosphere soil fractions. Commun. Soil Sci. Plant Anal.,28(1-2):23-36.
    Simmons, R.W., Pongsakul, P., Chaney, R.L., Saiyasitpanich, D., Klinphoklap, S., Nobuntou, W.,2003. The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean:Implications for human health. Plant Soil,257:163-170.
    Skorzynska-Polit, E., Pawlikowska-Pawlega, B., Szczuka, E., Drazkiewicz, M., Krupa, Z., 2006. The Activity and Localization of Lipoxygenases in Axabidopsis thaliana under Cadmium and Copper Stresses. Plant Growth Regul.,48:29-39.
    Smolders, E., Lambregts, R.M., McLaughlin, M.J., Tiller, K.G.,1998. Effect of soil solution chloride on a cadmium availability to Swiss chard. J. Environ. Qual., 27(2): 426-431.
    Sood, S.G.,2003. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol. Ecol., 45(3):219-227.
    Strobel, B.W.,2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution. Geoderma,99(3-4):169-198.
    Su, D.C., Xing, J.P., Jiao, W.P., Wong, W.C.,2009. Cadmium uptake and speciation changes in the rhizosphere of cadmium accumulator and non-accumulator oilseed rape varieties. J. Environ. Sci.,21(8):1125-1128.
    Suh, J.H., Yun, J.W., Kim, D.S.,1999. Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. Bioproc. Biosyst. Eng.,21(1):1-4.
    Takagi. S.K., Nomoto, T.T.,1984. Physiological aspect of muginetic acid, a possible phytosiderophore of graminaccous plants. Plant Nutr.,7:469-477.
    Tao, S., Liu, W.X., Chen, Y.J., Cao, J., Li, B.G., Xu, F.L.,2005. Fractionation and bioavailability of copper, cadmium and lead in rhizosphere soil, in:Huang, P.M., Gobran, G.R. (Eds.), Biogeochemistry of Trace Elements in the Rhizosphere. Elsevier, Netherlands. pp,313-336.
    Taylor M.D., Theng B.K.G.,1995. Sorption of cadmium by complexes of kaolinite with humid acid. Commun. Soil Sci. Plant Anal.,26:765-776.
    Taylor, G., Tand, C.A.A.,1983. Use of the DCB technique for extraction of fhydrous iron oxides from roots of wetland plant. Am. J. Bot.,70:1254-1257.
    Tessier A., Campbell P.G.C., Bisson M.,1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem.,51(7):844-851.
    Thomine, S., Wang, R.C., Ward, J.M., Crawford, N.M., Schroeder, J.I.,2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Nat. Acad. Sci. USA,97:4991-4996.
    Tyler, G., Strom, I.,1995. Differing organic acid exudation pattern explains calcifuge and acidifuge behavior of plants. Ann. Bot.,75:75-78.
    Ueno, D., Milner, M.J., Yamaji, N., Yokosho, K., Koyama, E., Clemencia Zambrano, M., Kaskie, M., Ebbs, S., Kochian, L.V., Ma, J.F.,2011. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J.,66:852-862.
    Ueno, D., Yamaji, N., Kono, I., Huang, C.F., Ando, T., Yano, M., Ma, J.F.,2010. Gene limiting cadmium accumulation in rice. Proc. Natl. Acad. Sci. USA.,107:16500-16505.
    Unep,1991. Environmental Data Report [M]. Oxford UK:Basil Blackwell Ltd. pp,12-60,100-103,112-115.
    Ure A.M., Quevauviller P. H., Muntau H., Griepink B.,1993. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities. Int. J. Environ. Anal. Chem.,51:135-151.
    Vance, E.D., Brookes, P.C., Jenkinson, D.S.,1987. An extraction method for measuring microbial biomass carbon. Soil Biol. Biochem.,19:253-258.
    Vijver, M.G., Van Gestel, C.A.M., Lanno, R.P., Van Straalen, N.M., Peijinenburg, W.J.G.M.,2004. Internal metal sequestration and its ecotoxicological relevance:a review. Environ. Sci. Technol.,38(18):4705-4712.
    Walter, A., Pith, A., Scholz, G., Marschner, H., Romheld, V.,1995. Effects of iron nutritional status and time of day on concentrations of phytosiderophores and nicotianamine in different root and shoot zones of barley. J. Plant Nutr.,18(8): 1577-1593.
    Wang, C.X., Mo, Z., Wang, H., et al,2003. The transportation, time-dependent distribution of heavy metals in paddy crops. Chemosphere,50:717-723.
    Wang, K.R., Gong, H.Q.,1996. Compared study on the cadmium absorption and distribution of two genotypes rice. Agro-environ. Prot.,15:145-149.
    Wang, M.K.,1984. The uptake of cadmium by Brassica cbineasis and its effect on plant zincand iron distribution. Environ. Expt. Bot.,24:189-195.
    Wang, W.Z., Brusseau, M.L., Artiola, J.F.,1997. The use of calcium to facilitate desorption and removal of cadmium and nickel in subsurface soils. J. Contam. Hydrol.,25:325-336.
    Wang, Z.W., Shan, X.Q., Zhang, S.Z.,2002. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere,46(8): 1163-1171.
    Warembourg, F.R., Billes, G.,1979. Estimating carbon transfers in the plant rhizosphere[A]. In Harley, J.L., Russell, R.S., (eds.):The Soil-Root Interface. London:Academic Press, pp,183-194.
    Welch, R.M., Norvell, W.A.,1999. Mechanisms of Cd uptake, translocation and deposition in plants[A]. In:McLaughlin, M.J., Singh, B.R., (eds.):Cadmium in soils and plants. Dordrecht:Kluwer Academic Publishers, pp,125-150.
    Wu, H.W., Haig, T., Pratley, J.,2001a. Allelochemicals in wheat (Triticum aestivum L.): cultivar difference in the exudation of phenolic acids. J. Agric. Food Chem.,49(88): 3742-3745.
    Wu, H.W., Haig, T., Pratley, J., Lemerle, D., An, M.,2001b. Allelochemicals in wheat (Triticum aestivum L.):production and exudation of 2,4-dihydroxy-7-methoxy-I,4-benzoxazin-3-one. J. Chem, Ecol., 27(8):1691-1700.
    Wu, H.W., Haig, T., Pratley, J., Lemerle, D., An, M.,2001c. Allelochemicals in wheat (Triticum aestivum L.):variation of phenolic acids in shoot tissues. J. Chem. Ecol., 27(1):125-135.
    Wu, J., Joergensen, R.G., Pommerening, B., Brookes, P.C.,1990. Measurement of soil microbial biomass carbon by fumigation-extraction, an sutomated procedure. Soil Biol. Biochem.,22:1167-1169.
    Wu, Q.T., Chen, L., Wang, G.S.,1999. Differences on Cd uptake and accumulation among rice cultivars and its mechanism. Acta Ecol. Sin.,19:104-107.
    Xian, X.F.,1989. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant Soil,113:257-264.
    Yang, J.X., Ma, Z.L., Ye, Z.H., Guo, X.Y., Qiu, R.L., Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss. J. Environ. Sci.,22(5):696-702.
    Yi, T.H., Ching, H.K.,2003. Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regul., 40,147-155.
    Zeng, F., Chen, S., Miao, Y., Wu, F.B., Zhang, G.P.,2008. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environ. Pollut., 155(2):284-289.
    Zhang, F.S., Shen, J., Li, L., Liu, X.,2004. An overview of rhizosphere processes under major cropping systems in China. Plant Soil,260(1-2):89-99.
    Zhang, X.F., Xia, H.P., Li, Z.A., Zhuang, P., Gao, B.,2010. Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour. Technol.,101(6): 2063-2066.
    Zhang, X.K., Zhang, F.S., Mao, D.R.,1998. Effect of iron plague outside roots on nutrient uptake by rice (Oryza sativa L.):Zinc uptake by Fe-deficient rice. Plant Soil, 202:33-39.
    Zhang, X.K., Zhang, F.S., Mao, D.R.,1999. Effect of iron plague outside roots on nutrient uptake by rice (Oryza sativa L.):Phosphorus uptake. Plant Soil,209:187-192.
    Zhou, X.B., Shi, W.M.,2007. Efect of root surface iron plaque on Se translocation and uptake by Fe-deficient rice. Pedosphere,17(5):580-587.
    陈朝明,龚惠群,王凯荣,1996.Cd对桑叶品质生理生化特性的影响及其机理研究.应用生态学报,7(4):417-423.
    崔妍,丁永生,公维民,丁德文,2005.土壤中重金属化学形态与植物吸收的关系.大连海事大学学报,31(2):59-63.
    崔玉静,赵中秋,刘文菊,陈世宝,朱永官,2003.镉在土壤-植物-人体系统中迁移积累及其影响因子.生态学报,23(10):2133-2143.
    邓丹,吴可为,邓泓,2009.根区通氧状况对水稻幼苗生长及吸收镉的影响.生态学报,29(5):2520-2526.
    邓明,罗春,1989.汞、镉在城郊农业生态环境中的行为及影响研究.农业环境保护,8:20-24.
    董克虞,陈家梅,1982.Cd对农作物生长发育的影响与吸收积累的关系.环境科学,3(4):31-34.
    董慕新,1992.锌,镉在水稻植株吸收积累中的相互作用.植物生理学通讯,28(2):111-113.
    段昌群,王焕校,1995.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨.植物学报,37(1):14-24.
    段昌群,王焕校,曲仲湘,1992.重金属对蚕豆根尖的核酸含量及核酸酶活性影响的研究.环境科学,13(5):31-35.
    傅显华,吴启堂,1995.不同物料对叶菜吸收镉铅的影响.农业环境保护,14:145-149.
    郜红建,蒋新,常江,2004.根分泌物在污染土壤生物修复中的作用.生态学杂志,23(4):135-139.
    高卫国,黄益宗,雷鸣,2008.添加堆肥和赤泥对土壤生物有效性Cd和Zn的影响.环境工程学报,2(1):78-82.
    高志岭,刘建玲,廖文华,2001.磷肥施用与镉污染的研究现状及防治对策.河北农业大学学报,24(3):90-99.
    高子勤,张淑香,1998.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应.应用生态学报,9(5):549-554.
    葛才林,骆剑峰,刘冲,殷朝珍,王泽港,马飞,罗时石,2005.重金属对水稻光合作用和同化物输配的影响.核农学报,19(3):214-218.
    龚伟群,李恋卿,潘根兴,2006.杂交水稻对Cd的吸收与籽粒积累:土壤和品种的交互影响.环境科学,27(8):1647-1653.
    龚子同,黄标,1998.关于土壤中“化学定时炸弹”及其触爆原因的探讨.地球科学进展,13:274-278.
    关共凑,徐颂,黄金国,2006.重金属在土壤一水稻体系中的分布、变化及迁移规律分析.生态环境,15(2):315-318.
    郭笃发,1994.环境中铅和镉的来源及其对人和动物的危害.环境科学进展,2:71-76.
    郭振清,郭晓强,2008.缺铁状态下水稻铁吸收机制及应用.生命的化学,28(4):412-414.
    何俊瑜,2006.水稻突变体对镉敏感的生理生化及籽粒中镉积累的基因型差异[D].浙江大学.
    何艳,2006.五氯酚的土水界面行为及其在毫米级根际微域中的消减作用[D].浙江大学.pp:70.
    何振立,1998.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社.pp:129-158.
    洪仁远,1993.镉对小麦幼苗超氧化物岐化酶活性和脂质过氧化作用变化的影响.中国植物生理学会第6次全会论文汇编.
    胡宁静,骆永明,宋静,2007.长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系.土壤学报,44(3):437-443.
    黄春国,王鑫,2009.我国农田污灌发展现状及其对作物的影响研究进展.安徽农业科学,37(22):10692-10693.
    黄冬芬,2008.水稻对土壤重金属镉的响应及其调控[D].扬州大学.
    黄玉山,罗广华,关棨文,1997.镉诱导植物的自由基过氧化损伤.植物学报,39(6):522-526.
    蒋先军,骆永明,赵其国,2003.镉污染土壤植物修复的EDTA调控机理.土壤学报,40(2):205-209.
    金彩霞,周启星,孙瑞莲,任丽萍,2005.根-土界面镉的生态化学行为与毒理效应研究进展.应用生态学报,16(8):1553-1557.
    旷远文,温达志,钟传文,周国逸,2003.根系分泌物及其在植物修复中的作用.植物生态学报,27(5):709-717.
    李花粉,张福锁,李春俭,毛达如,1998.根分泌物对根际重金属动态的影响.环境科学学报,18(2):199-203.
    李花粉,郑志宇,张福锁,毛达如,1999.铁对小麦吸收不同形态镉的影响.生态学报,19(2):170-173.
    李坤权,刘建国,陆小龙,杨建昌,张祖建,朱庆森,2003.水稻不同品种对镉吸收及分配的差异.农业环境科学学报,22(5):529-532.
    李恋卿,潘根兴,张平究,龚伟,2001.太湖地区水稻土颗粒中重金属元素的分布及其对环境变化的响应.环境科学学报,21(5):607-612.
    李廷强,2005.超积累植物东南景天(Sedum alfredii Hance)对锌的活化、吸收及转运机制研究[D].浙江大学.pp:12.
    李瑛,2003.镉铅和有机酸对根际土壤中镉铅形态转化及其毒性的影响[D].河北农业大学.
    李元,王焕校,吴玉树,1992.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响.生态学报,12(2):147-153.
    李兆辉,王光明,徐云明,柳增善,任洪林,2010.镉、汞、铅污染及其微生物修复研究进展.中国畜牧兽医,37(9):39-43.
    李正文,张艳玲,潘根兴,李久海,黄筱敏,王吉方,2003.不同水稻籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险.环境科学,24(3):112-115.
    廖敏,黄昌勇,2002.镉在有机酸存在时对红壤中微生物生物量的影响.应用生态学报,13:300-302.
    廖敏,黄昌勇,谢正苗,1998.施加石灰降低不同母质土壤中锅毒性机理研究.农业环境保护,9:110-112.
    廖自基,1993.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社.PP:299-302.
    林琦,陈怀满,郑春荣,陈英旭,2002.根际环境中铅的形态转化.应用生态学报,13(9):1145-1149.
    林琦,郑春荣,陈怀满,陈英旭,1998.根际环境中镉的形态转化.土壤学报,35(4):461-467.
    刘海亮,崔世民,李强,刘欣,彭永康,1991.镉对作物种子萌发、幼苗生长及氧化酶同工酶的影响.环境科学,12(6):29-31.
    刘侯俊,胡向白,张俊伶,张福锁,2007.水稻根表铁膜吸附镉及植株吸收镉的动态.应用生态学报,18(2):425-430.
    刘立群,1990.赣南土壤污染的防治途径.资源开发与保护杂志,6:100-102.
    刘敏超,李花粉,夏立江,杨林书,2001.根表铁锰氧化物胶膜对不同品种水稻吸镉的影响.生态学报,21(4):598-602.
    刘文菊,张西科,张福锁,1999.根表铁氧化物和缺铁根分泌物对水稻吸收镉的影响.土壤学报,36(4):463-469.
    刘文菊,张西科,尹君,刘玉双,张福锁,2000a.镉在水稻根际的生物有效性.农业环境保护,19(3):184-187.
    刘文菊,张西科,张福锁,2000b.根分泌物对根际难溶性镉的活化作用及对水稻吸收、运输镉的影响.生态学报,20(3):448-451.
    刘莹,盖钧镒,吕慧能,2003.大豆苗期根系与抗旱性基因型差异的研究.作物杂志,4:12-15.
    刘芷宇,李良谟,施卫明,1997.根际研究法[M].江苏省科学技术出版社.pp:1-49.
    鲁如坤,1999.土壤农业化学分析方法[M].北京中国农业科技出版社.
    鲁如坤,熊礼明,时正元,1992.关于土壤-作物生态系统中镉的研究.土壤,24(3):129-132.
    罗文倩,2009.镉在腐殖酸、针铁矿及其复合胶体上的吸持特性研究[D].西南大学.
    毛跟年,许牡丹,黄建文,2004.环境中有毒有害物质与分析检测[M].北京:化学工业出版社.
    莫争,王舂霞,陈琴,王海,薛传金,王子健,2002.重金属Cu, Pb, Zn, Cr, Cd在水稻植株中的富集和分布.环境化学,21(2):110-116.
    彭刚华,2002.水稻土中重金属Cd的形态含量变化.福建环境,19(1):34-35.
    秦天才,阮捷,王腊娇,2000.镉对植物光合作用的影响.环境科学与技术,9:33-35.
    邵国胜,2005.水稻镉耐性和积累的基因型差异与机理研究[D].浙江大学.
    邵国胜,Muhammad Jaffar Hassan,章秀福,张国平,2004.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响.中国水稻科学,18:239-244.
    沈宏,严小龙,2000.根分泌物研究现状及其与农业与环境领域的应用.农村生态环境,3:51-54.
    申屠佳丽,2008.蔬菜系统镉污染的土壤化学与生物学响应及蔬菜安全诊断[D].浙江大学.
    史锟,徐虹,田艳芬,2003.酸和有机质对土壤镉影响的研究.垦殖与稻作,2:30-33.
    史锟,张福锁,刘学军,张旭东,2004.不同时期施铁对水稻根表铁胶膜中铁镉含量及根系含镉量的影响.农业环境科学学报,23(1):6-12.
    施农农,陈志伟,贾秀英,1999.镉胁迫下水稻种子的萌芽生长及体内水解酶的活性变化.农业环境保护,18(5):213-216.
    施卫明,1993.根系分泌物与养分有效性.土壤,25:252-256.
    施卫明,刘芷字,1991.麦类作物根际麦根酸的分布和难溶性铁的活化.科学通报,36:64-67.
    宋菲,郭玉文,刘孝义,张玉龙,1996.镉、锌、铅复合污染对菠菜的影响.农业环境保护,15(1):9-14.
    舒基元,杨峥,2003.环境安全的新挑战:经济全球化下环境污染转移.中国人口·资源与环境,13(3):50.
    苏年华,张金彪,王玉纵,1994.福建省土壤重金属污染及评价.福建农业大学学报,23:434-439.
    屠乃美,郑华,邹永霞,李为栋,李裕荣,何红军,廖兆祥,吴统桥,2000.不同改良剂对铅、镉污染稻田改良效应的研究.农业环境护,19(6):324-326.
    涂书新,孙锦荷,郭智芬,谷峰,2000.植物根系分泌物与根际营养关系评述.土壤与环境,9(1):64-67.
    汪洪,周卫,林葆,2001.碳酸钙对土壤镉吸附及解吸的影响.生态学报,21(6):932-937.
    王果,谷勋刚,高树芳,1999.三种有机肥水溶性分解产物对铜、镉吸附的影响.土壤学报,36:179-188.
    王激清,茹淑华,苏德纯,2004.印度芥菜和油菜互作对各自吸收土壤中难溶态镉的影响.环境科学学报,24(5):890-894.
    王建林,刘芷宇,1992.水稻根际中铁的形态转化.土壤学报,29(4):358-364.
    王晶,张旭东,李彬,2002.腐殖酸对土壤中Cd形态的影响及利用研究.土壤通报,33:185-187.
    王凯荣,1996.镉对不同基因型水稻生长毒害影响的比较.农村生态环境,12:18-23.
    王凯荣,龚惠群,1996.两种基因型水稻对环境镉吸收与再分配差异性比较研究.农业环境保护,15(4):145-149.
    王凯荣,1997.我围农田镉污染现状及其治理利用对策.农业环境保护,16(6):274-278.
    王凯荣,2004.农田生态系统镉污染研究[D].华中农业大学.
    王少博,王维民,郭亚楠,郭元媛,魏嘉,张迎梅,2007.重金属镉和铬对草鱼苗的急性和慢性毒性效应.兰州大学学报:自然科学版,43(4):60-64.
    王新,吴燕玉,1995.改良措施对复合污染土壤重金属行为影响的研究.应用生态学报,6(4):440-444.
    王新,吴燕玉,1998.不同作物对重金属复合污染物吸收特性的研究.农业环境保护,17(5):193-196.
    王秀丽,徐建民,姚槐应,2003.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科学学报,23:22-27.
    王逸群,郑金贵,陈文列,陈莲云,2004Hg2+、Cd2+污染对水稻叶肉细胞伤害的超微观察.福建农林大学学报:自然科学版,3(4):409-413.
    王英,李正文,贺紫荆,2007.不同水稻品种积累镉的差异及其动态变化.广西农业生物科学,26:82-85.
    王玉纵、张金彪、苏年华,1996.福建耕地土壤重金属污染的生态效应.福建农业大学学报,25:461-466.
    魏复盛,陈静生,吴燕玉,郑春江,1991.中国土壤环境背景值研究.环境科学,12(4):12-19.
    魏俊风,吴大清,彭金,1999.广州城市水体沉积物中重金属形态分布研究.土壤与环境,8(1):10-14.
    吴辉,郑师章,1992.根分泌物及其生态效应.生态学杂志,11(6):42-47.
    吴辉,郑师章,1993.凤眼莲根分泌物对Enterobacter sp. nov苯酚代谢的影响.应用生态学报,4(1):78-84.
    吴燕玉,陈涛,张学询,1989.沈阳张士灌区Cd污染生态研究.生态学报,9:21-26.
    吴燕玉,李彤,谭方,1986.辽河平原土壤背景值区域特征及分布规律.环境科学学报,6:420-433.
    夏汉平,1997.土壤-植物系统中的镉研究进展.应用与环境生物学报,3:289-298.
    夏立江,王宏康,2001.土壤污染及其防治[M].上海:华东理工大学出版社.pp:40-178.
    夏运生,王凯荣,2002.土壤镉生物毒性的影响因素研究进展.农业环境保护,21(3):272-275.
    夏增禄,蔡士悦,许嘉琳,1992.中国土壤环境容量.北京:地震出版社.
    谢明吉,严重玲,叶菁,2008.菲对黑麦草根系几种低分子量分泌物的影响.生态环境,17(2):576-579.
    熊愈辉,2007.镉污染土壤植物修复研究进展.安徽农业科学,35(22):6876-6878.
    许嘉琳,杨居荣,1995.陆地生态系统中的重金属[M].北京:中国环境科学出版社.
    徐卫红,黄河,王爱华,熊治廷,王正银,2006.根系分泌物对土壤重金属活化及其机理研究进展.生态环境,15(1):184-189.
    杨景辉,1995.土壤污染与防治.北京:科学出版社.
    杨居荣,贺建群,蒋婉茹,1995.污染对植物生理生化的影响.农业环境保护,14(5):193-197.
    杨仁斌,曾清如,周细红,铁柏青,刘声扬,2000.植物根系分泌物对锅锌尾矿污染土壤中重金属的活化效应.农业环境保护,19(3):152-155.
    于辉,2006.水稻(Oriza sativa L)对重金属镉胁迫响应的品种间差异及机理研究[D].中山大学.
    章钢娅,骆永明,2000.太湖流域典型水稻土对镉吸持特征的初步研究.土壤,2(32):91-94.
    张福锁,1992.根分泌物及其在植物营养中的作用.北京农业大学学报,18(4):353-356.
    张福锁,1998.环境胁迫与植物根际营养.北京:中国农业出版社,2-50.
    张金彪,黄维南,2000.镉对植物的生理生态效应的研究进展.生态学报,20:514-523.
    张敬锁,李花粉,衣纯真,张福锁,1999.有机酸对活化土壤中镉和小麦吸收镉的影响.土壤学报,36(1):61-66.
    张磊,2009.镉在东北地区4种土壤中的吸附动力学.中国农学通报,9:273-276.
    张秋芳,王果,杨佩艺,2002.有机物料对土壤镉形态及其生物有效性的影响.应用生态学报,13:1659-1662.
    张西科,张福锁,毛达如,1996.根表铁氧化物胶膜对水稻吸收Zn的影响.应用生态学报,7(3):262-266.
    章秀福,王丹英,储开富,杨春刚,牟仁祥,陈铭学,朱智伟,何庆富,廖西元,2006.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异.中国水稻科学,20(2):194-198.
    张亚丽,沈其荣,姜洋,2001.有机物料对镉污染土壤的改良效应.土壤学报,38:212-218.
    赵步洪,张洪熙,奚岭林,朱庆森,杨建昌,2006.杂交水稻不同器官镉浓度与累积量.中国水稻科学,20(3):306-312.
    赵光瑞,2003.东北亚区域环境问题的制度探源与解决对策.东北亚论坛,5:15-16.
    赵中秋,朱永官,蔡运龙,2005.镉在土壤-植物系统中的迁移转化及其影响因素.生态环境,14(2):282-286.
    赵转军,南忠仁,王兆炜,杨一鸣,王胜利,2010.Cd, Zn复合污染菜地土壤中重金属形态分布与植物有效性.兰州大学学报:自然科学版,46(2):1-5.
    郑易生,2002.环境污染转移现象对社会经济的影响.中国农村经济,2:68-75.
    仲维功,杨杰,陈志德,王才林,张永春,常志州,周益军,2006.水稻品种及其器官对土壤重金属元素Pb、Cd、Hg、As积累的差异.江苏农业学报,22(4):331-338.
    周启星,高拯民,1994.作物籽实中Cd与Zn的交互作用及其机理的研究.农业环境保护,13(4):148-151.
    周启星,孔繁翔,朱琳,2004.生态毒理学[M].北京:科学出版社.
    周卫,汪洪,李春花,林葆,2001.添加碳酸钙对土壤中镉形态转化与玉米叶片各组分的影响.土壤学报,38(2):219-225.
    朱丽霞,章家恩,刘文高,2003.根系分泌物与根际微生物相互作用研究综述.生态环境,12(1):102-105.
    朱燕婉,1989.土壤中金属元素的五个组分的连续提取法.土壤,21(3):163-166.
    宗良纲,徐晓炎,2003.土壤中镉的吸附解吸研究进展.生态环境,12(3):331-335.
    左元梅,张福锁,2003.不同间作组合和问作方式对花生铁营养状况的影响.中国农业科学,36(3):300-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700