用户名: 密码: 验证码:
Sol-gel法掺杂导电ZnO薄膜及其低温氮气热处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO薄膜是一种直接宽带隙半导体材料,具有多种用途,可广泛的应用于太阳能电池、压电薄膜、光电器件、气敏器件和紫外探测器等方面。其特性可通过适当的掺杂来调剂。通过适量掺杂的ZnO透明导电薄膜具有优异的光电性能,能在太阳能电池、液晶显示器等多种电器设备中被用作透明导电电极。
     本课题研究的主要目的是探索Sol-Gel法制备掺Al的ZnO透明导电薄膜在氮气中的稳定性和Sol-Gel法制备掺Li的ZnO透明导电薄膜的掺杂比和涂膜层数对薄膜导电率和透光率的影响。本文通过溶胶-凝胶法在载玻片上成功地制备出Al3+、Li+掺杂型ZnO薄膜。所用的溶胶以乙二醇甲醚为溶剂,醋酸锌为前驱体,单乙醇胺为稳定剂经加热搅拌制得;薄膜经烘干、预处理、氮气热处理后形成均匀透明的ZnO薄膜。
     利用XRD、SEM、XPS、UV-VIS和四探针测试仪对薄膜的结构和光电特性进行了研究。结果表明,掺杂物、掺杂量、热处理温度、涂膜层数和热处理气氛对ZnO薄膜光电性能均有不同程度的影响。适当增加掺杂量能提高薄膜的电导率,过多的掺杂反而会降低电导率;不同的掺杂物对氮气中处理后的薄膜稳定性有较大影响,掺Al的薄膜稳定性很好,而Li的薄膜则较差;增加涂膜层数均能增加薄膜的厚度,并导致薄膜电导率的提高,同时也降低了薄膜的透射率;掺杂量和热处理气氛对薄膜在可见光范围内透射率影响不大;热处理气氛的不同直接影响了薄膜的导电性,在氮气中300℃可得到电导率高的薄膜。本实验制备的薄膜表面致密结构,晶粒大小均匀,方阻最低为270Ω/□,可见光透射率最大为83%。
     溶胶-凝胶方法制备AZO薄膜的最佳工艺条件为:溶胶浓度0.6mol/L、掺杂Al量1at%、镀膜层数15层、预处理温度450℃、空气气氛热处理温度为550℃、氮气热处理温度为300℃;溶胶-凝胶方法制备LZO薄膜的最佳工艺条件为:溶胶浓度0.6mol/L、掺杂Li量2.3at%、镀膜层数10层、预处理温度450℃、空气气氛热处理温度为550℃、氮气热处理温度为300℃。
ZnO film, a semiconductor with wide direct band gap, has been actively studied because of its potential applications. It can be used in solar cell, piezoelectric device, photoelectric device, gas sensor and UV detector and the characteristics can be modulated by appropriate doping. The transparent ZnO conductive thin films doped with suitable dopants have excellent optical and electrical properties, and are applied widely as transparent and conductive oxide electrodes in various electrical and optical devices including liquid crystal display, solar cell and so on.
     In this paper, the primary objective is researching the stability in N_2 of ZnO flims doped with Al by sol-gel and the influence of dopant concentration and the number of coating on the conductivity and transmittance of ZnO films doped with Li by sol-gel. ZnO thin films doped with Al~(3+),Li~+ were prepared on microslides by sol-gel method successfully. The sol was prepared with 2-methoxyethanol as solvent, Zincacetate as precursor and MEA as stabilizer. The mixture was heated, stirred to obtain the sol, and then homogenous transparent ZnO thin films were prepared from the sol by dipping, drying, pre-heat treatment in air and annealing in N_2 atmospheres.
     XRD, SEM, XPS and Four-Point probe method were used to characterize the structure and optical and electrical properties of the ZnO thin films. The results showed that the kind of dopant, dopant concentration, temperature of pre-heat treatment, the number of coating and annealing atmosphere had influence in various extents on the photoelectric performance of the doped ZnO thin films. Increasing the dopant concentration could reduce resistivity of thin films, but over high dopant concentration would increase the resistivity. The difference of dopants has great influence on the stability of films annealed in N2; the stability of ZnO flims doped with Al is good but that doped with Li is bad. Increasing the number of coating could increase the thickness of thin films, which would reduce the resistivity and the transmittance within the range of visible light. The transmittance of thin films in the range of visible light was not impacted greatly by different dopant concentrations and annealing atmosphere. The different atmospheres can directly influence the electric conductivity. The film with low resistivity can be obtained by heat treatment in N2 at 300℃. In this experiment, the surface configuration of the films is compact, the sizes of crystal grain is uniform, the lowest sheet resistance is 270?/□and the maximum transmittance within the range of visible light is about 83%.
     The optimum technological parameters for AZO and LZO thin film by sol-gel are as follows: the sol concentration is 0.6 mol/L; the dopant concentrations of Al and Li are 1at% and 2.3at%, respectively; the number of coating is 15 and 10, respectively; the pre-heat treatment temperature is 450℃and the annealing temperature is 550℃in air, 300℃in N_2.
引文
[1]席珍强,陈君,杨德仁,太阳能电池发展现状及展望,新能源, 2000, 22(12): 100~102
    [2]雷永泉,新能源材料,天津:天津大学出版社, 2000. 88~91
    [3] Vossen J L.In:Hass G,Francombe M H,Hoffman R H(Eds.) Physics of thin filmsEM].New York:Academic Press。1977.
    [4] Chopra K.L. et al. Transparent Conductors-A Status Review. [J]. Thin solid films,1983, 102(1): 1~46
    [5] Sundaram K B,Khan A.EJ3.Thin Solid Films,1997,295:87.
    [6] Mohamed G A, Momhamed E A, Elfadl A A, Optical properties and surface morphology of Li-doped ZnO thin films deposited on different substrates by DC magnetron sputtering method. Physical B, 2001, 308~310: 949~953
    [7]陆峰,徐成海,透明导电ZnO:A1(AZO)薄膜的性能分析,真空科学与技术,2003,23(1):9-12
    [8] Fan X M,Lian J S,et a1.EJ3.Applied Surface Science,2005.239l176.
    [9] JAE H C, HITOSHIT, TOMOJK. Initial preferred grow thin zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition. J Cryst Growth, 2001, 226: 493~500
    [10] Oumous H,Hadiri H.[J].Thin Solid Films.2001。386:87
    [11] WT.Seeber, H.H.Afify, E.Demian. Transparent semiconducting ZnO: Al thin films prepared by spray pyrolysis. Materials Science in Semiconductor Processing, 1999, 2: 45~55
    [12]盂扬,沈杰,蒋益明等,透明导电氧化物薄膜的新进展[J].光电子技术,2002,22(3):125~130
    [13] Kashiwaba Y, Katahira F. [J].Journal of CrystalGrowth,2000,22i:43i
    [14] Polley T A, Carter W B, Poker D B. Deposited of Zinc Oxide Thin Films by Combustion CVD. Thin Solid Films, 1999, 357: 132~136
    [15] Johnson M A L。et a1.EJ3.Journal of Electronic Materi—als,1996,25:855.
    [16] Shinobu F,et a1.[J].Journal of the European Ceramic So ciety,2001,21:2109.
    [17] Rodrigo F,Maria E.D.Zaniquelli.Aluminium-doped zinc oxide films prepared by an inorganic sol-gel route.Thin Solid Films, 2004, 449: 86~93
    [18] Jin-Hong Lee, Byung-Ok Park. Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol-gel method. Thin Solid Films, 2003, 426: 94~99
    [19]胡晨明,太阳电池,北京:北京大学出版社, 1990, 55~58
    [20]蒋荣华,肖顺珍,硅基太阳能电池与材料,新材料产业,2003,7:8~13
    [21]赵玉文,李仲明,莫春东等,高效单晶硅太阳电池的研制,太阳能学报,1996,17(2)123~126
    [22] Nakajima K, Fujiwara K, PAN W, et al. Growth and properties of SiGe multicrystals with microscopic compositional distribution and their applications for high-efficiency solar cells, Journal of Crystal Growth, 2005, 275(1-2): e455~e460
    [23] Deng X, Amorphous silicon and silicon germanium materials for high-efficiency triple-junction solar cells, Sol. Energy Mar. and Sol. Cells, 2000, 62(l-2): 89~95
    [24]张力,薛钰芝,非晶硅太阳电池的研发进展,太阳能, 2004, (2): 24~26
    [25] Cui H-N, Xi S-Q, The fabrication of dipped CdS and sputtered ITO thin films for photovoltaic solar cells, Thin Solid Films, 1996, 288(1-2): 325~329
    [26] Carolien L, Schoonman J, Goossens A, The application of inverse titania opals in nanostructured solar cells, Solar Energy Materials and Solar Cells, 2005, 85(1): 115~124
    [27] Balenzategui J.L, Mart?? A, Detailed modelling of photon recycling: application to GaAs solar cells, Solar Energy Materials and Solar Cells, 2006, 90(7-8): 1068~1088
    [28]张忠卫,陆剑峰,池卫英,砷化镓太阳电池技术的进展与前景,上海航天, 2003, (3): 33~38
    [29]庄大明,张弓, CIGS薄膜太阳能电池研究现状及发展前景, Advanced Materials Industry, 2005, (4): 43~48
    [30]周学东,赵修建,夏冬林等,电沉积制备CuInSe2薄膜及性能研究,武汉理工大学学报, 2005, 27(7): 4~6
    [31] Gebeyehu D, Maennig B, Drechsel J, Bulk-heterojunction photovoltaic devices based on donor/acceptor organic small molecule blends, Solar Energy Materials and Solar Cells, 2003, (9): 262~274
    [32] Geens W, Poortmans J, Suresh C, Analytical study of PPV-oligomer-and C60-based devices for optimizing organic solar cells, Solar Energy Materials and Solar Cells, 2000, 61: 43~51
    [33] Pacios R, Bradley D D C, Charge separation in ployflourene composites with internal donor/acceptor heterojunction, SyntheticMetals, 2002, 127: 261~265
    [34] Dittmer J J, Lazzaroni R, Leclere P, Crystal network formation in organic solar cells, Solar Energy Materials and Solar Cells, 2000, 61: 53~61
    [35] Petritsch K, Dittmer J J, Marseglia E A, Dye-based donor/acceptor solar cells, Solar Energy Materials and Solar Cells, 2000, 61: 63~72
    [36] Aernouts T, Geens W, Poortmans J, Extraction of bulk and contact components of the series resistance in organic bulk donor/acceptor-heterojunction, Thin Solid Films, 2002, 403~404: 297~301
    [37] Jean M, Nunzi C R, Organic photovoltaic materials and devicesm, Physique, 2002, (3): 523~542
    [38] Kohshin T , Noriko K, Three-layer organic solar cell with high-power conversion efficiency of 3. 5%, Solar Energy Materials and Solar Cells, 2000, 61: 403~416
    [39]施永明,赵高凌,染料敏化纳米薄膜太阳能电池的研究进展,材料科学与工程, 2002, 20(1): 125~127
    [40]范乐庆,吴季怀,黄昀等,染料敏化TiO2纳米晶太阳能电池研究,化工新型材料, 2003, 31(4): 14~15
    [41]盂扬,沈杰,蒋益明等,透明导电氧化物薄膜的新进展,光电子技术,2002,22(3):125~130
    [42] YANAGI H,INOUE S,UEDA K,et a1.Electronic structureand optoe1ectronic properties of transparent p-type conducting CuAlO2 [J]. J Appl Phys,2000,88(7): 4159~4163
    [43]田民波,刘德令,薄膜科学与技术手册(下),北京:机械工业出版社,1991. 599~604
    [44] Bagnall D M, Chen Y F, Zhu Z, et al, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett., 1997, 70: 2230~2232
    [45] Bai X D, Gao P X, Wang Z L, et al. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett., 2003, 82: 4806~4808
    [46]贾晓林,张海军,谭伟等,氧化锌薄膜研究的新进展,材料导报,2003,9(17):207~209,213
    [47] Fang Z., Wang Y, Peng X, et al. Structural and optical properties of ZnO films grown on the AAO templates, Mater. Lett., 2003, 57: 4187~4190
    [48] Zhang Z, Yu H, Shao X, et al. Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal, Chem. Eur. J., 2005, 11: 3149~3154
    [49] Wu J J, Liu S C, Low-Temperature Growth of well-Aligned ZnO nanorods by chemical vapor deposition., Adv. Mater., 2002, 14: 215~218
    [50] Sun Y, Fuge G M, Ashfold M N R, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett., 2004, 396: 21~26
    [51] AlAsmar R, Ferblantier G., Mailly F, et al. Structural and optical properties of ZnO fabricated by reactive e-beam and rf magnetron sputtering techniques. Phys. Stat. Sol. (c), 2005, 2: 1331~1335
    [52] Kwang S K, Hyoun W K, Chong Mu L, et al. Effect of growth temperature on ZnO thin film deposited on SiO2 substrate, Materials Science and Engineering B, 2003, 98(2): 135~139
    [53]叶皓,熊金平,赵旭辉等,电沉积纳米ZnO薄膜,材料保护, 2003, 36(4): 41~42, 45
    [54]卢亚锋,周廉,激光分子束处延,稀有金属快报, 2005, 24(1): 4~11
    [55] Takai O, Futsuhara M, Shimizu G, et al, Nanostructure of ZnO thin films prepared by reactive rf magnetron sputtering, Thin Solid Films, 1998, 318: 117~119
    [56] Govender K, Boyle D S, O’Brien, et al. Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition, Adv. Mater., 2002, 14: 1221~1224
    [57]雅菁,徐明霞,溶胶―凝胶技术在氧化物薄膜制备方面的应用,材料工程, 1996, 5: 21~23
    [58] Benramdane N,Murad W A,Misho R H et a1.A Chemical Method for the Preparation of Thin Films of CdO and ZnO.Materials Chemistry and Physics,1997,48:119.
    [59] KamalasarIan M N,Chandra S.Sol—Gel Synthesis of ZnO Thin FiIres,Thin Solid Films,1996,43:ll2.
    [60] Wang R,King L L,Slight W.High conductive Transparent Thin Films Based on zinc Oxide.J Mater Res,1996,11(7):1659
    [61] Takai O, Futsuhara M, Shimizu G, et al, Nanostructure of ZnO thin films prepared by reactive rf magnetron sputtering, Thin Solid Films, 1998, 318: 117~119
    [62] Kim K K, Song J H, Jung H J, et al. The grain size effects on the photoluminescence of ZnO’α-Al2O3 grown by radio-frequency magnetron sputtering, Journal of Applied Physics, 2000, 87(7): 3573~3579
    [63] Minami T, Yamamoto T, Miyata T, Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering, Thin Solid Films, 2000, 366(1): 63~68
    [64] Wendt R, Ellmer K. Desorption of Zn from a growing ZnO: Al films deposited by magnetron sputtering. Surface and coating Technology, 1997, 93: 27~31
    [65] Paraguay D F, Miki Y M, Morales J, et al. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapor, Thin Solid Films, 2000, 373: 137~140
    [66] Van Heerden J L, Swanepoel R.XRD Analysis of ZnO Thin Films Prepared by Spray Pyrolysis.Thin Solid Films . 1997. 299:72.
    [67] Van Heerden J L,Swanepoel R. XRD Analysis of ZnOThin Films Prepared by Spray Pyrolysis.Thin Solid Films,1997,299:72
    [68] Ma T Y ,Kim S H,M oon H Y .et a1.Substrate Tempera—ture Dependence of ZnO Films Prepared by UltrasonicSpray Pyrolysis.J Appl Phys,Part 1,1996,35(12):6208
    [69]贾锐,曲风钦等.ZnO系低压压敏薄膜的喷雾热分解法制备及膜厚对其压敏特性影响的研究.功能材料,1999,30(6):636
    [70] Suh S, Hoffman D M, Atagi L M, et al. A new metal-organic precursor for the low temperature atmospheric pressure chemical vapor deposition of zinc oxide films, Journal of Materials Science Letters, 1999, 18(10): 789~791
    [71] Hu J H, Gordon R G, Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. Journal of Applied Physics, 1992, 71(2): 880~890
    [72] Yuantao Z, Guotong D, Boyang L, et al. Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by low-pressure MOCVD, Journal of Crystal Growth, 2004, 262(1-4): 456~460
    [73] Pan M, Fenwick W E, Strassburg M, et al. Metal-organic chemical vapor deposition of ZnO, Journal of Crystal Growth, 2006, 287(2): 688~693
    [74]范志新.AZO透明导电薄膜的特性、制备与应用.真空,2000,(5):1O—l3.
    [75] Lu Jiang guo,Ye Zhizhen,et a1.ZnO Films synthesized by solid source chemical vapor deposition with C—axis paralld to substrate,Chinese Journal of Somi-conductors 24(20o3):l一5.
    [76] Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature, Applied Physics Letters, 1997, 70(17): 2230~2232
    [77] Ryu Y R, Zhu S, Wrobel J M, et al. Synthesis of p-type ZnO films, J Journal of Crystal Growth, 2000, 216: 330~334
    [78] Verardi P, Dinescu M, Andrei A, et al. Characterization of ZnO thin films deposited by laser ablation in reactive atmosphere. Applied Surface Science, 1996, 96: 827~830
    [79] FKShan, YS.Yu. Optical properties of pure and Al doped ZnO thin films fabricated with plasma produced by excimer laser. Thin Solid Film, 2003, 435: 174~178
    [80]王应民,张萌,程国安等,透明导电氧化锌薄膜材料制备技术的评价,国外金属加工,2004,25(4),51-53,57
    [81] Naresimhan K L,Pai S P,Palker V R et a1.High Quality Zinc Oxide Film by pulsed laser Ablation,Thin Solid Film,1997:295:104.
    [82]李美成,陈学康,等.脉冲激光纳米薄膜制备技术,红外与激光工程,2000,29(6):31
    [83] H irasawa Hiroshi,Yoshida M akoto,Nakamura Susumu,et a1. ZnO :Ga conducting—films grown by I3(3 arc—dischargeionplating,Solar Energy M aterials and Solar Cells.20C 1,67(1-4):231
    [84] Verardi P,N astase N ,Gherasim C,et a1. Scanning force microscopy and electron microscopy studies of pulsed laser deposited ZnO thin films:application to the bulk acoustic waves (BAW )devices.J Cryst Growth,1999,197(2) :523
    [85]卢亚锋,周廉,激光分子束处延,稀有金属快报, 2005, 24(1): 4~11
    [86] Sakurai K, Kanehiro M, Effects of oxygen plasma condition on MBE growth of ZnO, Journal of Crystal Growth, 2000, 209(2-3): 522~525
    [87] Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature, Applied Physics Letters, 1997, 70(17): 2230~2232
    [88] Bagnall D M, Chen Y F, Zhu Z, et al. Highly temperature excitonic stimulated emission from ZnO epitaxial layers, Applied Physics Letters, 1998, 73(8): 1038~1040
    [89] ChenY ,Tuan N T ,Segawa Y ,et al .Sitmulated emission and optical gain in ZnO epilayers gown by plsma-assisted molecular-beam epitaxy with bufers[J]. Appl. Phys. Lett. 2001, 78:1469-1471
    [90]徐东然,马葆基,肖效光等,激光分子束外延制备薄膜技术,聊城大学学报,2006,9:36-39
    [91]邸英浩,曹晓明,真空镀膜技术的现状及进展,天津冶金,2004,5:45-48
    [92]宋永良,浅析真空镀膜技术,甘肃科技,2004,7:59-60
    [93]姜燮昌,真空镀膜技术的最新进展,全国薄膜学术讨论会会议论文集,20-27
    [94]王银川,真空镀膜技术的现状及发展,现代仪器,2000,6:1-4
    [95]李海凤,ZnO的用途及其薄膜的制备方法,高等职业教育-天津职业大学学报,2006,6:39-41
    [96]王浩,廖常俊,范广涵等,应用原子层外延技术分析Turbo-Disk MOCVD外延生长模式,液晶与显示,2004,4:128-133
    [97]黄和鸾,郭丽伟.半导体超晶格—材料与应用[M],沈阳:辽宁大学出版社,1992,50-100
    [98] Goodman Colin H L, Pessa Markus V, Atomlc layer epitaxy [J]. J.Appl.Phys., 1986, 60(3):R65-R82
    [99]潘亚东,王金良,氧化锌薄膜的p型转化研究,2006年材料科学与工程新进展,351-356
    [100]李村,权传斌,徐洪耀等,掺铝氧化锌AZO(ZnO:Al)薄膜研究,安徽大学学报,2007,9:82-86
    [101]赵谢群,邱向东,氧化锌薄膜掺杂研究的新进展,中国有色金属学报,1998,9:206-209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700