用户名: 密码: 验证码:
高光洁度类金刚石碳膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了类金刚石碳(DLC)膜的研究进展,对其结构、表面形貌、性能及沉积机理作了详细的总结、分析和讨论。重点综述了类金刚石碳膜的制备方法、应用背景及研究进展。DLC膜具有极好的力学性能,其高硬度、低摩擦系数及抗磨损性能仅次于金刚石(金刚石的硬度为100GPa);同时具有高杨氏模量和弹性模量;其次,DLC膜还具有极高的电阻率、电绝缘强度、击穿电压高以及较低的介电常数等;在生物工程方面,DLC膜有其独特的生物兼容性、化学惰性及摩擦学性能。目前,国外已经将DLC膜成功地应用到人工心脏瓣膜、人工关节、人工骨方面。在光学方面,其光致发光率很高,在红外到紫外光波段的吸收系数很小,具有优良的光透过率和光学带隙,在红外区域几乎“透明”。目前,DLC膜已被广泛应用于机械、电子、光学、热学、声学、医学等敏感功能薄膜材料领域,具有良好的应用前景,受到国际科技界的极大关注,如美国已经将DLC膜材料作为国家21世纪的战略材料之一。
     本文应用低压等离子体增强化学气相沉积(LPPCVD)方法制备类金刚石碳膜,并对其结构和性能进行了研究。通过Raman光谱和XPS光谱确认了薄膜的类金刚石特性,并研究了随制备薄膜的不同工艺参数两种光谱的演变规律,结果发现,改变工艺参数可以很好的调制薄膜中的sp~2与sp~3的杂化比,制备薄膜中sp~3/sp~2比例最高可达0.67,sp~3含量可达到40.16%,其分子团簇尺寸较小,此时薄膜更加致密。
     本文研究了主要参量(如源气体流量比、工作气压、射频功率等)对薄膜沉积速率和表面形貌的影响,利用AFM和SEM照片观测了薄膜的表面形貌,通过对分子团簇大小的估算,研究了沉积机理对表面形貌的影响。结果显示,在压强为10Pa,射频功率为10W,氢气流量为0.5sccm,单体流量为0.6sccm条件下可制备出表面平整、致密,均方根粗糙度在1nm左右,沉积速率为11.96nm/min的高光洁度薄膜。
     利用红外光谱研究了DLC薄膜化学结构,结果显示,制备的薄膜中氢含量较高,薄膜中碳氢原子形成的基团中以sp~3CH_3为主且薄膜中没有发现sp~2C-H基团。研究表明,T_2B含量少的样品吸收峰强于T_2B含量大的样品,即其含有更多的C=C键。随着气压升高,样品中C=C键的含量下降。射频功率较大时制备的样品吸收峰强于功率较小时制备的样品,即其含有更多的C=C键。
     研究了工艺参数对薄膜紫外-可见光透射光谱和光学带隙的演变规律。结果表明,薄膜在可见光区域具有良好的透过率,最高可达98%,在紫外波段范围内具有强吸收特性。薄膜的光学带隙在2.328~2.82eV范围。薄膜光学带隙与薄膜的结构有很大关系,特别是与薄膜中sp~3杂化键以及C=C双键含量具有直接关系。
     通过对薄膜的热稳定性研究,发现氢含量过多或者过少都会使薄膜失重较多,只有氢在合适比例情况下才能制备出结构致密的薄膜,同时这也验证了氢在薄膜制备过程中的重要作用。压强较大时制备的薄膜的裂解温度相对较高,裂解吸热量较小。通过改变参数能够得到热稳定性较好的薄膜。因此有理由相信类金刚石碳膜在惯性约束聚变(ICF)实验研究中将有较好的应用前景。
In this thesis, the progress on the preparation, structure, surface morphology, and properties of diamond-like carbon (DLC) films were reviewed. DLC films have excellent mechanical properties, high hardness, low coefficient of friction and wear resistance, high Young's modulus and elastic modulus. DLC films also have high rate of resistance, high electric insulating strength, high breakdown voltage and low dielectric constant. In biological engineering, DLC films performed their own unique biocompatibility. At present, the DLC films have been successfully applied to act as the artificial heart, artificial joints and artificial bone areas. In optical aspects, their high rate of photoluminescence and the weak absorption in the infrared bands made them have an excellent light transmission and optical band gap. At present, they have been widely used in mechanical, electronic, optical, thermal, acoustic, medical areas, etc. DLC films will achieve their bright application prospect, more and more scientists pay attention to the researchs and development of DLC films and releated devices, e.g., the USA has treated the DLC films as a national strategy in the 21st century.
     The diamond-like carbon films were prepared by using the low-pressure plasma enhanced chemical vapor deposition (LPPCVD) with H_2 and Trans-2-butene as source gases, and their structure and properties were futher studied. Their diamond-like structure was demonstrated by using Raman spectrum and XPS spectrum, and the evolution rules of their Raman spectrum and XPS spectrum under different growth parameters were investigated. The content ratio of sp~3 and sp~2 within the DLC films can be modulated by varying the growth parameters, and its highest value achieved 0.67 whileas the content of sp3 reached to 40.16%.
     The main work parameters, such as flow ratios of source gases, work pressure and RF power etc, will affect the deposition rate and the surface morphology of DLC films. The surface morphology of DLC films were scanned via AFM and SEM. The results showed that the RMS of DLC films can be optimized to be 1 nm with a deposition rate 11.96 nm / min under the condition of pressure 10 Pa, RF powe 10 W, the hydrogen flow 0.5 sccm and Trans-2-butene flow 0.6 sccm.
     The FTIR spectrum reveals that the structure and composition of the DLC films varied with the T2B/H2 flow ratios, pressure and RF power. The results show that DLC films we prepared mainly contain sp~3C-H bonds whileas the sp~2C-H bonds were not found from their FTIR spectrum, the films possess more C=C bonds when they were prepared under lower T2B/H2 flow ratio, or higher RF power, or lower pressure.
     The UV-VIS spectrum shows that the transmission ratio of the DLC films reaches 98% in the visible light range, the films have strong absorption in the ultraviolet bands, and their optical band gaps vary in the range of 2.328~2.82eV. Its optical band gap has a close relationship with the structure, particularly the content of the sp~3 hybrid bonds and the C = C bonds.
     The thermogravimetric analysis shows that the mass will loss more when excessive or too little hydrogen in the films, the dense DLC films can be deposited with an appropriate proportion of hydrogen. The results also verify the content of hydrogen in the process of preparation films has a great influence on the quality of the DLC films. It is also observed that films deposited under higher pressure have higher cracking temperature. The thermal stability of DLC films can be improved by adjusting the deposition parameters and annealing treatment. It is believed that the diamond-like carbon films will have a better prospect in inertial confinement fusion (ICF) experiment.
引文
[1] Hark S K, Machonkin M A, Lansen F, et al. Raman scatterting laser annealing and pressure-optical studies of ion beam deposited amorphous carbon films[C]. AIP Conf Proc, 1984, 120: 465-472.
    [2] Schiffmann K, Andreas H. Analysis of Microwear experiments on thin DLC coatings: friction, wear and plastic deformation [J]. Wear, 2003, 254(5-6): 565-572.
    [3] Robertson J. Amorphous Carbon[J]. Adv Phys. 1986, 35: 317-374.
    [4] Casiraghi C, Robertson J, Ferrari A C. Diamond-like carbon for data and beer storage[J]. Materials Today, 2006, 10(1-2): 44-53.
    [5] Liu D P, Chen B X, Liu Y H.The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis [J]. Plasma Science & Technology, 2006, 8(3): 285-291.
    [6] Bant I M. Biosurfactants more in demand than ever [J]. Biofutur, 2000, 20(198): 44-47.
    [7] Aiserbery S. Physics of ion planting and ion beam deposition[J]. J Vac Sci Technol, 1973, 10(1): 104-107.
    [8] Spencer E G. Ion-beam deposition polycrystalline diamonalike films[J]. Appl Phys Letter, 1976, 29(2): 118-120.
    [9]吴志猛.类金刚石膜的制备与特性研究[D],阜新:辽宁工程技术大学, 2002.
    [10] Rusli, Yoon S F, Yang H, et al. Effect of pressure on the deposition of hydrogenated carbon films[J]. J Vac Sci Technol, 1998, A16(2): 572-577.
    [11] Reinke P, Schelz S, Jacob W, et al.elegans protein implicated in sperm production[J]. J Vad Sci Technol, 1992, A10: 434-438.
    [12]袁振海,等.类金刚石薄膜的新进展[C].全国第四届气相沉积学术交流会论文.九江, 1992. 8: 55-60.
    [13]刘正,龚正,张秀芝等.压铸镁合金新材料开发历史及其成型工艺的进展[J].材料热处理学报, 2001, 10(增刊): 131-138.
    [14] Erdemir A, Donnet C. relevant to numerous industrial applications [J]. Journal of Physics, 2006, 39(18): R311-327.
    [15] Perry A J, Matossian J N. Metallurgical and materials transactions[J]. Metal & Mater Tran, 1998, 29(2): 593-610.
    [16] Zhou B, Wang L, Mehta N, et al.The mechanical properties of freestanding near-frictionless carbon films relevant to MEMS [J]. Journal of Micromechanics and Microengineering, 200616 (7): 1374-1381.
    [17] Casiraghi C, Robertson J, Ferrari A C. Diamond-like carbon for data and beer storge[J]. Materials Today 2007, 10(1-2): 44-53.
    [18]常同钦.类金刚石膜的物理特性及应用[J].表面技术, 2006, 35(5): 76-77.
    [19] Vercammen K, Meneve J, Dekempeneer E, et al. Study of RF PACVD diamond-like carbon coatings for space mechanism applications[J]. Surface & Coatings Technology, 1999, 121-121(11): 612-617.
    [20]刘贵昂.类金刚石薄膜及其沉积条件的研究[J].大自然探索, 1998, 17(66): 71-72.
    [21] Friedmann T A, Sullivan J P, Knapp J A, et al. Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond[J]. Appl phys Lett, 1997, 71(26): 3820-3822.
    [22]李敬财.真空阴极电弧及等离子体化学气相法沉积类金刚石碳膜的研究[J]. 2004: 10-15, 29-30.
    [23]桑红毅,张维佳,王天民,等.类金刚石膜的光学及场发射性能研究现状[J].材料导报, 2002, 7: 41-43.
    [24] Staryga E, Bak G W, Dluzniewski M. Some electrical properties of diamond-like carbon thin films[J]. Vacuum, 2004, 74 (2): 325-330.
    [25]陈光良.高阻隔非晶碳氢膜制备及性能研究[D].北京:北京印刷学院, 2004: 14-15.
    [26] Fedosenko G, Schwabedissen A, Engemann J, et al. Pulsed PECVD deposition of diamond-like carbon films[J] .Diamond and Related Materials, 2002, 11: 1047-1052.
    [27]易树,尹光福,郑昌琼.类金刚石薄膜表面接口特性表征以及检测技术[J].北京生物医学工程, 2004, 23(2): 152-157.
    [28]黄桂芳,周灵平,李绍禄等.离子束沉积类金刚石碳膜对钢在NaCl溶液中耐蚀性能的影响[J].材料保护, 2000, 33(6): 35-36.
    [29] Dearnaley G, Arps J H. Biomedical applications of diamond-like carbon (DLC) coatings: A review[J]. Surface & Coatings Technology, 2005, 200(7): 2518-2524
    [30] Lu F.X, Yang B.X, Cheng D.G et al. Low hydrogen content diamond-like carbon coatings of optics for high power industrial CO2 lasers,Thin Solid Films[J]. 1992, 212, (1-2): 220-225.
    [31] Musil J.Vicek J. A perspective of magnetron sputtering in surface engineering[J]. Surf Coat Technol. 1999, 112: 162-169.
    [32] Robertson J. Diamond-like amorphous carbon [J]. Materials Science and Engineering.2002, R37: 129-281.
    [33] Fujimaki S, Kashiwase H, Kokaku Y. New DLC coating method using magnetron plasma in an unbalanced magnetic field[J]. Vacuum, 2000, 59(2-3): 657-664.
    [34] Deng J G, Braun M. DLC multilayer coatings for wear protection [J].Diamond Relat Mater, 1995, 4: 936-943.
    [35] Bewilogua K, Cooper C V, Specht C, et al. Effect of target material on deposition and properties of metal-containing DLC (Me-DLC) coatings [J]. Surf Coat Technol, 2000, 127: 223-231.
    [36] Helmersson U, Lattemann M, Bohlmark J, et al. Ionized physical vapor deposition(IPVD): A review of technology and applications[J]. Thin Solid Films, 2006, 513(1-2): 1-24.
    [37] Angus J C, Koidl P, Domitz S. Plasma Deposited Thin Films [M]. Boca Raton Fl, CRC Press, 1986.
    [38] Martinu L, Raveh A, Boutard D, et al. Properties and stability of diamond-like carbon films[J]. Diamond Relat Mater, 1993, 2: 673-677.
    [39] Andre B, Rossi F, Dunlop H, et al. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting [J]. Diamond Relat Mater, 1992, 1: 307-310.
    [40]王瑜.金属表面制备类金刚石膜的性能研究[D].北京:北京印刷学院, 2005, 10-11.
    [41] Coll B F, in: Silva S R P, et al.(Eds), Amorphous Carbon[M]. Singapore: World Scientific, 1998.
    [42] Brown I G. Cathodic arc deposition of films [J]. Ann Rev Mater Sci, 1998, 28: 243-269.
    [43]张占文,李波,王朝阳,余斌,吴卫东.热丝加热电流对CH薄膜沉积速率和表面形貌的影响.强激光与离子束, 2003, 15(8): 699-770.
    [44] Zhang Wei, Tanaka A, Wazumi K, et al. Structural, mechanical and tribological properties of diamond-like carbon films prepared under different substrate bias voltage[J]. Diamond and Related Materials. 2002, 11: 1837-1844.
    [45] Wu W J, Hon M H. Thermal Stability of Diamond-like Carbon Films with Added Silicon [J]. Surface and Coating Technology, 1999, 1(11): 134-140.
    [46] Serra C, Pascual E, Maass F. Plasma deposition of hydrogenated amorphous carbon (a-C:H) under a wide bias potential range [J]. Surf Coat Technol, 1991, 47: 89-97.
    [47] Nyaiesh A R, Kirby R E, Kings F K, et al. [J]. J. Vac. Sci. Technol. 1985, A3: 610.
    [48]周亚光.等离子体法制备类金刚石膜的研究[J].材料科学与工艺.1997,5(1):37-39.
    [49]胡传,表面处理技术手册,北京工业大学出版社,1997.
    [50]等离子体物理学科发展战略研究课题组着.核聚变与低温等离子体―面向21世纪的挑战和对策[M].北京:科学出版社, 1999: 129.
    [51]胡子龙.储氢材料[M].北京:化学工业出版社, 2002: 9-14.
    [52]王淦昌,袁之尚着.惯性约束聚变[M].合肥:安徽教育出版社, 1996: 22-24.
    [53] Zhang B, et al. Organic Thin Films for Ultrahigh data density storage[J]. Data Storage, 1999,1: 25-28.
    [54] Tomcik B et al. Electrochemical tests on the carbon protective layer of a hard disk[J]. Diamond Relat. Mater, 2002, (11): 1409-1415.
    [55] Bernhard P, et al. Investigations of the corrosion protection of ultrathin a-C and a-C:N overcoats for magnetic storage devices[J]. Surf. Coat. Technol. (2004) 180-181, 621-626.
    [56] Ohr R, et al. Analytical and functioncal characterization of ultrathin carbon coatings for future magnetic storage devices[J]. Surf. Coat. Technol. (2003) 174-175, 1135-1139.
    [57] Yamamoto, S. et al. Oxygen transmission of transparent diamond-like carbon films[J]. Diamond Relat. Mater. (2005) 14, 1112-1115.
    [58]季红兵,夏立芳,马欣新等.基材、添加元素及中间层对DLC膜结构与性能的影响[J].金属热处理,1999(5):10-13.
    [59]王天旭,蒙继龙,文命清.化学气相沉积金刚石薄膜衬底的研究进展[J].金属热处理,2002,27(9):16-18.
    [60] Tomita A, Kusuda M, Otsuki S, et al. Enhancement of adhesive strength of DLC film perpared by PBIID on Co-Cr alloy for biomaterial[J]. Thin Solid Films 2006, 506: 59-62.
    [61] Choi J, Miyagawa S, Nakao S, et al. Thermal stability of diamond-like carbon films deposited by plasma based ion implantation technique with bipolar pulses. Diamond and Related Materials, 2006, 15 (4-8): 948-951.
    [62] Chang Chi-Lunga, Wang Da-Yunga.Microstructure and adhesion characteristics of diamond-like carbon films deposited on steel substrates[J]. Diamond and Related Materials,2001,10(8): 1528-1534.
    [63] Wu W J, Hon M H. Thermal Stability of Diamond-like Carbon Films with Added Silicon [J]. Surface and Coating Technology, 1999, 1(11): 134-140.
    [64] Mallika K, Komanduri R. Low pressure microwave plasma assisted chemical vapor deposition (MPCVD) of diamond coatings on silicon nitride cutting tools[J]. Thin Solid Films, 2001, 396: 145-165.
    [65] Suzuki K. Sawabe A, et al. Growth of diamond thin films by DC plasma chemical vapor deposition and characteristics[J]. Jpn.J.Appl.Phys, 1990 , 29(1): 153-156.
    [66] Suzuki K, Sawabe A, et al. Hollow cathode plasma assisted chemical vapor deposition of diamond[J]. Appl.Phys.Lett, 1988, 52: 1658-1660.
    [67] Matsumoto S.Chemical vapor-deposition of diamond in RF glow-discharge[J]. J.Mater. Sic.Lett, 1985, 4: 600-6004.
    [68] Mager D E, Dillon R O, Woolham J A, J.Vac.Sci Technal, 1989, 7: 2325-2330.
    [69] Setaka N. discloses a CVD method of depositing diamond films in a paper entitled[J].J.Mater.Res, 1989, 4(3): 664-670.
    [70] Komori A, Shoji T, et al. Helicon waves. and efficient plasma productionPhys[J]. Fluids B, 1991, 3: 893-898.
    [71] Bubenzer A, Dischler B, Brandt G, Koidl P. rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications [J]. Appl. Phys., 1993, 54(8): 4590.
    [72]高频电感耦合等离子体光源光谱分析编着小组.高频电感耦合等离子体光源光谱分析[M].北京:地质出版社,1982.
    [73]江美福.反应磁控溅射法制备的氟化类金刚石薄膜的结构和性能研究[D].江苏:苏州大学, 2005, 30-34.
    [74] Tai F C, Lee S C, Wei C H, et al. Correlation between I-D/I-G ratio from visible Raman spectra and sp2/sp3 ratio from XPS spectra of annealed hydrogenated DLC film. Materials Transactions, 2006, 47 (7): 1847-1852.
    [75]朱自莹,顾仁敖,陆天虹,拉曼光谱在化学中的应用[M].东北大学出版社,1998.
    [76] (美)多林希等着,朱自莹译,有机化合物的特征拉曼频率,中国化学会, 1980.
    [77]方容川,固体光谱学,中国科学技术大学出版社,2001.
    [78]吴刚,材料结构表征及应用,化学工业出版社,2002.
    [79] Miyagawa Y,Nakao S,Ikeyama M,Miyagawa S,Dynamic MC simulations of diamond like carbon film synthesis by plasma-based ion implantation[J].Surface and Coating Technology2001,136(1-3):122-126.
    [80]王宗明,何欣翔,孙殿卿.红外光谱学[M].北京:石油工业出版社, 1990.
    [81]蒋先明,何伟平.简明红外光谱识谱法[M].广西:广西师范大学出版社, 1992.
    [82] Beeman D, Silverman J, Lynds R., et al.Modeling studies of amorphous carbon[J]. Phys Rev B, 1984, 30: 870-875.
    [83]常海波,许洮,李红轩,等.PECVD法制备类金刚石薄膜的结构和摩擦学性能研究[J].真空,2006,43(1):47-50.
    [84] Czechowicz D G, Castillo E R, Nikroo A. Composition and structural of strong glow discharge polymer coatings[J]. Fusion Science and Technology, 2002, 41: 190-192.
    [85] Grill A, Patel V. Hard carbon coating with low optical absorption[J]. Appl PhysLett, 1992, 60: 2089.
    [86] Liu S, Gangopadhyay S, Sreenivas G, et al. Infrared structures of hydrogenated amorphous carbon and its alloys (a-C:F, N, F) [J]. Phys. Rev.B, 1997, 55: 13020-13024.
    [87] Czechowicz D G,Castillo E R,Nikroo A.Composition and structural of strong glow discharge polymer coatings[J].Fusion Science and Technology.2002,41:190-192.
    [88] Filik J, May P W, Pearce S R J, Wild R K, Hallam K R. XPS and laser Raman analysis of hydrogenated amorphoμs carbon films[J]. Diamond and Related Materials, 2003, 12:974-978.
    [89] Yoshitake T, Nishiyama T, Nagayama K. Diamond and Related Materials, 2000, 9: 689-692.
    [90] Rother B. J.Vac.Sic.Technol.A, 1994, 12: 1457.
    [91]王季陶,张卫,刘志杰.金刚石低压气相生长的热力学耦合模型.北京:科学出版社, 2000. 100-104.
    [92]杨兵初,聂国政,李雪勇.类金刚石薄膜的电子结构及光学性质[J].中国有色金属学报,2006,16(6):990-992.
    [93] Wu W D,Luo J S,Huang Y,et al.The Production of CxHx-1 Film Using Low Pressure Plasma CVD[J].Nucl Instrum Methods Phys Res,Sec A,2002,480:84-91.
    [94] Kim I Y, Hong S H, Consoli A, et al. Roughness evolution during a-C:H film growth in methane plasmas[J]. Journal of Applied Physics, 2006, 100(053302): 1-6.
    [95]朱霞高,侯惠君,林松盛,等.RF-PCVD低温沉积无色透明类金刚石保护膜的工艺研究[J].广东有色金属学报,2006,16(3):189-191.
    [96] Peng X L, Barber Z H, Clyne T W. Surface roughness of diamond-like carbon films prepared using various techniques[J]. Surf. Coat. Technol, 2001,138(1):23-32.
    [97]柳翠.类金刚石碳膜制备工艺及搀杂性能研究[D].大连:大连理工大学, 2005, 72-74.
    [98] Uhlmann S, Frauenheim T H. Molecular-dynamics study of the fundamental processes involved in subplantation of diamondlike carbon[J].Phys. Rev. Lett, 1998,81(3):641-644.
    [99] Rother B. J Vac. Sci. Technol,1994, A12(4) :1457.
    [100] Ehrhardt H. New developments in the field of superhard coatings[J]. Surface and Coatings Technology, 1995, 74-75: 29-35.
    [101]蔺增.利用射频PECVD方法生长类金刚石薄膜的实验研究[D].沈阳:东北大学, 2004.
    [102] Lifshitz Y, Kasi S R, Rabalais J W. Subplantation model for film growth from hyperthermal species[J]. Phys. Rev. B, 1990, 41: 10468–10480.
    [103] Robertson J. Structural models of a-C and a-C:H[J]. Diamond Relat Mater, 1995, 4: 297-301.
    [104] Jones H. Splat cooling and metastable phases[J]. Rep. Prog. Phys, 1973, 36 : 1425-1497.
    [105] Seitz F, Koehler J S. in Progress in Solid StatePhysics. Academic ,New York ,1957 ,2 :30
    [106]杨云志,冉均国,郑昌琼.荷能粒子在类金刚石膜形成中的作用[J].硅酸盐通报, 1998, 2: 43-45.
    [107] Davis C A, Amaratunga G A J, Knowles K M. Growth Mechanism and Cross-Sectional Structure of Tetrahedral Amorphous Carbon Thin Films[J]. Phys. Rev. Lett, 1998, 80: 3280.
    [108]肖剑荣,徐慧,郭爱敏,等.含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅱ)射频功率对薄膜光学带隙的影响[J].物理学报, 2007, 56(3): 1810-1814.
    [109] Robertson J. Diamond-like amorphous carbon[J]. Materials Science and Engineering, 2002, R37: 129-281.
    [110]陈治明,王建农.半导体器件的材料物理学基础(北京:科学出版社) 1999.
    [111]王华馥,吴自勤.固体物理实验方法[M].北京:高等教育出版社, 1990. 334-350.
    [112] Tauc J. Amorphous and Liquid Semiconductors. London: Plenum Press, 1974. 159-220.
    [113] Ebihara K, Nakamiya T, Ohshima T, et al. Diamond and Rel Materials, 2001, 10: 900-904.
    [114] Bauer M, Selinger T S, Jacob W. Growth precursors for a-C:H film deposition in pulsed inductively coupled methane plasmas[J].Journal of Applied Physics, 2005, 98(073302): 1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700