用户名: 密码: 验证码:
食品中三种致病菌的快速检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金黄色葡萄球菌、蜡样芽孢杆菌、沙门氏菌是食物中毒事件最常见的三种致病菌,其检测目前还是依靠传统的培养方法来确定,需要进行增菌、分离、纯化、生化鉴定和血清学实验等一系列步骤,这些方法最大的问题是耗时长,通常需要几天,不能满足食品生产企业和质量监督检验部门快速检测的要求,因此,寻找一种快速简便的检测方法就显得非常重要。
     本论文开展了对金黄色葡萄球菌、蜡样芽孢杆菌、沙门氏菌经过染色处理后利用计算机视觉技术进行快速检测的研究,这种方法完成相应致病菌检测的时间很短,最长需要5h,最短仅需2h,非常具有应用和推广的价值。试验研究了三种致病菌的前处理方法、染色和对应的计算机视觉识别技术,然后用本实验室自行研制的食品微生物快速检测系统进行检测,达到了快速检测的试验目的。
     相关的研究工作和结论如下:
     (1)研究了金黄色葡萄球菌的计算机视觉识别快速检测方法,包括金黄色葡萄球菌基础培养基的选择、抑制剂和促进剂的筛选、选择培养基的优化、金黄色葡萄球菌的染色、金黄色葡萄球菌图片的去噪、分割、形态学运算、提取、识别等方面内容,并且确定了计算机快速检测方法的检测限,和国标检测方法进行了比较,得到如下结论:
     确定了选择培养基的优化配方,即在基础培养基的基础上加上抑制剂和促进剂,植物蛋白胨3.0g/L,胰蛋白胨17.0g/L,氯化钠68g/L,葡萄糖2.5g/L,磷酸氢二钾2.5g/L,亚碲酸钾60mg/L,丙酮酸钠5g/L,甘氨酸9g/L,苯乙醇3.8ml/L。
     利用微生物快速检测系统进行检测的步骤是:
     取样品25g,剪成小块,为进一步破碎,加入灭菌砂进一步磨碎,将碎屑与放入均质袋内,加入225mL生理盐水,均质1~2min,用中速滤纸进行过滤,除去颗粒物,对滤液进行10倍稀释。
     取0.9mL选择培养基,加入到1.5mL离心管中,再取0.1mL的金黄色葡萄球菌菌悬液进行接种,将离心管在37℃120rpm的条件下培养4h。先对离心管中的菌液做10倍的稀释,然后用一次性注射器将这10mL液体进行过滤浓缩,浓缩使用一次性的针式过滤器,其孔径为0.45μm,可以有效将菌液进行过滤,并达到浓缩的目的。用微量取液器吸取2μL经过过滤浓缩的菌液,移至载玻片上,吹干。然后用无菌水冲洗一下干燥后的菌液,滤纸吸走多余水分,最后将该载玻片插入食品微生物快速检测仪中进行检测。
     图像处理采用采用中值滤波降噪、全局阈值分割、开运算平滑处理和边缘提取的步骤和方法,利用BP神经网络4-5-1模型进行图像的判别。
     快速检测法与国标法两种方法不存在显著差异,检测时间在5h以内,检测限为10~107cfu/mL。
     (2)研究了蜡样芽孢杆菌的计算机视觉识别快速检测方法,包括研究蜡样芽孢杆菌性质、杂菌的去除、菌悬液的制备、微波萌发、短期发酵、染色、蜡样芽孢杆菌图片的去噪、分割、形态学运算、特征值提取和图像的识别等方面内容,并且和国标检测方法进行了比较,得到如下结论:
     样品通过65℃水浴热处理30min杀灭非目标菌,以液体LB培养基为基质,添加萌发剂组合硫酸锌0.05%、氯化镁0.1%、氯化锰0.15%。菌悬液用微波处理60s以促进萌发,并经过2h的短期发酵。
     利用微生物快速检测系统进行检测的步骤是:
     称量25g样品,加入到锥形瓶中,同时加入55mL磷酸钠缓冲液,混合均匀后水浴65℃加热30min,然后冷却到室温。
     取1mL样品菌液,加入到1.5mL离心管中,11000rpm离心后收集芽孢,加入0.85mL萌发液,混匀后,放入微波炉中,在高档下加热60秒钟,然后冷却。
     取经过微波萌发的菌液0.1mL,加入到离心管中,同时加入短期发酵液,在37℃150rpm的条件下培养2小时。
     取出离心管,先对离心管中的菌液用0.9mL蛋白胨溶液做10倍的稀释,然后用一次性注射器将这1mL液体进行过滤浓缩,浓缩使用一次性的针式过滤器,其孔径为0.45μm,再用蛋白胨溶液冲洗一次并过滤。用微量取液器吸取5μL经过过滤浓缩的菌液,移至载玻片上,吹干。
     滴加6~8μLGluc染色液,加盖盖玻片后,避光保存,37℃等待10~20min,然后用无菌水冲洗一下,滤纸吸走多余水分,最后将该载玻片插入食品微生物快速检测仪中进行检测。
     图像处理采用中值滤波去噪、RGB彩色空间分割、开+闭运算平滑处理、形态和颜色特征提取等步骤,用以进行图像识别的BP神经网络结构为8-6-1,测试样本的识别准确率达到95%以上。
     快速检测方法与国标检测方法之间无显著差异,检测时间在5h以内,检出限为50~1×106cfu/mL。
     (3)研究了沙门氏菌的计算机视觉识别快速检测方法,包括胶体金的制备、金标抗体的制备、沙门氏菌染色制片、计算机获得图像的去噪、分割、形态学处理、特征值提取等内容,并且和国标检测方法进行了比较,得到如下结论:
     确定了合成胶体金溶液和金标抗体的条件:将0.01%氯金酸水溶液加热,加入还原剂柠檬酸三纳,连续煮沸后合成粒径为15nm~25nm胶体金溶液。将胶体金溶液调节pH为9.0,加入二抗,合成标记物,采用高速离心法对合成溶液进行纯化。
     利用微生物快速检测系统进行检测的步骤是:
     称取25g样品,剪碎成小块,加入盛有175mL含1%BSA的PBS-T溶液无菌均质杯中,均质1min~2min,样品匀液采用定量的中速滤纸进行过滤,除去大颗粒物质。然后用50mL含1%BSA的PBS-T溶液冲洗,收集滤液。
     用注射器吸取10mL滤液注入膜过滤器中浓缩,吸取2μL浓缩液于干净载玻片上,室温或37℃下晾干,再经75%的乙醇溶液固定6~9min,用1%牛血清白蛋白的PBS-T溶液冲洗掉固定液,滤纸吸干后,加入2μL浓度为1:2000的沙门氏菌一抗溶液,37℃下作用30min后,用洗涤液冲洗掉未结合的一抗,滤纸吸干后,再滴加2μL浓度1:40的金标物溶液,37℃下作用30min后,用洗涤液冲洗掉未结合的二抗,滤纸吸干后,分次加入2μL增菌液、第一次作用2min、第二次作用时间控制在6min内,先用洗涤液冲洗,再用去离子水冲洗,风干后送入快速检测系统中进行检测。
     图像处理选用顶帽交换结合灰度窗口变化法对进行去噪,用迭代阈值法进行分割处理,采用开闭运算和连通区域标记对图像进行形态学处理,应用填充空洞腐蚀法提取图像边缘,应用八链码跟踪方法进行特征值提取,BP神经网络结构为4-3-1。
     快速检测方法与国标方法进行比较不存在显著性差异,其相关性高,检测结果准确,检测时间短(2h),检出限为10~107cfu/mL,可以应用于实际检测。
     (4)对金黄色葡萄球菌、蜡样芽孢杆菌、沙门氏菌的生物学、培养性质、检测方法等进行了比较,三种致病菌的计算机视觉检测方法各有其原理和特点,但都是基于经过前处理后,将对应菌体进行染色,达到图像识别要求后,用计算机通过设定的程序进行识别,三种方法检测时间都很短,都能保证在5小时以内完成检测。
Staphylococcus aureus, Bacillus cereus and Salmonella are considered the mostcommon cause of food-borne illness worldwide. The plate count method is acommonly accepted, reliable method for the detection of them, but is timeconsuming for needing a series of steps such as enrichment, separation andpurification, biochemical identification and serological test and cannot meet therequirements for achieving rapid analysis. Thus, in order to shorten the analyticaltime requirement, simplify testing procedures, and meet the necessity of rapiddetection of S. aureus, B. cereus and Salmonella for the modern food industry, wedeveloped a rapid detection method using staining and computer vision technology.
     Compared to the plate count method, which requires3to7d, this new detectionmethod offers great time savings. The total analysis time was2to5h. Our new,rapid detection method for microorganisms in foods has great potential for routinefood safety control and microbiological detection applications. In this paper, thepretreatment methods, staining methods and computer vision technologies for S.aureus, B. cereus and Salmonella were studied using the Food MicrobiologicalRapid Detection system (FMRDS) manufactured by our laboratory.
     The main research work and results are as follows:
     1. In this section, we studied a rapid detection method based on computer visionfor selective isolation and identification of S. aureus from foods. The researchincluded preparation of selective medium, selection of inhibitors and accelerators,optimizing of selective medium, staining of S. aureus, image denoising,segmentation, morphological operation treatment, characteristic parametersextraction and artificial neural network identification. The detection range for S.aureus was confirmed and this method was compared with the plate count method.The conclusions are as follows:
     Through single factor and response surface analysis experiments, the formula ofS. aureus selective medium was determined to be17.0g/L tryptone,3.0g/L phytone,68.0g/L NaCl,2.5g/L KH2PO4,2.5g/L glucose,5g/L sodium pyruvate,9.0g/Lglycine,60mg/L K2TeO3, and3.8g/L phenethyl alcohol.
     Rapid detection by the FMRDS
     Solid sample (25g) was placed in a sterile homogeneous bag containingphysiological saline (225mL) and flapped for1to2min with a flapping homogenizer to create a liquid bacterial sample (1:10). To minimize large particles interference andfacilitate subsequent enrichment process, medium speed quantitative filter paper wasused to remove large particles. The large particulate matter was removed and filterpaper was rinsed with physiological saline (100mL) in order to minimize bacterialloss.
     A0.1-mL aliquot of the S. aureus suspension was added into a centrifuge tube(1.5mL) containing S. aureus selective medium (0.9mL). It was then fermented at37C for4h, and an aliquot of the fermentation solution (0.1mL) was taken anddiluted to10mL with sterile distilled water.
     The10-mL dilution was concentrated using a syringe filter (Ф13/0.45μm).Using disposable syringe,50μL of air was drawn and pushed through the filter3times to mix. The concentrated fermentation solution (2μL) close to the filtermembrane was then transferred onto the slide and air-dried. Sterile distilled water wasdripped on the slide for rinsing, and excess moisture on the slide was absorbed withfilter paper. Finally, the slide was analyzed using the rapid detection system.
     The image identification program of the food microbiological rapid detectionsystem included the following steps: median filtering denoising, the global thresholdsegmentation, open operation smooth processing and edge extraction, using BPneural network model for image discriminant4-5-1.
     Compared to the Baird-Parker plate count method, this rapid detection methodoffers great time savings. The total analysis time was5h. Results using the rapiddetection method agree with those using the traditional Baird-Parker method with acorrelation coefficient of>0.99in the range of10-107cfu/mL.
     2. In this section, we researched the rapid detection method of B. cereus basedshort-term fermented. The research content including B. cereus nature, heattreatment, bacteria suspension preparation, microwave germination and short-termfermentation, bacteria liquid concentration and dyeing, image denoising,segmentation, morphological operation treatment, characteristic parametersextraction and artificial neural network identification. The rapid method wascompared with the plate count method. The conclusions are as follows:
     Sample was made into solution and heated it at65℃for30min to sterilize nontarget bacteria. Based on LB medium, the germination agent combination wasdetermined to be0.05%ZnSO4,0.1%MgCl,0.15%MnCl. The spore suspensionwas used microwave to germinate the spores for60s under high grade condition. Thegerminated suspension was fermented for2h and filtered with needle filter.
     Rapid detection by the FMRDS
     Solid sample (25g) was taken which was crumbled fully and put into conical flask which contained225mL physiological saline and shook up. Put conical flask inwater bath at65℃for30min, and cooled it to room temperature.
     The bacteria solution above (1mL) was absorbed with pipette and put into1.5mL centrifugal pipe and then centrifuged for10min at11000rpm. Thesupernatant (0.85mL) was discarded and the germination solution (0.85mL) wasmixed and shook up. The spore suspension was put in microwave oven andgerminated for60s under the condition of high-grade and then cooled to roomtemperature rapidly.0.1mL germinated suspension was drew and put into1.5mLcentrifugal pipe which contained0.9mL short-term fermented solution. Afterfermented for2h at150rpm at37℃,0.1mL fermented solution was drew and madegradient dilution in turn with0.9mL peptone solution.
     1mL was absorbed by a disposable syringe and inserted it in a needle filter(Ф13/0.45μm), the bacteria liquid was concentrated with the needle filter before thecentrifugal pipe was flushed and filtered twice with1.0mL peptone solution (0.5%).Then disposable syringe was drawn out and1mL air was indrawn into filter bottomand5μL bacteria liquid closed to filter membrane was drew. Finally, the bacterialiquid was put on the slide and air-dried. Dripped6-8μL dye liquor (X-Glu) on theslide and covered glass, kept at37℃for10-20min under conditions of avoidinglight, then swilled and put it in the rapid detection system to identify.
     The image identification program of the system included the following steps:median filtering denoising, RGB color space segmentation, open and close operationsmooth processing and morphological and color feature extraction, using BP neuralnetwork model for image discriminant8-6-1.
     Compared to plate count method, there was a good linear relationship comparedwith plate method. The total analysis time was5h. The range of detection was50-1×106cfu/mL.
     3. In this section, we researched the rapid detection method of Salmonella. Theresearch content including the preparation of immunogold nanoparticles andantibodies, Salmonella liquid concentration, dyeing, image denoising, segmentation,morphological operation treatment, characteristic parameters extraction and artificialneural network identification. The rapid method was compared with the plate countmethod. The conclusions are as follows:
     Determines the conditions of the immunogold nanoparticles and antibodies,heated the0.01%gold chloride acid aqueous solution, add reducing agent citrate,after continuous boiling, the size of15nm-25nm colloidal gold solution wascompounded. Adjusted pH to9.0, mixed second antibody, and then purified thesynthetic solution with high-speed centrifugation.
     Rapid detection by the FMRDS
     Solid sample (25g) was placed in a sterile homogeneous bag containing PBS-T(175mL) and flapped for1to2min with a flapping homogenizer to create a liquidbacterial sample. To minimize large particles interference and facilitate subsequentenrichment process, medium speed quantitative filter paper was used to remove largeparticles. Then use flush the filter paper with50mL PBS-T solution and collected.
     10mL was absorbed by a disposable syringe and inserted it in a needle filter,2μLbacteria liquid closed to filter membrane was drew and put on the slide and air-dried.Dripped75%ethanol and kept6-9min, flushed with PBS-T solution, mixed2μlSalmonella primary antibody and immunogold nanoparticles respectively, kept at37℃for30min. And then4μl growth solution is dropped into the specimen in twicewith a total reaction time4-8min. Then swilled and put it in the rapid detection systemto identify.
     The image identification program of the system included the following steps:spatial domain filtering method combined with gray level window changes denoising,iterative threshold method segmentation, open and close operation smoothprocessing and fill the hole corrosion method extraction, using BP neural networkmodel for image discriminant4-3-1.
     Compared to plate count method, there was a good linear relationship comparedwith plate method. The total analysis time was2h. The range of detection was50-1×106cfu/mL.
     4. Compared the nature, training, detection methods of Staphylococcus aureus,Bacillus cereus and Salmonella. Three methods have their principles andcharacteristics, they are all based on the processing of pretreatment, staining andimage recognition. The detection time of these methods are very short which onlycost2-5hours.
引文
[1]陈广全,张慧媛,曾静.食品安全检测培训教材微生物检测[M].北京:中国标准出版社,2010.
    [2]程景民.中国食品安全监管体制运行现状和对策研究[M].北京:军事医学科学出版社,2013.
    [3] GB4789.10―2010,食品安全国家标准食品微生物学检验金黄色葡萄球菌检验[S].北京:中国标准出版社,2010.
    [4]张超楠.食品中金黄色葡萄球菌的快速检测方法研究[D].吉林:吉林大学,2012.
    [5] Perry J D, Freydiere A M. The application of chromogenic media in clinicalmicrobiology[J].Journal of Applied Microbiology,2007,103(6):2046-2055.
    [6] Zmira S,Orit O,Judi B. Optimal detection of Staphylococcus aureus fromclinical specimens using a new chromogenic medium[J]. Diagnostic MicrobiologyInfections Disease,2004,49(4):243-247.
    [7] Schoeller N P,Ingham S C. Comparison of the Baird-Parker agar and3MPetrifilm rapid S. aureus count plate methods for detection and enumeration ofStaphylococcus aureus [J]. Food Microbiology,2001,18(6):581-587.
    [8]杜洪利,张双双,欧旭,闫训友.金黄色葡萄球菌检测技术研究进展[J].食品与发酵科技,2009,5:12-14.
    [9] Louise C B,Obrig T G. Specific interaction of E.coli O157:H7derived shiga-liketoxinⅡ with human renal endothelial cell[J]. Journal of Infectious Diseases,1995,172(5):1397-1401.
    [10]朱其太,吴时友.我国动物核酸探针的研究进展[J].中国兽医杂志,1991,17(10):48-50.
    [11] Oliveira K,Brecher M et al. Direct identification of Staphylococcus aureusfrom positive blood culture bottles[J]. J Clin Microbiol,2003,41(2):889-891.
    [12]陈彬,黄晓蓉,汤敏英等.基因探针法快速检测食品中金黄色葡萄球菌的研究[J].现代预防医学,2007,34(6):1017-1018.
    [13]薛力刚,刘金华,王全凯,王振国.金黄色葡萄球菌核酸探针检测方法的建立[J].中国生物制品学杂志,2010,23(1):91-93.
    [14]高正琴,邢华,孙怀昌,李厚达.核酸探针技术在鼠金黄色葡萄球菌流行病学调查中的应用[J].兽牧与兽医,2003,35(7):11-12.
    [15]卢圣栋.分子生物学实验技术[M].北京,高等教育出版社,1993.
    [16] Wilson I G, CooPe J E, Gilmour A. Detection of enterotoxigeicStaphylococcus aureus in dried skimed milk:use of the Polymerase chain reactionfor amplication and detection of staphlococcal enterotoxin genes ent B and ent C1and the thermonuclease gene nuc[J]. Appl Environ Microbiol,1991,57:1793-1798.
    [17] Khan M A,Kim C H,Kakomal I,et al. Persistence of Staphylococcus aureusin milk by use of polymerase chain reaction analysis[J]. Am J Vet Res,1998,59(7):807-813.
    [18]田静,计融,杨军等. PCR方法快速检测食品中的金黄色葡萄球菌[J].卫生研究,2007,36(2):183-186.
    [19] Notomi T,Okayama H,Masubuchi H,et a1. Loop-mediated isothermalamplification of DNA[J]. Nucleic Acids Res,2000,28(12):63.
    [20] Kubokin, Inoue N, Sakurait, et a1. Loop-mediated isothermal amplificationfor detection of African trypanosomes[J]. J Clin Microbiol,2003,41(12):5517-5524.
    [21]周义正,王昌富,李向阳等.环介导等温扩增快速检测阳性血培养瓶中的金黄色葡萄球菌[J].中华医院感染学杂志,2009,19(16):2075-2077.
    [22]李永刚,王德国,武建刚等.环介导恒温扩增法(LAMP)检测金黄色葡萄球菌[J].食品工业科技,2010,31(01):388-391.
    [23]李鹤,马力,李黎.免疫磁性微球的研究进展[J].食品工程,2007,9(3):33-36.
    [24] Siamak P Yazdankhah,Liv Sùlverùd,Sigrid Simonsen,et al. Development andevaluation of an immunomagnetic separation-ELISA for the detection ofStaphylococcus aureus thermostable nuclease in composite milk[J]. VeterinaryMicrobiology,1999,67:113-125.
    [25] Emmanuel M,Odile B,Jocelyne H,et al. Cell Wall-associated Protein A as aTool for Immunolocalization of Staphylococcus aureus in Infected Human AirwayEpithelium[J]. The Journal of Histochemistry&Cytochemistry,2000,48(4):523-533.
    [26] Yang Liju,Li Yanbin. Detection of viable Salmonella using microelectrodebased capacitance measurement coupled with immunomagnetic separation[J].Journal of Microbiological Methods,2006,64:9-16.
    [27] Varshney Madhukar,Li Yanbin. Interdigitated array microelectrode basedimpedance biosensor coupled with magnetic nanoparticle-antibody conjugates fordetection of Escherichia coli O157: H7in food samples[J]. Biosensors andBioelectronics,2007,22:2408-2414.
    [28] Clark M F, Adams A N. Characteristics of the microplate method ofEnzyme-Linked Immunosorbent Assay for the detection of plant vinuses [J]. GenVirology,1977,34:475-483.
    [29]刘宏伟,仲伟强,王俊朝.血清肌红蛋白快速酶免疫分析诊断急性心肌梗死[J].免疫技术与临床,2001,(6):92-95.
    [30]徐修礼,薛采芳,于文彬.双抗体夹心ELISA定量检测内毒素的方法学研究[J].细胞与分子免疫学杂志,2002,(2):175-177.
    [31]沈美芳,赵文亚,费志良等.用酶联免疫法测定水产品中氯霉素的残留量[J].南京师范大学学报(工程技术版),2003,(2):1-4.
    [32]陈靖,陈叶.用酶联免疫吸附法(ELISA)检测金黄色葡萄球菌肠毒素[J].中国食用菌,1999,18(5):39-40.
    [33]段鸿斌.金黄色葡萄球菌B型肠毒素的酶联免疫检测[J].安徽农业科学,2008,36(7):2617-2619.
    [34] Mirhabibollahi B. Development and performance of anenzyme-linkedamperometric immunosensor for the detection of Staphylococcus aureus in food[J].Appl Microbiol,1990,43:877-883.
    [35] Sally A Rose,Pamela Bankes,MF Stringer. Detection of staphylococcalenterotoxins in dairy roducts by the reversed passive latex agglutination(SET-RPLA)kit[J]. Int J Food Microbiol,1989,8(1):65-72.
    [36] Fujikawa H,Igarashi H. Rapid latex agglutination test for detection oftaphylococcal enterotoxins A to E that uses high-density latex particles[Jl. nvironMicrobiol1988,54(10):2345-2348.
    [37]鲍行豪,胡海军,陈建立等.金黄色葡萄球菌滤液制剂中肠毒素的检测研究[J].微生物学杂志,2004,24(4):56-60.
    [38]朱广发,李慧珠,张数宏.应用荧光抗体技术快速检验金黄色葡萄球菌的研究[J].食品科学,1981(10):9-13.
    [39] Khan AS, Cao CJ, Thompson RG, Valdes JJ. A simple and rapidfluorescence-based immunoassay for the detection of staphylococcal enterotoxinB[J]. Mol Cell Probes2003,17(2):125-126.
    [40] Peruski AH,Johnson LH,Peruski LH. Rapid and sensitive detection ofbiological warfare agents using time-resolved fluorescence assays[J]. ImmunolMethods2002,263(1-2):35-41.
    [41]冯德荣.生物传感器产业现状和发展前景[J].生物工程进展,1996,16(3):13-15.
    [42]何星月,刘之景.生物传感器的应用[J].物理学和高新技术,2003,32(4):249-252.朱文杰,陈伶利,何凤娇等.多通道串联式压电传感器快速检测病原细菌[J].湖南师范大学自然科学学报,2004,27(4):73-77.
    [43]朱文杰,陈伶利,何凤娇等.多通道串联式压电传感器快速检测病原细菌[J].湖南师范大学自然科学学报,2004,27(4):73-77.
    [44]戴高鹏,朱文杰,刘素琴.压电传感技术快速检测牛奶中的金葡球菌[J].传感器与微系统,2007,26(2):76-78.
    [45]魏玲,武会娟,伦永志等.用免疫生物快速检测金黄色葡萄球的初步研究[J].中国食品卫生杂志,2010,22(6):498-501.
    [46]王慧莹.基于计算机视觉技术快速检测食品中蜡样芽孢杆菌的研究[D].吉林:吉林大学,2011.
    [47] BS EN ISO7932:2004. Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of presumptive Bacillus cereus-Colony-count technique at30°C [S]. British Standard.2004
    [48] GB4789.14―2003,食品安全国家标准食品微生物学检验蜡样芽孢杆菌检验[S].北京:中国标准出版社,2003.
    [49]张淑红,吴清平,张菊梅等.应用显色培养基检测食品中蜡样芽孢杆菌的初步研究[J].现代预防医学,2009,36(4):622-624.
    [50] Lawrence Restaino, Elburn, IL (US). Chromogenic plating medium for the rapidpresumptive identification of Bacillus anthrasis, Bacillus cerrus, and BacillusThuringiendsis [P]. US007309580B2.2007.
    [51] Peng H, Ford V, Frampton EW, et al. Isolation and enumeration of Bacilluscereus from foods on a novel chromogenic plating medium[J]. Food Microbiology,2001,18,231-238.
    [52] Martina Fricker, Rolf Reissbrodt, Monika Ehling-Schulz. Evaluation of standardand new chromogenic selective plating media for isolation and identification ofBacillus cereus [J]. International Journal of Food Microbiology,2008,121:27-34.
    [53]万佳蓉,马美湖,周传云,聂明.蜡样芽孢杆菌的二阶导数红外光谱研究[J].光谱学与光谱分析,2007,27(5):904-906.
    [54] Kamat AS, Pradhan DS. Involvent of calcium and dipicolinic acid in theresistance of Bacillus-cereus BIS-59spores to UV and Gamma-Radiations [J].International Journal of Radiation Biology,1987,51(1):7-18.
    [55] Gultekin A, Ersoz A, Sariozlu NY, et al. Nanosensors having dipicolinic acidimprinted nanoshell for Bacillus cereus spores detection [J]. Journal of NanoparticleResearch,2010,12(6):2069-2079.
    [56]杨佐毅,李理,刘冬梅.白腐乳中蜡状芽孢杆菌的分离与鉴定[J].中国酿造,2008,17:39-41.
    [57] Collison E K, Mpuchane S F, Gashe B A, et al. Presence of Bacillus cereus instreet foods in Gaborone, Botswana [J]. J Food Protect,2005,68(2):342-346.
    [58] Ombui JN, Nduhiu JG, Macharia JK. Immunoassay and polymerase chainreaction techniques for detection of enterotoxigenic Bacillus cereus [J]. East AfrMed J.,2005,82(8):422-426.
    [59] Puriya Ngamwongsatit, Wasin Buasri, Panuwat Pianariyanon, et al. Broaddistribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) amongBacillus thuringiensis and Bacillus cereus as shown by novel primers[J]. InternationlJoumal of Food Microbiology,2008,121(3):352-356.
    [60]毛正果,郑浩轩,王新颖等.基因芯片检测常见肠道致病菌感染的研究与评价[J].胃肠病学和肝病学杂志,2008,17(10):809-812.
    [61]沈圣.食品中常见病原菌快速检测系统研究-裸磁珠制备及TaqMan实时荧光PCR快速检测芽孢杆菌I群大细胞群[D].四川大学,2007:25,27.
    [62] Bonerba E, Di Pinto A, Novello L, et al. Detection of potentiallyenterotoxigenic food-related Bacillus cereus by PCR analysis [J]. InternationalJournal of Food Science and Technology,2010,45(6):1310-1315.
    [63] Kumar TDK, Murali HS, Batra HV. Multiplex PCR assay for the detection ofenterotoxic Bacillus cereus group strains and its application in food matrices [J].Indian Journal of Microbiology,2010,50(2):165-171.
    [64] Puriya Ngamwongsatit, Wasin Buasri, Panuwat Pianariyanon, et al. Broaddistribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) amongBacillus thuringiensis and Bacillus cereus as shown by novel primers[J]. InternationlJoumal of Food Microbiology,2008,121(3):352-356.
    [65]齐哲.环介导等温扩增技术快速检测蜡样芽孢杆菌研究[D].河北农业大学,2008.
    [66]黄训端,潘见,余晓峰.草莓中蜡样芽孢杆菌的VITEK快速检测[J].微生物学杂志,2006,26(4):99-102.
    [67] GB4789.10―2010,食品安全国家标准食品微生物学检验沙门氏菌检验
    [S].北京:中国标准出版社,2010.
    [68]刘建昭,陈茂义,胡婕.科玛嘉显色培养基和XLD-SS-HE分离食品中沙门菌效果比较[J].公共卫生与预防医学,2008,19(4):12-14.
    [69]卢勉飞,蔡芷荷,吴清平等.显色培养基快速检测沙门菌效果的研究[J].中国卫生检验杂志,2008(12):2618-2620.
    [70]任秀.食品中沙门氏菌快速检测方法的研究[D].吉林:吉林大学,2011.
    [71] John C Galland, John K. Houseb, Doreene R Hyatt, et al. Prevalence ofSalmonella in beef feeder Steers as determined by bacterial culture and ELISAserology[J]. Veterinary Microbiology,2000,76(2):143-151.
    [72]朱壮春,陈阳,郝东升等.应用Dot-ELISA快速检测牙鲆腹水病病原的研究[J].水产科学,2010,29(3):262-265.
    [73]张晓燕,黄金林,焦新安等.直接ELISA与PCR联合检测人粪便中的沙门氏菌[J].扬州大学学报,2003,24(4):13-15.
    [74] S KUMAR, K BALAKRISHNA, HV BATRA. Enriehment-ELISA forDetection of Salmonella tyP hi From Food and Water Samples[J]. Biomedical andenvironmental sciences,2008,(21):137-143.
    [75] John C Galland, John K. Houseb, Doreene R Hyatt, et al. Prevalence ofSalmonella in beef feeder Steers as determined by bacterial culture and ELISAserology[J]. Veterinary Microbiology,2000,76(2):143-151.
    [76] Wilanee Chunglok, Dyah Kinasih Wuragil, Sukunya Oaew et al. I Immunoassaybased on carbon nanotubes-enhanced ELISA for Salmonella enterica serovarTyphimurium [J]. Biosensors and Bioelectronics,2011,(26):3584-3589.
    [77] Antunes P, Reu C, Sousa JC, et al. Incidence of Salmonella from PoultryProducts and their susceptibility to animal agents[J]. Int J Food Microbiology,2003,82(2):97-103.
    [78]赵文学,徐燕.直接免疫荧光法用于污水中沙门氏菌快速检验的探讨[J].中国医学检验杂志,1985,2(3):31-32.
    [79]黄愈玲,李少彤,龚玉效.间接免疫荧光检测技术检测沙门菌的实验研究[J].热带医学杂志,2010,10(8):935-937.
    [80] J Huang. Identification and enumeration of Salmonella on sample slides ofPoultry carcass wash water using image analysis with fluorescent microscopy[J].Trans. ASAE,1999,42(l):267-273.
    [81] ML Tortorello, DS Stewart, WC Cray Jr. Rapid identification of Escherichia coli0157:H7in bovine feces using the antibody-direct epifluorescent filter technique(Ab-DEFT)[J]. Veterinary Microbiology,1996,51(3):343-349.
    [82]孔繁德,陈琼,彭海滨等.斑点免疫金渗滤法检测沙门菌的研究与应用[J].中国国境卫生检疫杂志,2006,29(4):235-239.
    [83]王中民,李君文,郑金来.胶体金免疫层析法快速检测沙门氏菌[J].微生物学免疫学进展,2004,32(4):36-39.
    [84] DA Bautista, S Elankumaran, JA Arking, et al. Evaluation of animmunochromatography strip assay for the detection of Salmonella sp frompoultry[J]. Brief Communications,2002,14(5):427-430.
    [85] Muler-Bardeff M, Freitag H, Ccheffold T, et al. Development andCharacterization of a rapid assay for bedside determinations of Cardiac TroPoninT[J]. Circulation,1995,92(10):2869-2875.
    [86]杜民,杨富文,费鸿俊.光电传感器在金免疫层析试纸条定量测试中的应用[J].仪器仪表学报,2005,26(7):672-673.
    [87]王帅,郑德智,樊尚春.定量胶体金试剂条浓度检测方法[J].北京航空航天大学学报,2009,35(8):942-946.
    [88] Louise Chuang. Rapid and simple quantitative measurement of a-fetoprotein bycombining immunochromatographic strip test and artificial neural network imageanalysis system[J]. Clinica Chimica Acta,2004,348(1):87-93.
    [89] Grace Jie, Yin Ngan. Development of a novel multiplex PCR for the detectionand differentiation of Salmonella enterica serovars Typhi and Paratyphi A[J].Researeh in Microbiology,2010,161(4):243-248.
    [90]王荣香,倪凯翔.荧光定量PCR快速检测粪便中沙门氏菌方法的建立及应用[J].放射免疫学杂志,2010,23(3):356-359.
    [91]杨柳,苏明权,马越云等.荧光定量RT-PCR检测沙门氏菌方法的建立[J].中国实验诊断学,2011,15(l):17-23.
    [92] Nicola Pusterla, BA Byrne, E Hodzicm, et al. Use of quantitative real-time PCRfor the deteetion of Salmonella spp. In fecal samples from horses at a veterinaryteaching hospital[J]. The Veterinary Journal,2010,186(2):252-255.
    [93] Sheila McGuinness, Thomas Barry, Justin O Grady. Development andPreliminary validation of a real-time RT-PCR based method targeting tmRNA for therapid and special detection of Salmonella[J]. Food Research International,2010,8(12):1010-1015.
    [94]李长缨,滕光辉,赵春江.利用计算机视觉技术实现对温室植物生长的无损监测[J].农业工程学报,2003,19(3):140-143.
    [95]韩仲志,赵友刚..基于计算机视觉的花生品质分级检测研究[J].中国农业科学,2010,43(18):3882-3891.
    [96]曹乐平,温芝元,沈陆明.基于色调分形维数的柑橘糖度和有效酸度检测[J].农业机械学报,2009,41(3):143-148.
    [97]郑丽敏,杨旭,徐桂云等.基于计算机视觉的鸡蛋新鲜度无损检测[J].农业工程学报,2009,25:335-339.
    [98]刘明静,刘贯勇,张志伟.计算机视觉在牛肉自动分级技术中的应用[J].肉类研究,2007,6:18-20.
    [99] Kazuhiro Nakano. Application of neural net works to the color grading ofapples. Comput Electron Agric.,1997,18:105-116.
    [100] Kazuhiko Shiranita, Kenichiro Hayashi, Akifumi Otsubo, TsuneharuMiyjima, Ryuzo Takiyama. Grading meat quality by image processing[J]. PatternRecogenition,2000,33:97-104.
    [101] Abdullah Iqbal, Nektarios A. Valous, Da-Wen Sun. Parsimonious classificationof binary lacunarity data computed from food surface images using kernel principalcomponent analysis and artificial neural networks[J]. Meat Science,2011,87(2):107-114.
    [102] Gokmen V, Mogol BA. Computer vision-based image analysis for rapiddetection of acrylamide in heated foods [J]. Quality Assurance and Safety of Crops&Foods,2010,2(4):203-207.
    [103] Gokmen V, Senyuva HZ, Dulek B, et al. Computer vision based analysis ofpotato chips-A tool for rapid detection of acrylamide level [J]. Molecular Nutrition&Food Research.2006,50(9):805-810.
    [104]刘松堂,项南凤.快速检测海水中大肠菌群大肠杆菌的膜图像法研究[J].海洋技术,2008,27(2):37-40.
    [105]孙钟雷,万鹏.显微图像处理技术快速检测酵母菌总数[J].网络出版[J].食品工业科技,2012,33(8):105-109.
    [106]殷涌光,丁筠.基于计算机视觉的蔬菜中活菌总数的快速检测[J].农业工程学报,2009,25(7):249-254.
    [107]王国新,张长利,房俊龙等.基于图像处理技术的菌落自动计数系统的研究[J].中国乳品工业,2006,34(2):40-43.
    [108]鲁静.乳品微生物自动检测系统的设计[J].湖北第二师范学院学报,2010,27(8):115-117.
    [109]刘侃.鲜奶含菌量快速检测系统[D].华中科技大学,2008.
    [110] N.SINGH. Image analysis as a rapidpethogen detection method for usa inpoultry industry[J]. Journal of Rapid Methods and Automation in Microbiology,1997,5(3):205-214.
    [111] J Huang, Y Li, MF Slavik, et al. Identification and enumeration of salmonellaon sample slides of poultry carcass wash water using image analysis with fluorescentmicroscopy[J].American Society ofAgricultural Engineers,1999,42(1):267-273.
    [112] O Trujillo, C Griffis, Y Li, M Slavik. A machine vision system usingimmuno-fluorescence microscopy for rapid recognition of salmonellatyphimurium[J]. Journal of Rapid Methods and Automation in Microbiology,2001,9(2):115-134.
    [113] S Kumar, GS Mittal. Textural characteristics of five microorganisms for rapiddetection using image processing[J]. Journal of food process engineering,2009,32(1):126-143.
    [114] Bayraktar B, Banada PP, Hirleman ED, et al. Feature extraction fromlight-scatter patterns of Listeria colonies for identification and classification[J].Journal of Biomedical Optics,2006,11(3):34006.
    [115] Lawless Conor, Wilkinson Darren J., et al. Colonyzer: automatedquantification of micro-organism growth characteristics on solid agar [J]. BMCBioinformatics,2010,11:287.
    [116]贾云得.机器视觉[M].北京:科学出版社,2000.
    [117]杨淑莹. VC++图像处理程序设计[M].北京:北方交通大学出版社,2003.
    [118]杨淑莹.图像模式识别--VC++技术实现[M].北京:清华大学出版社,2005.
    [119]李曼,侯利华等.乳酸链球菌素对蜡样杆菌芽孢作用的初步研究[J].中国消毒学杂志.2009,26(2):126-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700