用户名: 密码: 验证码:
Pim-1信号在小鼠溃疡性结肠炎发病机制中的免疫调节作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     炎症性肠病(IBD)是一组反复发作非特异性的肠道炎症性疾病,发病机制至今尚未完全阐明,但免疫因素在IBD中重要作用已被广大学者所公认。Pim-1基因最初是在鼠白血病病毒(MuLV)诱导的T-细胞淋巴瘤中发现的,目前研究表明Pim-1激酶在细胞增殖、分化、凋亡、肿瘤发生等许多生理病理过程中起重要作用,近年来Pim-1在免疫系统的作用逐渐受到重视,参与控制T淋巴细胞的增殖与凋亡,但是目前关于Pim-1信号是否能调节IBD肠粘膜固有及适应性免疫细胞功能的研究国内外尚未见报道。本课题利用DSS诱导急性小鼠溃疡性结肠炎模型,以观察Pim-1表达与肠道炎症程度关系为切入点,进一步使用Pim-1抑制剂,观察对小鼠溃疡性结肠炎的治疗作用,并探讨对Th1/Th2、Treg/Th17细胞分化的影响,同时探讨Pim-1信号在巨噬细胞激活方面的作用,本课题从动物、细胞、分子水平多方面来探讨Pim-1信号通路对小鼠溃疡性结肠炎肠粘膜固有及适应性免疫细胞功能的调节作用,以阐明Pim-1信号与肠道异常免疫反应的关系,为溃疡性结肠炎的治疗提供新的靶点、为深入Pim-1信号的药理研发提供理论基础。
     第一章Pim-1在小鼠急性溃疡性结肠炎模型中的表达
     目的:观察Pim-1在溃疡性结肠炎发病过程中的动态表达,并观察其与炎症程度的相关性。方法:BALB/c小鼠饮用5%DSS溶液建立急性溃疡性结肠炎模型,分别在第0、1、4、7天取结肠标本,利用real time PCR、Western Blot及免疫组化动态观察Pim-1表达,分析Pim-1的表达和DAI、组织学炎症评分的相关性。结果:①饮用5%DSS7天后成功建立小鼠急性溃疡性结肠炎动物模型,②real time PCR、Western Blot结果显示在饮用5%DSS第4、7天后Pim-1表达较正常组及第1天均明显升高,P<0.05,免疫组化显示Pim-1主要在淋巴细胞、中性粒细胞等炎症细胞表达。③Pearman相关分析表明,结肠组织中Pim-1蛋白与DAI呈正相关(R=0.868,P<0.01),与组织病理学评分亦呈正相关(R=0.851,P<0.01)。结论:在溃疡性结肠炎起病过程中Pim-1的表达与肠道炎症程度呈正相关,Pim-1信号参与肠道炎症反应。
     第二章Pim-1信号对Th细胞分化、及巨噬细胞激活的影响
     目的:用PIM-Inh阻断Pim-1信号,观察对DSS诱导的小鼠溃疡性结肠炎的治疗作用,同时研究PIM-Inh对肠粘膜中Th细胞分化及巨噬细胞激活的影响。方法:①应用PIM-Inh阻断Pim-1信号,治疗7天后,观察对DSS诱导小鼠溃疡性结肠炎的治疗作用,②ELISA检测Th细胞因子(IL4, TGF-β, IFN-γ, IL17),③real time PCR、 Western Blot检测Th细胞转录因子的表达(GATA3, T-bet, Foxp3, RORrt),④Western Blot检测肠道组织巨噬细胞激活标记物NF-κB,iNOS的表达。结果:①PIM-Inh治疗组小鼠血便、腹泻症状、DAI评分、病理组织学评分较DSS模型组均好转,②与DSS模型组比较,PIM-Inh治疗组肠组织中IFNγ、IL17表达下降,P<0.05,差别具有统计学意义,其中高剂量治疗组下降更加明显;PIM-Inh治疗组肠组织中TGFβ的表达较模型组升高,其高剂量组升高较明显,P<0.05,而低剂量治疗组与模型组比较,P>0.05,差别无统计学意义;PIM-Inh治疗组肠组织中IL4的表达较DSS模型组稍下降,但P>0.05,差别无统计学意义,③real time PCR. Western Blot结果显示:PIM-Inh治疗组肠组织中T-bet, ROR-γt较DSS模型组明显下降,而FOXP3的表达比模型组明显升高,P<0.05,差别无统计学意义,但是对GATA-3的表达无明显影响,④PIM-Inh治疗组肠组织中p-NF-κB P65, iNOS的表达较DSS模型组明显下降,P<0.05。结论:阻断Pim-1信号可抑制巨噬细胞活化、抑制Thl、Thl7为主的炎症反应,促进向Treg细胞分化,从而对DSS诱导的小鼠溃疡性结肠炎具有治疗作用。
     第三章Pim-1对TLR4/NF-KB信号通路的调节
     目的:观察LPS对Pim-1表达的影响,阻断Pim-1对TLR4/NF-KB信号通路的影响方法:①不同剂量LPS作用于RAW264.7巨噬细胞,分别在12h、24h后用real timePCR及Western Blot检测Pim-1的表达,②在LPS刺激前给予Pim-1特异性抑制齐(PIM-Inh), Western Blot检测pNF-kB P65的表达,ELISA测定TNF-α的表达。结果:①与正常对照比较,100ng/ml,1ug/ml的LPS均可以促进Pim-1的表达,其中1ug/ml更加明显,P<0.05,差别具有统计学意义;同一浓度LPS作用12h后比24h后Pim-1升高更加明显,P<0.05,差别具有统计学意义②用10umol/L,100umol/L PIM-Inh预处理后,NF-κBp65、TNFa蛋白的表达下降,且呈剂量依赖性,即浓度100umol/L时最为明显,P<0.05,差别具有统计学意义;而1umol/L PIM-Inh预处理后对NF-κBp65蛋白表达无明显影响,P>0.05,差别无统计学意义。结论:LPS可以诱导Pim-1的表达,阻断Pim-1可以抑制TLR4/NF-κB信号转导。
Background
     Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammatory disorders of the gastrointestinal tract. Although the etiology of IBD remains unclear, accumulating evidence has indicated that dysfunction of the mucosal immune system plays an important role in the pathogenesis of IBD, Pim-1is a serine/threonine kinase that was first discovered as a preferential proviral insertion site in Moloney Murine Leukemia Virus (MoMuLV) induced T-cell lymphomas, Pim-1kinase is involved in the control of cell growth, differentiation and apoptosis. Accumulating data support that Pim-1are essential components of an endogenous pathway that regulates T cell growth and survival. The crucial role of Pim kinase in immune cells activation and proliferation makes it an attractive target for immunomodulatory therapy. Indeed, the pharmacological inhibition of Pim kinases exhibits immunomodulatory benefits, However, it remains unclear whether pim-1kinase is involved in the pathology of ulcerative colitis and whether pim-1kinase could modulate T help cell differentiation and macrophage activation during the development of ulcerative colitis.
     The aims of this study were to explore the role of Pim-1kinase in the pathology of ulcerative colitis and to assess whether Pim-1kinase may act to regulate innate and adaptive immune responses,inhibiting Pim-1kinase may be of therapeutic benefit as a treatment regimen for ulcerative colitis. In vitro effects of Pim-1on LPS-induced macrophage activation as well as in vivo effects of PIM-Inhibitor (PIM-Inh) in mice with DSS-induced colitis, were explored.Colon inflammation, production of proinflammatory cytokines and NF-κB activation in colon tissues,and The expression of T cell master transcription factors were were assayed.In summary, our data may provide evidence that Pim-1may act as a central regulator in the immune response by regulates macrophages activation and Th cells differentiation.These findings may offer a promising alternative to our current approaches of managing ulcerative colitis.
     The first chapter:Expression of Pim-1kinases in Mice Colitis Model that Acute Colitis Induced with DSS
     Objective:To explore the role of Pim-1in the initiation and development of ulcerative colitis Methods:We examined Pim-1mRNA and protein expression in colonic samples by real-time quantitative reverse transcription-PCR, Western blot and Immunohistochemical Staining Methods, at0,1,4and7days after mice were induced by giving5%DSS, The correlation between the two parameters was tested using the Pearson correlation test,P<0.05was considered to be statistically significant. Result:①The animals treated with5%DSS for7days developed symptoms of acute colitis at an incidence of100%, exhibited body weight loss and showed watery or bloody diarrhea beginning on day4of the DSS administration,②Increased amounts of Pim-1were observed as soon as1day after starting DSS,the difference was not, however, significant,The Pim-1protein expression were significantly higher on day7than on day4,or on day1, Consistent with the Western blot result,Relatively high concentrations of Pim-1mRNA occurred in colon tissue at4days of DSS treatment,reaching their highest point at day7,③Pearson correlation analysis revealed a strong positive correlation between DAI and expression of Pim-1(R=0.868,P<0.01), between histological disease scores and expression of Pim-1(R=0.851, P<0.01) Conclusion:We observed that the expression of pim-1correlated with the degree of mucosal inflammation in vivo,These data suggest that pim-1kinase may be involved in the development of ulcerative colitis.
     The second chapter:Research on mechanisms of Pim-1kinase in modulation of T-cell differentiation and Macrophage Activation in DSS-Induced Acute Colitis.
     Objective:The aim of this study was to understand more about the role of Pim-1kinase in contributing to the pathology of ulcerative colitis and to assess whether blocking Pim-1kinase may be of therapeutic benefit as a treatment regimen for ulcerative colitis. Methods:Mice with acute colitis induced by5%DSS were treated with or without PIM-Inh,Body weight and colon inflammation were evaluated,and production of lymphocytes cytokines (IFN-γ,IL-4, TGF-β,IL-17) in colon tissues was determined by ELSIA.The expression of T cell master transcription factors(T-bet, ROR-yt,GATA-3,Foxp3)were measured by Real-Time qRT-PCR and Western Blot. Nuclear factorκB (NF-κB) and inducible nitric oxide synthase(iNOS) activation in colon tissues was assayed. Result:①the PIM-Inh had protective and therapeutic potentials in acute DSS colitis in vivo②treatment with PIM-Inh inhibited the production of IFN-y and IL-17in a dose-dependent manner,The production of TGF-β was higher in PIM-Inh (10mg/kg/d)treated mice as compared to either DSS or PIM-Inh (5mg/kg/d) treated mice(P<0.05), Production of IL-4in PIM-Inh treated mice was intermediate between that of control group and DSS treated mice, the difference was not, however, significant③In this study,T-bet,ROR-yt was significantly up-regulated in acute ongoing DSS colitis,In contrast,The expression of Foxp3was inhibited in DSS group mice,Administration of PIM-Inh resulted in inhibition of T-bet,ROR-yt expression in a dose-dependent manner and the induction of FOXP3expression,whereas PIM-Inh did not cause any significant change in GATA-3expression compared with DSS colitis group,④in Acute Colitis mice, pNF-κB and iNOS expression in colon tissues are significantly increased. PIM-Inh treatment significantly inhibited NF-κB activation and thus down-regulated iNOS expression in colon tissues of mice in a dose-dependent manner,compared with mice without PIM-Inh treatment.Conclusion:we found that PIM-Inh reduced the proinflammatory immune response through the inhibition of the overactivation of macrophages and the down-regulation of excessive Thl-and Th17-type immune responses, Furthermore, PIM-Inh could skew T-cell differentiation towards a Treg phenotype.These results indicate that Pim-1kinase is involved in the pathophysiology of ulcerative colitis.
     The third chapter:Effects of Pim-1on TLR4/NF-kBsignaling in vitro
     Objective:To investigate pim-1activation induced by LPS in macrophages and to explore whether PIM-Inh inhibits LPS-induced macrophage activation in vitro.Methods:①we identified the expressions of Pim-1in RAW264.7cells incubated with different doses of LPS by Western blotting and real-time PCR, respectively at different time points (12,24h),②RAW264.7were pretreated with different doses of PIM-Inh2h before addition of LPS (1ug/mL). The expression of pNF-kB P65was detected by Western blot1.5h after LPS activation. The levels of TNFa in the supernatants, collected24h after LPS stimulation, were assayed by ELISA.Result:①treatment of RAW264.7with LPS increases expressions of mRNA Pim-1in a dose-dependent manner, expressions of Pim-1was significantly increased at12hours after incubation with LPS,which was slightly higher at12hours than that detected at24hours,p<0.05,Significantly different from normol group②When the macrophages were treated with PIM-Inh,the expression of phosphorylated-NF-kB P65and TNFa production were inhibited in a dose-dependent pattern, Treatment with100umol/L PIM-Inh achieves the highest inhibitory effect on TNFa production,p<0.05,Significantly different from the group with LPS treatment. Conclusion:data suggest that treatment with LPS increases Pim-1production in a dose-dependent manner,PIM-Inh administration inhibited NF-κB activation,which subsequently resulted in a down-regulation of iNOS expression in macrophages and an inhibition of TNF production.
引文
[1]Bai A P, Ouyang Q, Hu R W. Basic research on inflammatory bowel disease in China[J]. J Dig Dis,2007,8(4):194-197.
    [2]赵祥运,陈尼维.炎症性肠病的流行病学研究进展[J].国际消化病杂志,201],31(6):342-344.
    [3]Cukovic-Cavka S, Vermeire S, Hrstic I, et al. NOD2/CARD15 mutations in Croatian patients with Crohn's disease:prevalence and genotype-phenotype relationship[J]. Eur J Gastroenterol Hepatol,2006,18(8):895-899.
    [4]Cao Q, Zhu Q, Wu M L, et al. Genetic susceptibility to ulcerative colitis in the Chinese Han ethnic population:association with TNF polymorphisms[J]. Chin Med J (Engl),2006,119(14):1198-1203.
    [5]McGovern D P, Gardet A, Torkvist L, et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci[J]. Nat Genet,2010,42(4):332-337.
    [6]Lakatos P L. Environmental factors affecting inflammatory bowel disease:have we made progress?[J]. Dig Dis,2009,27(3):215-225.
    [7]Sartor R B. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases[J]. Am J Gastroenterol,1997,92(12 Suppl):5S-11S.
    [8]Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease[J]. Gastroenterology, 2011,140(6):1729-1737.
    [9]曹婷婷,薛原,曲波.炎症性肠病发病机制的研究进展[J].胃肠病学和肝病学杂志,2012(2):110-113.
    [10]Brown S J, Mayer L. The immune response in inflammatory bowel disease[J]. Am J Gastroenterol,2007,102(9):2058-2069.
    [11]Zenewicz L A, Antov A, Flavell R A. CD4 T-cell differentiation and inflammatory bowel disease[J]. Trends Mol Med,2009,15(5):199-207.
    [12]Luckheeram R V, Zhou R, Verma A D, et al. CD4(+)T Cells:Differentiation and Functions[J]. Clin Dev Immunol,2012,2012:925135.
    [13]Mosmann T R, Cherwinski H, Bond M W, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol,1986,136(7):2348-2357.
    [14]Dohi T, Fujihashi K. Type 1 and 2 T helper cell-mediated colitis[J]. Curr Opin Gastroenterol,2006,22(6):651-657.
    [15]Lakatos L. Immunology of inflammatory bowel diseases[J]. Acta Physiol Hung, 2000,87(4):355-372.
    [16]李卫鹏,王福庆CD4+CD25+ Treg的免疫调节作用机制以及临床研究进展[J].现代免疫学,2006,26(2):164-167.
    [17]Himmel M E, Hardenberg G, Piccirillo C A, et al. The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease[J]. Immunology,2008,125(2):145-153.
    [18]Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease[J]. Gastroenterology, 2005,128(7):1868-1878.
    [19]Himmel M E, Yao Y, Orban P C, et al. Regulatory T cell therapy for Inflammatory Bowel Disease:more questions than answers[J]. Immunology, 2012.
    [20]Stockinger B, Veldhoen M, Martin B. Th17 T cells:linking innate and adaptive immunity[J]. Semin Immunol,2007,19(6):353-361.
    [21]Sarra M, Pallone F, Macdonald T T, et al. IL-23/IL-17 axis in IBD[J]. Inflamm Bowel Dis,2010,16(10):1808-1813.
    [22]Sandborn W J. The future of inflammatory bowel disease care[J]. Rev Gastroenterol Disord,2009,9(3):E69-E77.
    [23]Zhang Z, Zheng M, Bindas J, et al. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis[J]. Inflamm Bowel Dis,2006,12(5):382-388.
    [24]Eastaff-Leung N, Mabarrack N, Barbour A, et al. Foxp3+ regulatory T cells, Thl7 effector cells, and cytokine environment in inflammatory bowel disease[J]. J Clin Immunol,2010,30(1):80-89.
    [25]Padma R, Nagarajan L. The human PIM-1 gene product is a protein serine kinase[J]. Cancer Res,1991,51(9):2486-2489.
    [26]Bachmann M, Moroy T. The serine/threonine kinase Pim-1[J]. Int J Biochem Cell Biol,2005,37(4):726-730.
    [27]Shah N, Pang B, Yeoh K G, et al. Potential roles for the PIM1 kinase in human cancer-a molecular and therapeutic appraisal[J]. Eur J Cancer, 2008,44(15):2144-2151.
    [28]Schmidt T, Karsunky H, Gau E, et al. Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis[J]. Oncogene,1998,17(20):2661-2667.
    [29]Wang Z, Bhattacharya N, Meyer M K, et al. Pim-1 negatively regulates the activity of PTP-U2S phosphatase and influences terminal differentiation and apoptosis of monoblastoid leukemia cells[J]. Arch Biochem Biophys, 2001,390(1):9-18.
    [30]Wingett D, Long A, Kelleher D, et al. pim-1 proto-oncogene expression in anti-CD3-mediated T cell activation is associated with protein kinase C activation and is independent of Raf-1[J]. J Immunol,1996,156(2):549-557.
    [31]Aho T L, Lund R J, Ylikoski E K, et al. Expression of human pim family genes is selectively up-regulated by cytokines promoting T helper type 1, but not T helper type 2, cell differentiation[J]. Immunology,2005,116(1):82-88.
    [32]Fox C J, Hammerman P S, Thompson C B. The Pim kinases control rapamycin-resistant T cell survival and activation[J]. J Exp Med, 2005,201 (2):259-266.
    [33]Jackson L J, Pheneger J A, Pheneger T J, et al. The role of PIM kinases in human and mouse CD4+ T cell activation and inflammatory bowel disease[J]. Cell Immunol,2012,272(2):200-213.
    [34]Li J, Loveland B E, Xing P X. Anti-Pim-1 mAb inhibits activation and proliferation of T lymphocytes and prolongs mouse skin allograft survival [J]. Cell Immunol,2011,272(1):87-93.
    [35]Spehlmann M E, Eckmann L. Nuclear factor-kappa B in intestinal protection and destruction[J]. Curr Opin Gastroenterol,2009,25(2):92-99.
    [36]张善金,李弼民.NF-KB信号通路与炎症性肠病[J].世界华人消化杂志,2011(5):505-509.
    [37]Nihira K, Ando Y, Yamaguchi T, et al. Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65[J]. Cell Death Differ,2010,17(4):689-698.
    [38]Kim K, Kim J H, Youn B U, et al. Pim-1 regulates RANKL-induced osteoclastogenesis via NF-kappaB activation and NFATcl induction[J]. J Immunol,2010,185(12):7460-7466.
    [39]Cooper H S, Murthy S N, Shah R S, et al. Clinicopathologic study of dextran sulfate sodium experimental murine colitis[J]. Lab Invest,1993,69(2):238-249.
    [40]Takagi T, Naito Y, Uchiyama K, et al. Carbon monoxide liberated from carbon monoxide-releasing molecule exerts an anti-inflammatory effect on dextran sulfate sodium-induced colitis in mice[J]. Dig Dis Sci,2011,56(6):1663-1671.
    [41]Sartor R B. Colitis in HLA-B27/beta 2 microglobulin transgenic rats[J]. Int Rev Immunol,2000,19(1):39-50.
    [42]MacDonald T T. Gastrointestinal inflammation. Inflammatory bowel disease in knockout mice[J]. Curr Biol,1994,4(3):261-263.
    [43]Yamada Y, Marshall S, Specian R D, et al. A comparative analysis of two models of colitis in rats[J]. Gastroenterology,1992,102(5):1524-1534.
    [44]张艳丽,王承党.葡聚糖硫酸钠结肠炎模型的制作方法、特点和影响因素[J].胃肠病学,2006,11(1):56-58.
    [45]Kojouharoff G, Hans W, Obermeier F, et al. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice[J]. Clin Exp Immunol,1997,107(2):353-358.
    [46]Kim H S, Berstad A. Experimental colitis in animal models[J]. Scand J Gastroenterol,1992,27(7):529-537.
    [47]Moyana T N, Lalonde J M. Carrageenan-induced intestinal injury in the rat--a model for inflammatory bowel disease [J]. Ann Clin Lab Sci, 1990,20(6):420-426.
    [48]张艳丽,黄循铷,王承党.小鼠葡聚糖硫酸钠急性溃疡性结肠炎模型的建立和评价[J].胃肠病学和肝病学杂志,2006,15(2):130-133.
    [49]温红珠,郝微微,李佳,等.葡聚糖硫酸钠结肠炎模型影响因素的研究进展[J].世界华人消化杂志,2011(36):3666-3671.
    [50]邓欢,刘亮明,张吉翔.丝/苏氨酸激酶Pim家族在细胞周期调控和肿瘤发生中的作用[J].国际遗传学杂志,2006,29(5):375-378,388.
    [51]Buckley A R. Transcriptional regulation of pim-1 by prolactin:independence of a requirement for Jak2/Stat signaling[J]. J Neuroimmunol,2000,109(1):40-46.
    [52]Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors[J]. Oncogene,2000,19(21):2548-2556.
    [53]Epling-Burnette P K, Garcia R, Bai F, et al. Carboxy-terminal truncated STAT5 is induced by interleukin-2 and GM-CSF in human neutrophils[J]. Cell Immunol,2002,217(1-2):1-11.
    [54]Bakouche O, Gerlier D. Physical separation of the aqueous phase and lipoidal lamellae from multilamellar liposomes:an analytical and preparative procedure[J]. Anal Biochem,1983,130(2):379-384.
    [55]Krumenacker J S, Narang V S, Buckley D J, et al. Prolactin signaling to pim-1 expression:a role for phosphatidylinositol 3-kinase[J]. J Neuroimmunol, 2001,113(2):249-259.
    [56]Peltola K J, Paukku K, Aho T L, et al. Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3[J]. Blood, 2004,103(10):3744-3750.
    [57]Schreiber S, Rosenstiel P, Hampe J, et al. Activation of signal transducer and activator of transcription (STAT) 1 in human chronic inflammatory bowel disease[J]. Gut,2002,51(3):379-385.
    [58]Lovato P, Brender C, Agnholt J, et al. Constitutive STAT3 activation in intestinal T cells from patients with Crohn's disease[J]. J Biol Chem, 2003,278(19):16777-16781.
    [59]Finbloom D S, Larner A C. Regulation of the Jak/STAT signalling pathway[J]. Cell Signal,1995,7(8):739-745.
    [60]Mikkers H, Nawijn M, Allen J, et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors[J]. Mol Cell Biol,2004,24(13):6104-6115.
    [61]Di Sabatino A, Liberato L, Marchetti M, et al. Optimal use and cost-effectiveness of biologic therapies in inflammatory bowel disease[J]. Intern Emerg Med,2011,6 Suppl 1:17-27.
    [62]毛靖伟,王英德.肠黏膜屏障在炎症性肠病中作用机制的研究进展[J].世界华人消化杂志,2010,18(7):695-698.
    [63]刘丽娜,梁丽娜.炎症性肠病与肠黏膜免疫调节细胞[J].世界华人消化杂志,2008,16(28):3181-3186.
    [64]Mullin G E, Galinkin D. Anti-IL12 imposes the death sentence on Th1 cells in TNBS colitis-is there a light at the end of the tunnel for Crohn's disease?[J]. Inflamm Bowel Dis,2000,6(3):261-262.
    [65]Wang X, Ouyang Q, Luo W J. Oxazolone-induced murine model of ulcerative colitis[J]. Chin J Dig Dis,2004,5(4):165-168.
    [66]Hunter M M, Wang A, McKay D M. Helminth infection enhances disease in a murine TH2 model of colitis[J]. Gastroenterology,2007,132(4):1320-1330.
    [67]Egger B, Bajaj-Elliott M, MacDonald T T, et al. Characterisation of acute murine dextran sodium sulphate colitis:cytokine profile and dose dependency [J]. Digestion,2000,62(4):240-248.
    [68]Hans W, Scholmerich J, Gross V, et al. Interleukin-12 induced interferon-gamma increases inflammation in acute dextran sulfate sodium induced colitis in mice[J]. Eur Cytokine Netw,2000,11(1):67-74.
    [69]Alex P, Zachos N C, Nguyen T, et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis[J]. Inflamm Bowel Dis,2009,15(3):341-352.
    [70]Stevceva L, Pavli P, Husband A J, et al. The inflammatory infiltrate in the acute stage of the dextran sulphate sodium induced colitis:B cell response differs depending on the percentage of DSS used to induce it[J]. BMC Clin Pathol, 2001,1(1):3.
    [71]Liu H, Leung B P. CD4+CD25+ regulatory T cells in health and disease[J]. Clin Exp Pharmacol Physiol,2006,33(5-6):519-524.
    [72]Boden E K, Snapper S B. Regulatory T cells in inflammatory bowel disease[J]. Curr Opin Gastroenterol,2008,24(6):733-741.
    [73]Liu Z J, Yadav P K, Su J L, et al. Potential role of Th17 cells in the pathogenesis of inflammatory bowel disease[J]. World J Gastroenterol, 2009,15(46):5784-5788.
    [74]Yang X O, Pappu B P, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma[J]. Immunity,2008,28(1):29-39.
    [75]Aho T L, Sandholm J, Peltola K J, et al. Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity[J]. BMC Cell Biol, 2006,7:21.
    [76]Cohen M J. Perspectives on RUNX genes:an update[J]. Am J Med Genet A, 2009,149A(12):2629-2646.
    [77]Aho T L, Sandholm J, Peltola K J, et al. Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity[J]. BMC Cell Biol, 2006,7:21.
    [78]Wong W F, Kohu K, Chiba T, et al. Interplay of transcription factors in T-cell differentiation and function:the role of Runx[J]. Immunology, 2011,132(2):157-164.
    [79]Naoe Y, Setoguchi R, Akiyama K, et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbf beta binding to the 114 silencer[J]. J Exp Med, 2007,204(8):1749-1755.
    [80]Komine O, Hayashi K, Natsume W, et al. The Runx1 transcription factor inhibits the differentiation of naive CD4+ T cells into the Th2 lineage by repressing GATA3 expression[J]. J Exp Med,2003,198(1):51-61.
    [81]Djuretic I M, Levanon D, Negreanu V, et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence 114 in T helper type 1 cells[J]. Nat Immunol,2007,8(2):145-153.
    [82]Kitoh A, Ono M, Naoe Y, et al. Indispensable role of the Runxl-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells[J]. Immunity,2009,31(4):609-620.
    [83]McCracken S A, Hadfield K, Rahimi Z, et al. NF-kappaB-regulated suppression of T-bet in T cells represses Thl immune responses in pregnancy[J]. Eur J Immunol,2007,37(5):1386-1396.
    [84]Kiani A, Garcia-Cozar F J, Habermann I, et al. Regulation of interferon-gamma gene expression by nuclear factor of activated T cells[J]. Blood, 2001,98(5):1480-1488.
    [85]Chang S H, Reynolds J M, Pappu B P, et al. Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E[J]. Immunity, 2011,35(4):611-621.
    [86]Campos N, Magro F, Castro A R, et al. Macrophages from IBD patients exhibit defective tumour necrosis factor-alpha secretion but otherwise normal or augmented pro-inflammatory responses to infection[J]. Immunobiology, 2011,216(8):961-970.
    [87]Fukata M, Michelsen K S, Eri R, et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis[J]. Am J Physiol Gastrointest Liver Physiol, 2005,288(5):G1055-G1065.
    [88]Fukata M, Abreu M T. TLR4 signalling in the intestine in health and disease[J]. Biochem Soc Trans,2007,35(Pt 6):1473-1478.
    [89]荆科,孙梅.TLR2和TLR4 mRNA表达与LPS诱导肠组织损伤的关系[J].世界华人消化杂志,2010(21):2197-2201.
    [90]王磊,刘懿.TLR4介导的信号转导通路的相关阻断研究与炎症性肠病[J].国际消化病杂志,2008,28(3):220-223.
    [91]靖学芳.LPS和抗LPS治疗的研究及应用进展[J].微生物学免疫学进展,2004(02).
    [92]辛维政,姚尚龙.LPS受体簇--LPS识别机制的研究进展[J].中国急救医学, 2005,25(5):346-348.
    [93]Abreu M T, Arditi M. Innate immunity and toll-like receptors:clinical implications of basic science research[J]. J Pediatr,2004,144(4):421-429.
    [94]Palsson-McDermott E M, O'Neill L A. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4[J]. Immunology, 2004,113(2):153-162.
    [95]Mou H B, Lin M F, Huang H, et al. Transforming growth factor-betal modulates lipopolysaccharide-induced cytokine/chemokine production and inhibits nuclear factor-kappaB, extracellular signal-regulated kinases and p38 activation in dendritic cells in mice[J]. Transplant Proc,2011,43(5):2049-2052.
    [96]Kenny E F, O'Neill L A. Signalling adaptors used by Toll-like receptors:an update[J]. Cytokine,2008,43(3):342-349.
    [97]Zhu N, Ramirez L M, Lee R L, et al. CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-kappa B pathway[J]. J Immunol, 2002,168(2):744-754.
    [98]Ruppert S M, Chehtane M, Zhang G, et al. JunD/AP-1-mediated gene expression promotes lymphocyte growth dependent on interleukin-7 signal transduction[J]. PLoS One,2012,7(2):e32262.
    [99]Zhang Y, Parsanejad M, Huang E, et al. Pim-1 kinase as activator of the cell cycle pathway in neuronal death induced by DNA damage[J]. J Neurochem, 2010,112(2):497-510.
    [100]秦稳,周国华.Toll样受体与肠道相关疾病的研究进展[J].医学综述,2010,16(19):2921-2924.
    [101]De Jager P L, Franchimont D, Waliszewska A, et al. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases[J]. Genes Immun,2007,8(5):387-397.
    [102]Hennessy E J, Parker A E, O'Neill L A. Targeting Toll-like receptors:emerging therapeutics?[J]. Nat Rev Drug Discov,2010,9(4):293-307.
    [103]Peri F, Piazza M. Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists[J]. Biotechnol Adv,2012,30(1):251-260.
    [1]Danese S. Immune and nonimmune components orchestrate the pathogenesis of inflammatory bowel disease[J]. Am J Physiol Gastrointest Liver Physiol, 2011,300(5):G716-G722.
    [2]Roda G, Sartini A, Zambon E, et al. Intestinal epithelial cells in inflammatory bowel diseases[J]. World J Gastroenterol,2010,16(34):4264-4271.
    [3]Vestergaard E M, Brynskov J, Ejskjaer K, et al. Immunoassays of human trefoil factors 1 and 2:measured on serum from patients with inflammatory bowel disease[J]. Scand J Clin Lab Invest,2004,64(2):146-156.
    [4]Groschwitz K R, Hogan S P. Intestinal barrier function:molecular regulation and disease pathogenesis[J]. J Allergy Clin Immunol,2009,124(1):3-20,21-22.
    [5]Planchon S, Fiocchi C, Takafuji V, et al. Transforming growth factor-betal preserves epithelial barrier function:identification of receptors, biochemical intermediates, and cytokine antagonists [J]. J Cell Physiol,1999,181(1):55-66.
    [6]Beaurepaire C, Smyth D, McKay D M. Interferon-gamma regulation of intestinal epithelial permeability [J]. J Interferon Cytokine Res,2009,29(3):133-144.
    [7]John L J, Fromm M, Schulzke J D. Epithelial barriers in intestinal inflammation[J]. Antioxid Redox Signal,2011,15(5):1255-1270.
    [8]Mankertz J, Schulzke J D. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications[J]. Curr Opin Gastroenterol, 2007,23(4):379-383.
    [9]Schmitz H, Barmeyer C, Gitter A H, et al. Epithelial barrier and transport function of the colon in ulcerative colitis[J]. Ann N Y Acad Sci, 2000,915:312-326.
    [10]Verstege M I, Te V A, Hommes D W. Apoptosis as a therapeutic paradigm in inflammatory bowel diseases[J]. Acta Gastroenterol Belg,2006,69(4):406-412.
    [11]Sakiyama T, Musch M W, Ropeleski M J, et al. Glutamine increases autophagy under Basal and stressed conditions in intestinal epithelial cells[J]. Gastroenterology,2009,136(3):924-932.
    [12]Fritz T, Niederreiter L, Adolph T, et al. Crohn's disease:NOD2, autophagy and ER stress converge[J]. Gut,2011,60(11):1580-1588.
    [13]Kim Y S, Kim J S, Jung H C, et al. The effects of thalidomide on the stimulation of NF-kappaB activity and TNF-alpha production by lipopolysaccharide in a human colonic epithelial cell line[J]. Mol Cells,2004,17(2):210-216.
    [14]Toumi F, Neunlist M, Denis M G, et al. Vasoactive intestinal peptide induces IL-8 production in human colonic epithelial cells via MAP kinase-dependent and PKA-independent pathways[J]. Biochem Biophys Res Commun, 2004,317(1):187-191.
    [15]Conroy M E, Walker W A. Intestinal immune health[J]. Nestle Nutr Workshop Ser Pediatr Program,2008,62:111-121,121-125.
    [16]曾敬清,刘伟,周同,等.肠上皮细胞的免疫调节与炎症性肠病[J].临床儿科杂志,2011,29(11):1092-1095.
    [17]Bocker U, Yezerskyy O, Feick P, et al. Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression[J]. Int J Colorectal Dis,2003,18(1):25-32.
    [18]Heimesaat M M, Fischer A, Siegmund B, et al. Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4[J]. PLoS One,2007,2(7):e662.
    [19]Nakazawa A, Dotan I, Brimnes J, et al. The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells[J]. Gastroenterology,2004,126(5):1347-1357.
    [20]Marshall J S, Bienenstock J. The role of mast cells in inflammatory reactions of the airways, skin and intestine[J]. Curr Opin Immunol,1994,6(6):853-859.
    [21]Siddiqui A A, Miner P J. The role of mast cells in common gastrointestinal diseases[J]. Curr Allergy Asthma Rep,2004,4(1):47-54.
    [22]Rijnierse A, Koster A S, Nijkamp F P, et al. TNF-alpha is crucial for the development of mast cell-dependent colitis in mice[J]. Am J Physiol Gastrointest Liver Physiol,2006,291(5):G969-G976.
    [23]Demaude J, Salvador-Cartier C, Fioramonti J, et al. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction[J]. Gut, 2006,55(5):655-661.
    [24]Nishida Y, Murase K, Isomoto H, et al. Different distribution of mast cells and macrophages in colonic mucosa of patients with collagenous colitis and inflammatory bowel disease[J]. Hepatogastroenterology,2002,49(45):678-682.
    [25]Videla S, Vilaseca J, Medina C, et al. Modulatory effect of nitric oxide on mast cells during induction of dextran sulfate sodium colitis[J]. Dig Dis Sci, 2007,52(1):45-51.
    [26]Sanchez-Patan F, Anchuelo R, Vara E, et al. Prophylaxis with ketotifen in rats with portal hypertension:involvement of mast cell and eicosanoids[J]. Hepatobiliary Pancreat Dis Int,2008,7(4):383-394.
    [27]Gelbmann C M, Mestermann S, Gross V, et al. Strictures in Crohn's disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin[J]. Gut,1999,45(2):210-217.
    [28]Hamilton M J, Sinnamon M J, Lyng G D, et al. Essential role for mast cell tryptase in acute experimental colitis[J]. Proc Natl Acad Sci U S A, 2011,108(1):290-295.
    [29]Orndorff B W, Novak C L, Pierson F W, et al. Comparison of prophylactic or therapeutic dietary administration of capsaicin for reduction of Salmonella in broiler chickens[J]. Avian Dis,2005,49(4):527-533.
    [30]Crowe S E, Luthra G K, Perdue M H. Mast cell mediated ion transport in intestine from patients with and without inflammatory bowel disease[J]. Gut, 1997,41(6):785-792.
    [31]Rieder F, Fiocchi C. Intestinal fibrosis in inflammatory bowel disease:progress in basic and clinical science[J]. Curr Opin Gastroenterol,2008,24(4):462-468.
    [32]Burke J P, Mulsow J J, O'Keane C, et al. Fibrogenesis in Crohn's disease[J]. Am J Gastroenterol,2007,102(2):439-448.
    [33]Okayasu I, Yoshida T, Mikami T, et al. Mucosal remodeling in long-standing ulcerative colitis with colorectal neoplasia:significant alterations of NCAM+ or alpha-SMA+ subepithelial myofibroblasts and interstitial cells[J]. Pathol Int, 2009,59(10):701-711.
    [34]Lawrance I C, Maxwell L, Doe W. Inflammation location, but not type, determines the increase in TGF-betal and IGF-1 expression and collagen deposition in IBD intestine[J]. Inflamm Bowel Dis,2001,7(l):16-26.
    [35]di Mola F F, Friess H, Scheuren A, et al. Transforming growth factor-betas and their signaling receptors are coexpressed in Crohn's disease[J]. Ann Surg, 1999,229(1):67-75.
    [36]McKaig B C, McWilliams D, Watson S A, et al. Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibroblasts in inflammatory bowel disease[J]. Am J Pathol, 2003,162(4):1355-1360.
    [37]Flynn R S, Murthy K S, Grider J R, et al. Endogenous IGF-I and alphaVbeta3 integrin ligands regulate increased smooth muscle hyperplasia in stricturing Crohn's disease[J]. Gastroenterology,2010,138(1):285-293.
    [38]Scarpa M, Bortolami M, Morgan S L, et al. TGF-betal and IGF-1 production and recurrence of Crohn's disease after ileo-colonic resection[J]. J Surg Res, 2009,152(1):26-34.
    [39]Graham M F, Willey A, Adams J, et al. Interleukin 1 beta down-regulates collagen and augments collagenase expression in human intestinal smooth muscle cells[J]. Gastroenterology,1996,110(2):344-350.
    [40]Varona R, Cadenas V, Flores J, et al. CCR6 has a non-redundant role in the development of inflammatory bowel disease[J]. Eur J Immunol, 2003,33(10):2937-2946.
    [41]Pender S L, Chance V, Whiting C V, et al. Systemic administration of the chemokine macrophage inflammatory protein 1alpha exacerbates inflammatory bowel disease in a mouse model[J]. Gut,2005,54(8):1114-1120.
    [42]Ajuebor M N, Kunkel S L, Hogaboam C M. The role of CCL3/macrophage inflammatory protein-1alpha in experimental colitis[J]. Eur J Pharmacol, 2004,497(3):343-349.
    [43]Cromer W E, Mathis J M, Granger D N, et al. Role of the endothelium in inflammatory bowel diseases[J]. World J Gastroenterol,2011,17(5):578-593.
    [44]Vainer B. Intercellular adhesion molecule-1 (ICAM-1) in ulcerative colitis: presence, visualization, and significance[J]. APMIS Suppl,2010(129):1-43.
    [45]Shigematsu T, Specian R D, Wolf R E, et al. MAdCAM mediates lymphocyte-endothelial cell adhesion in a murine model of chronic colitis[J]. Am J Physiol Gastrointest Liver Physiol,2001,281(5):G1309-G1315.
    [46]Binion D G, Heidemann J, Li M S, et al. Vascular cell adhesion molecule-1 expression in human intestinal microvascular endothelial cells is regulated by PI 3-kinase/Akt/MAPK/NF-kappaB:inhibitory role of curcumin[J]. Am J Physiol Gastrointest Liver Physiol,2009,297(2):G259-G268.
    [47]Vallance B A, Dijkstra G, Qiu B, et al. Relative contributions of NOS isoforms during experimental colitis:endothelial-derived NOS maintains mucosal integrity[J]. Am J Physiol Gastrointest Liver Physiol,2004,287(4):G865-G874.
    [48]Sans M, Danese S, de la Motte C, et al. Enhanced recruitment of CX3CR1+ T cells by mucosal endothelial cell-derived fractalkine in inflammatory bowel disease[J]. Gastroenterology,2007,132(1):139-153.
    [49]Abreu M T, Vora P, Faure E, et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide[J]. J Immunol,2001,167(3):1609-1616.
    [50]Vowinkel T, Anthoni C, Wood K C, et al. CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon[J]. Gastroenterology,2007,132(3):955-965.
    [51]Zapolska-Downar D, Naruszewicz M. Propionate reduces the cytokine-induced VCAM-1 and ICAM-1 expression by inhibiting nuclear factor-kappa B (NF-kappaB) activation [J]. J Physiol Pharmacol,2009,60(2):123-131.
    [52]Goodier M R, Londei M. CD28 is not directly involved in the response of human CD3- CD56+ natural killer cells to lipopolysaccharide:a role for T cells[J]. Immunology,2004,111(4):384-390.
    [53]Holt D, Ma X, Kundu N, et al. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4[J]. Cancer Immunol Immunother,2011,60(11):1577-1586.
    [54]Todd D J, Greiner D L, Rossini A A, et al. An atypical population of NK cells that spontaneously secrete IFN-gamma and IL-4 is present in the intraepithelial lymphoid compartment of the rat[J]. J Immunol,2001,167(7):3600-3609.
    [55]Fort M M, Leach M W, Rennick D M. A role for NK cells as regulators of CD4+ T cells in a transfer model of colitis[J]. J Immunol,1998,161 (7):3256-3261.
    [56]Liu Z, Yang L, Cui Y, et al.Ⅱ-21 enhances NK cell activation and cytolytic activity and induces Th17 cell differentiation in inflammatory bowel disease[J]. Inflamm Bowel Dis,2009,15(8):1133-1144.
    [57]Massa S, Balciunaite G, Ceredig R, et al. Critical role for c-kit (CD117) in T cell lineage commitment and early thymocyte development in vitro [J]. Eur J Immunol,2006,36(3):526-532.
    [58]Fina D, Caruso R, Pallone F, et al. Interleukin-21 (IL-21) controls inflammatory pathways in the gut[J]. Endocr Metab Immune Disord Drug Targets, 2007,7(4):288-291.
    [59]Yadav P K, Chen C, Liu Z. Potential role of NK cells in the pathogenesis of inflammatory bowel disease[J]. J Biomed Biotechnol,2011,2011:348530.
    [60]Hollenbach J A, Ladner M B, Saeteurn K, et al. Susceptibility to Crohn's disease is mediated by KIR2DL2/KIR2DL3 heterozygosity and the HLA-C ligand[J]. Immunogenetics,2009,61(10):663-671.
    [61]Stagg A J, Hart A L, Knight S C, et al. Microbial-gut interactions in health and disease. Interactions between dendritic cells and bacteria in the regulation of intestinal immunity [J]. Best Pract Res Clin Gastroenterol,2004,18(2):255-270.
    [62]王兰,厉有名.树突状细胞与炎症性肠病[J].国际消化病杂志2007,27(5):355-357,363.
    [63]Robinson S P. Identification and immunophenotypic analyses of peripheral blood dendritic cells[J]. Methods Mol Med,2001,64:99-109.
    [64]Canque B, Camus S, Yagello M, et al. IL-4 and CD40 ligation affect differently the differentiation, maturation, and function of human CD34+ cell-derived CD1a+CD14- and CD1a-CD14+ dendritic cell precursors in vitro[J]. J Leukoc Biol,1998,64(2):235-244.
    [65]Stagg A J, Hart A L, Knight S C, et al. The dendritic cell:its role in intestinal inflammation and relationship with gut bacteria[J]. Gut,2003,52(10):1522-1529.
    [66]Ohnmacht C, Pullner A, King S B, et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity[J]. J Exp Med,2009,206(3):549-559.
    [67]Legge K L, Braciale T J. Lymph node dendritic cells control CD8+ T cell responses through regulated FasL expression[J]. Immunity,2005,23(6):649-659.
    [68]Gorbachev A V, Fairchild R L. CD4+ T cells regulate CD8+ T cell-mediated cutaneous immune responses by restricting effector T cell development through a Fas ligand-dependent mechanism[J]. J Immunol,2004,172(4):2286-2295.
    [69]Akbari 0, DeKruyff R H, Umetsu D T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen[J]. Nat Immunol,2001,2(8):725-731.
    [70]Baumgart D C, Metzke D, Guckelberger O, et al. Aberrant plasmacytoid dendritic cell distribution and function in patients with Crohn's disease and ulcerative colitis[J]. Clin Exp Immunol,2011,166(1):46-54.
    [71]Uhlig H H, McKenzie B S, Hue S, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology[J]. Immunity, 2006,25(2):309-318.
    [72]Drakes M L, Blanchard T G, Czinn S J. Colon lamina propria dendritic cells induce a proinflammatory cytokine response in lamina propria T cells in the SCID mouse model of colitis[J]. J Leukoc Biol,2005,78(6):1291-1300.
    [73]Wirtz S, Becker C, Fantini M C, et al. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation[J]. J Immunol,2005,174(5):2814-2824.
    [74]Mowat A M, Bain C C. Mucosal macrophages in intestinal homeostasis and inflammation[J]. J Innate Immun,2011,3(6):550-564.
    [75]Rogler G, Hausmann M, Spottl T, et al. T-cell co-stimulatory molecules are upregulated on intestinal macrophages from inflammatory bowel disease mucosa[J]. Eur J Gastroenterol Hepatol,1999,11(10):1105-1111.
    [76]Sheikh S Z, Matsuoka K, Kobayashi T, et al. Cutting edge:IFN-gamma is a negative regulator of IL-23 in murine macrophages and experimental colitis [J]. J Immunol,2010,184(8):4069-4073.
    [77]Fukata M, Michelsen K S, Eri R, et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis[J]. Am J Physiol Gastrointest Liver Physiol, 2005,288(5):G1055-G1065.
    [78]李娜,张晓岚.Toll样受体与炎症性肠病[J].国际内科学杂志,2007,34(6):339-342.
    [79]Schenk M, Mueller C. Adaptations of intestinal macrophages to an antigen-rich environment[J]. Semin Immunol,2007,19(2):84-93.
    [80]Ramana K V, Srivastava S K. Mediation of aldose reductase in lipopolysaccharide-induced inflammatory signals in mouse peritoneal macrophages[J]. Cytokine,2006,36(3-4):115-122.
    [81]Zhang J, Ge H, Wang C, et al. Inhibitory effect of PPAR on the expression of EMMPRIN in macrophages and foam cells[J]. Int J Cardiol, 2007,117(3):373-380.
    [82]舒茂琴,何作云,王国超,等PPARα、丫配体对单核细胞来源的巨噬细胞的作用观察[J].第三军医大学学报,2002,24(8):924-927.
    [83]Kwon K H, Murakami A, Hayashi R, et al. Interleukin-1beta targets interleukin-6 in progressing dextran sulfate sodium-induced experimental colitis[J]. Biochem Biophys Res Commun,2005,337(2):647-654.
    [84]Sekut L, Connolly K. AntiTNF-alpha agents in the treatment of inflammation[J]. Expert Opin Investig Drugs,1998,7(11):1825-1839.
    [85]Young Y, Abreu M T. Advances in the pathogenesis of inflammatory bowel disease[J]. Curr Gastroenterol Rep,2006,8(6):470-477.
    [86]岳文杰,刘懿.T辅助细胞在炎症性肠病免疫发病机制中的研究进展[J].国际消化病杂志,2009,29(4):238-240,267.
    [87]Mosmann T R, Cherwinski H, Bond M W, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol,1986,136(7):2348-2357.
    [88]Crane I J, Forrester J V. Thl and Th2 lymphocytes in autoimmune disease[J]. Crit Rev Immunol,2005,25(2):75-102.
    [89]Rogler G, Andus T. Cytokines in inflammatory bowel disease[J]. World J Surg, 1998,22(4):382-389.
    [90]Neurath M F, Weigmann B, Finotto S, et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease[J]. J Exp Med,2002,195(9):1129-1143.
    [91]Attakpa E, Hichami A, Simonin A M, et al. Docosahexaenoic acid modulates the expression of T-bet and GATA-3 transcription factors, independently of PPARalpha, through suppression of MAP kinase activation [J]. Biochimie, 2009,91(11-12):1359-1365.
    [92]Ohtani K, Ohtsuka Y, Ikuse T, et al. Increased mucosal expression of GATA-3 and STAT-4 in pediatric ulcerative colitis[J]. Pediatr Int,2010,52(4):584-589.
    [93]Wang X, Ouyang Q, Luo W J. Oxazolone-induced murine model of ulcerative colitis[J]. Chin J Dig Dis,2004,5(4):165-168.
    [94]Himmel M E, Yao Y, Orban P C, et al. Regulatory T cell therapy for Inflammatory Bowel Disease:more questions than answers[J]. Immunology, 2012.
    [95]Callahan M K, Wolchok J D, Allison J P. Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy[J]. Semin Oncol,2010,37(5):473-484.
    [96]Yoshimura A, Muto G. TGF-beta function in immune suppression[J]. Curr Top Microbiol Immunol,2011,350:127-147.
    [97]Coombes J L, Robinson N J, Maloy K J, et al. Regulatory T cells and intestinal homeostasis[J]. Immunol Rev,2005,204:184-194.
    [98]Harrington L E, Mangan P R, Weaver C T. Expanding the effector CD4 T-cell repertoire:the Th 17 lineage [J]. Curr Opin Immunol,2006,18(3):349-356.
    [99]Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation[J]. J Clin Invest, 2006,116(5):1218-1222.
    [100]Veldhoen M, Stockinger B. TGFbetal, a "Jack of all trades":the link with pro-inflammatory IL-17-producing T cells[J]. Trends Immunol, 2006,27(8):358-361.
    [101]Xu L, Kitani A, Fuss I, et al. Cutting edge:regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta[J]. J Immunol,2007,178(11):6725-6729.
    [102]Unutmaz D. RORC2:the master of human Th17 cell programming [J]. Eur J Immunol,2009,39(6):1452-1455.
    [103]Munoz M, Heimesaat M M, Danker K, et al. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17[J]. J Exp Med, 2009,206(13):3047-3059.
    [104]Toussirot E. The IL23/Th17 Pathway as a Therapeutic Target in Chronic Inflammatory Diseases[J]. Inflamm Allergy Drug Targets,2012,11(2):159-168.
    [105]葛婷,唐志鹏,王亮,等Th17/Treg失衡与炎症性肠病的关系[J].世界华人消化杂志,2010,18(7):689-694.
    [106]Eastaff-Leung N, Mabarrack N, Barbour A, et al. Foxp3+regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease[J]. J Clin Immunol,2010,30(1):80-89.
    [107]Horikawa M, Minard-Colin V, Matsushita T, et al. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice[J]. J Clin Invest,2011,121(11):4268-4280.
    [108]Booth J S, Griebel P J, Babiuk L A, et al. A novel regulatory B-cell population in sheep Peyer's patches spontaneously secretes IL-10 and downregulates TLR9-induced IFNalpha responses [J]. Mucosal Immunol,2009,2(3):265-275.
    [109]Tian J, Zekzer D, Hanssen L, et al. Lipopolysaccharide-activated B cells down-regulate Thl immunity and prevent autoimmune diabetes in nonobese diabetic mice[J]. J Immunol,2001,167(2):1081-1089.
    [110]Shimomura Y, Mizoguchi E, Sugimoto K, et al. Regulatory role of B-1B cells in chronic colitis[J]. Int Immunol,2008,20(6):729-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700