用户名: 密码: 验证码:
欧美107杨苗木精准灌溉施肥制度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分和肥料是林木生长发育的两大重要因素,合理的水肥管理有利于林木发挥更大的生长潜力,而盲目的水肥管理不但对植物生长发育不利,还将导致水肥资源浪费和环境污染。本研究在掌握苗木苗期需水需肥规律研究的基础上,采用田间裂区试验设计,通过考察不同水肥梯度处理对一年生苗木生长的影响,探究水肥之间的交互效应,建立水肥耦合模型,制定合理节水灌溉和精准施肥制度,建立以节水节肥为核心的资源节约型速生丰产林优质苗木培育技术体系。本研究主要取得的成果有:
     (1)阐明了欧美107杨苗木生长的年周期动态变化规律。综合不同水肥方案下1年生欧美107杨的苗高、地径、地上生物量以及叶和茎内N、P、K的年动态变化,发现苗木遵从“慢—快—慢”的生长规律。1年生欧美107杨苗高生长的Logistic方程为地径生长的Logistic方程为根据方程,将苗木生长划分为3个阶段:Ⅰ、生长初期:4月初~6月末,包括苗木成活期和幼苗期,苗木生长速度较慢;Ⅱ、速生期:7月初~8月末,生长高峰期,苗木生长指标增长最快阶段;Ⅲ、生长后期:9月初~年底,各项生长指标增长速度减少并趋于停止,地上生物量由于叶片凋落而下降。对年生长动态的掌握,有利于合理安排水肥管理的时间。
     (2)比较了不同水肥管理方案下欧美107杨苗木生长差异。通过方差分析,12个处理下1年生欧美107杨的苗高、地径、地上生物量以及地上部分N、P、K含量之间有显著性差异。对于苗高、地径和地上生物量,处理10(每次灌溉至田间持水量、年N肥施入量为15.08g·株-1)的各项指标最好,处理3(不灌溉、不施肥)最差。根据多重比较结果,处理8(每次灌溉至田间持水量80%、年N肥施入量为8g·株-1)与处理10之间无显著性差异。地上部分N、P、K含量与形态指标的结果不同。对于地上部分含N量,处理10最高,处理9(每次灌溉至田间持水量80%、不施肥)最低;对于地上部分含P量,处理4(每次灌溉至田间持水量60%、年N肥施入量为15.08g·株-1)最高,处理6(每次灌溉至田间持水量60%、不施肥)最低;对于地上部分含K量,处理11(每次灌溉至田间持水量、年N肥施入量为8g·株-1)最高,处理2(不灌溉、年N肥施入量为8g·株-1)最低。
     (3)建立了地上生物量和苗高、地径与水肥因子的回归模型。
     1年生欧美107杨地上生物量(Y)与灌水量(x1)和施氮量(x2)之间的关系可用二元二次多项式描述:Y=297.378+4.018x1+33.876x2-0.046x12-2.015x22+0.412x1x2
     1年生欧美107杨苗高(Y)与灌水量(x1)和施氮量(x2)之间的关系可用二元二次多项式描述:Y=297.378+1.737x1+5.382x2-0.008x12-0.197x22-0.015x1x2
     1年生欧美107杨地径(Y)与灌溉量(x1)和氮施入量(x2)呈线性正相关,其关系可用Y=21.487+0.093x1+0.248x2描述
     (4)探讨了水、肥及水肥互作因子对地上生物量、苗高和地径的影响效应。结果表明:增加灌溉量和氮肥施用量均有增产效应,水肥交互作用表现为正效应,对地上生物量影响作用由高到低依次为:氮肥施入量、灌溉量、水肥互作;增加灌溉量和氮施入量均有增加苗高的效应,对苗高影响作用由高到低次序为:氮施入量、灌溉量、水肥互作,水肥交互效应不显著;氮施入量对地径的效应大于灌溉量。
     (5)确定了培育不同规格1年生欧美107杨的灌溉和施肥方案。
     地上生物量>900 g·株-1、苗高为360~400 cm,地径为26~31mm下的水肥方案为:灌溉量为36.13~41.35 kg·株-1,氮肥施入量为9.23~11·38 g·株-1(即尿素施入量836.06~1030.81kg·hm-2);
     地上生物量<900 g·株-1、苗高为300~360 cm,地径为20~26mm下的水肥方案为:灌溉量为12.56~18.18kg·株-1,氮肥施入量为4.68~8.10g·株-1(即尿素施入量423.92~733.70kg·hm-2)。
     (6)开展验证试验证实灌溉施肥方案的可行性。2010年采用相似的水肥方案观测1年生欧美107杨的苗高、地径、地上生物量;结果表明,不同水肥处理下各项指标均有显著性差异,表现最优的仍为每次灌溉至田间持水量、年N肥施入量为15.08g·株-1,多重比较结果显示,每次灌溉至田间持水量80%、年N肥施入量为8g·株-1的处理与最优处理之间无显著性差异。综合苗木各项指标,从节水节肥的角度考虑,在管理中可采用每次灌溉至田间持水量80%、年N肥施入量为8g·株-1的处理的水肥管理方案。
Water and fertilizer are two important factors for plant growth and development. Rational irrigation and fertilization management helps to exert plant's growth potential, while irrational irrigation and fertilization management dose not only limited the plant growth, but also leads to water loss and environment pollution. Based on mastering the law of water and fertilizer requirement, this research used split plot design to explore coupling effect and modeling of water and fertilizer, to establish precise irrigation and fertilization management system for high quality Populns×euramericana cv."74/76" with water-saving irrigation technology, and aims to build the fast-growing and high-yield plantation cultivate system for high quality seedlings by the core of water-saving and fertilizer-saving.The following is the main research results in this paper:
     (1)Clarified the annual variation growth rule of Populus×euramericana cv."74/76". A combination of the variation of seedlings height, ground diameter, above-ground biomass, and N, P, K content in leaves and stem made clear that plant growth accords with "slow—quick—slow" rule under 12 kinds of irrigation and fertilization scheme.The Logistic growth models for seedling height and basal diameter of 107 I1-0 were y=396.94/1+63.11e0.039t and y=28.15/1+22.66e0.034t,respectively. According to Logistic growth models, the annual growth cycle divided to three stages:Ⅰ、early growth stage:from the beginning of April to the ending of June, including the survival and teen, plant grows slowly;Ⅱ、fast-growing stage:from the beginning of July to the ending of August, it's the peak of growing and every indicators stays fast growing stage;Ⅲ、later growth stage:from the beginning of September to the end of year, each indicators grows slower and slower, and to suspend.It benefits for confirming the times of efficient irrigation and fertilization as to mastering annual variation rule.
     (2)Compared the growth differences of Populus×euramericana cv. "74/76" with different irrigation and fertilization schemes.By ANOVA analyzing, there were highly significant differences in seedlings height, ground diameter, above-ground biomass, and N,P, K content in leaves and stem.For seedlings height, ground diameter and above-ground biomass, the optimal presentation was treatment 10(watering to field capacity, N fertilizer application (pure N) is 15.08 g/per tree),the worst was treatment 3(no watering, no fertilization).Later analyzing multiple comparison, treatment 8(watering to 80% field capacity, N fertilizer application (pure N) is 8 g/per tree) has no significant differences with treatment 10.The N, P, K content of above-ground plant was different from morphological markers. For N content of above-ground plant, the optimal presentation was treatment 10, the worst was treatment 9(watering to 80% field capacity, no fertilization);For P content of above-ground plant, the optimal presentation was treatment 4(watering to 60% field capacity, N fertilizer application (pure N) is 15.08 g/per tree), the worst was treatment 6(watering to 60% field capacity, no fertilization);For K content of above-ground plant, the optimal presentation was treatment 11 (watering to field capacity, N fertilizer application (pure N) is 8 g/per tree), the worst was treatment 2(no watering, N fertilizer application (pure N) is 8 g/per tree).
     (3) Established regression models between seedling height, ground diameter and above-ground biomass and water, fertilizer, respectively.
     Regression model of between above-ground biomass(Y) and irrigation quantity (x1),N fertilizer application (x2):
     Y=297.378+4.018x1+33.876x2-0.046x12-2.015x22+0.412x1x2
     Regression model of between seedling height (Y) and irrigation quantity (x1),N fertilizer application (x2):
     Y=297.378+1.737x,+5.382x2-0.008x,2-0.197x22-0.015x1x2
     Regression model of between ground diameter (Y) and irrigation quantity (x1), N fertilizer application (x2):
     Y=21.487+0.093x1+0.248x2
     (4) Discussed the effect of water, fertilizer and coupling of water and fertilizer. Results showed:above-ground biomass increased as the increasing of irrigation and fertilization,the coupling effect is positive, the descending order of them was N fertilizer application, water quantity, the coupling of water and fertilizer; seedling height increased as the increasing of irrigation and fertilization, the coupling effect is negative, the descending order of them was N fertilizer application, water quantity, the coupling of water and fertilizer; N fertilizer application influence ground diameter more than irrigation quantity.
     (5) Built the irrigation and fertilization managements for cultivating different targets of Populus×euramericana cv."74/76'
     The optimum combination of irrigation quantity and N fertilizer application on aboveground biomass≥900g/per tree, seedling height between 360 and 400 cm,and ground diameter between 26 and 31 mm is:irrigation is between 36.13~41.35 kg/per tree, N fertilizer(pure N) is between 9.23~11.38g/per tree(urea is between 836.06~1030.81 kg/hm2).
     The optimum combination of irrigation quantity and N fertilizer application on aboveground biomass≤900g/per tree, seedling height between 300 and 360 cm,and ground diameter between 20 and 26 mm is:irrigation is between 12.56~18.18 kg/per tree, N fertilizer(pure N) is between 4.68~8.10g/per tree(urea is between 423.92~733.70 kg/hm2).
     (6) Launched validation test for confirming feasibility of irrigation and fertilization management system.The similar experiment was taken place to observing the growth of seedling height, ground diameter and above-ground biomass in 2010. It showed that there were still highly significant differences among different programs, the optimal presentation was treatment of watering to field capacity, N fertilizer application (pure N) is 15.08 g/per tree.By analyzing multiple comparison, it had no significant differences with treatment of watering to 80% field capacity, N fertilizer application (pure N) is 8 g/per tree. Combining each indicator, it's benefit for water-saving and fertilizer-saving to adopt treatment of watering to 80% field capacity, N fertilizer application (pure N) is 8 g/per tree.
引文
[1]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2008.
    [2]曹林山.欧美杨107号品种栽植与管理技术.山西林业[J].2009,5:22-23.
    [3]陈碧华,郜庆炉,段爱旺,等.水肥耦合对番茄产量和硝酸盐含量的影响[J].河南农业科学,2007,5:87-90.
    [4]陈碧华,郜庆炉,杨和连,等.日光温室膜下滴灌水肥耦合技术对番茄生长发育的影响[J].广东农业科学,2008(3):63-67.
    [5]陈连东,屠泉洪,孙时轩.小美草杨插条苗(1-0)施肥的研究[J].北京林业大学学报,1991,13(1):37-41.
    [6]陈修斌,潘林,王勤礼,等.温室番茄水肥耦合数学模型及其优化方案研究[J].南京农业大学学报,2006,29(3):138-141.
    [7]程建平,曹凑贵,蔡明历,等.不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响[J].植物营养与肥料学报,2008,14(2):199-206.
    [8]大布穷,普穷,张昆林,等.基于Logistic模型探究西藏巨柏播种苗生长规律[J].安徽农业科学,2010,38(8):4296-4298.
    [9]邓坦,贾黎明.杨树营养及施肥研究进展[J].世界林业研究,2009,22(5):51-56.
    [10]邓坦.欧美107杨扦插苗需肥规律和合理施肥技术研究[A].北京:北京林业大学硕士论文,2009.
    [11]丁晓纲,李吉跃,张方秋,等.林木营养诊断及施肥研究进展[J].广东林业科技,2010,26(4):66-71.
    [12]董江水.应用SPSS软件拟合Logistic曲线研究[J].金陵科技学院学报,2007,23(1):21-24.
    [13]董申平,李少华,唐元年等.杨树氮肥适宜用量试脸研究[J].湖北林业科技(增刊),2004:54-56.
    [14]董雯怡,赵燕,张志毅,等.水肥耦合效应对毛白杨苗木生物量的影响[J].应用生态学报,2010,21(9):2194-2200.
    [15]方新力.膜下滴灌水肥耦合、以水调为核心的系统调控技术综述[J].安徽农学通报,2008,14(13):61-63.
    [16]冯绍元,黄冠华,王风新,等.滴灌棉花水肥耦合效应的田间试验研究[J].中国农业大学学报,1995,3(6):59-62.
    [17]冯耀祖,张炎,马海刚,等.地而灌溉条件下中长绒陆地棉的水肥耦合效应[J].中国农学通报,2007,23(4):445-448.
    [18]高程达,孙向阳,刘克林,等.杨树施肥技术研究综述[J].林业科技开发,2008,22(1):6-9.
    [19]高静,梁银丽,贺丽娜,等.水肥交互作用对黄土高原南瓜光合特性及其产量的影响[J]. 干旱地区农业研究,2006,24(2):57-60.
    [20]国家林业局.2010年中国林业发展报告[R].2011,03, 01,http://www.forestry.gov.cn/portal/main/s/62/content-464039.html.
    [21]国家林业局.第七次全国森林资源清查结果[R].2010,01,28,http://www.forestry.gov.cn/portal/main/s/65/content-326341.html.
    [22]管瑶,张忠学,王贵作,等.水肥耦合效应研究与新疆棉区可持续发展[J].水土保持研究,2006,13(4):226-230.
    [23]何明.刺槐无性系苗木对水肥祸合的生理生态响应[A].北京林业大学.2005.
    [24]何应同,王少元,郑红波,等.杨树不同土壤立地条件施肥效应研究[J].湖北林业科技,1998(3):5-12.
    [25]贺超兴,张志斌,刘富中,等.日光温室水钾氮耦合效应对番茄产量的影响[J].中国蔬菜,2001(1):31-33.
    [26]侯振安,李品芳,吕新,等.不同滴灌施肥方式下棉花根区的水、盐和氮素分布[J].中国农业科学,2007,40(3):549-557.
    [27]胡明芳,田长彦,马英杰.不同水肥条件下棉花苗期的生长、养分吸收与水分利用状况[J].干旱地区农业研究,2002,49(7):74-79.
    [28]胡亚利,王曰鑫.SV杨树专用肥施肥效应研究[J].河北林业科技,2008,10:1-6.
    [29]华元刚,陈秋波,林钊沐,等.水肥耦合对橡胶树产胶量的影响[J].应用生态学报,2008,19(6):1211-1216.
    [30]贾黎明 邢长山 李景锐,等.地下滴灌条件下杨树速生丰产林生产力及效益分析[J].北京林业大学学报,2005,27(6):43-49.
    [31]贾黎明,韦艳葵,李延安,等.地下滴灌条件下杨树速生丰产林生长与光合特性[J].林业科学,2004,40(2):61-67.
    [32]贾治邦.林业的五大功能促使中央把林业摆到重要地位[N].2009,11,16.云南信息港,http://news.yninfo.com/yn/zhxw/200911/t20091116_1182789.html
    [33]康玲玲,魏义长,张景略.水肥条件对冬小麦生理特性及产量影响的试验研究[J].干旱地区农业研究,1998,16(4):21-28.
    [34]孔东,史海滨.干旱区不同水盐处理对向日葵生理性状的影响研究[J].灌溉排水学报,2004,23(1):44-46.
    [35]李法云,宋丽.水肥耦合作用对土壤养分变化及春小麦生长发育的影响[J].辽宁大学学报,2001,28(3):263-267.
    [36]李家康,林葆,梁国庆,等.对我国化肥使用前景的剖析[J].植物营养与肥料学报,2001,7(1):5-9.
    [37]李敏,杨天旭,严锦申,等.烟草水肥耦合的研究进展[J].天津农业科学,2010,16(4):96-98.
    [38]李培岭,张富仓,贾运岗.沙漠绿洲地区膜下滴灌棉花水分利用的水氮耦合效应[J]. 干旱地区农业研究,2005,27(3):53-59.
    [39]李邵,薛绪掌,郭文善,等.水肥耦合对温室盆栽黄瓜产量与水分利用效率的影响[J].植物营养与肥料学报,2010,16(2):376-381.
    [40]梁运江,依艳丽,许广波,谢修鸿,等.水肥耦合效应对保护地辣椒肥料氮、磷经济利用效率的影响[J].土壤通报,2007,38(6):1141-1144.
    [41]林静.我国速生丰产用材林建设工程全面启动山东农业,2002,9:43.
    [42]刘华岭.杨树苗木繁育与田间管理技术[J].中国新技术新产品,2010,2:218.
    [43]刘培林等,杨树良种选育与栽培[M],哈尔滨:东北林业大学出版社,2003:26-34.
    [44]刘万代,王化岑,杨青华,等.施氮对土壤水分亏缺下冬小麦生产力的影响[J].土壤通报,2000,31(6):262-264.
    [45]刘永贤,曾祥难,欧清华,等.水肥时空耦合在烟草上的研究进展[J].湖南农业科学,2007,3:54-55,56.
    [46]刘作新.长期试验条件下的水肥耦合效应[A].中国科学院博士论文,2003.
    [47]吕刚,史东梅.三峡库区春玉米水肥耦合效应研究[J].水土保持学报,2005,19(3):192-195.
    [48]罗慧,李伏生,韦彩会,等.灌水方式对不同施肥水平烤烟产量和品质的影响[J].中国农业科学,2009,42(1):173-179.
    [49]马波,田军仓.压砂地西瓜水肥耦合模型及优化组合方案[J].干旱地区农业研究,2010,28(4):24-29.
    [50]马晖,于卫平,黄利江,等.杨树速生丰产林的节水灌溉试验林业科学研究,2004(17)增刊:119-121.
    [51]马履一,王华田,林平.北京地区几个树种耗水性比较的研究[J].北京林业大学学报,2003,25(2):1-7
    [52]马履一,王华田.油松边材液流时空变化及其影响因子的研究[J].北京林业大学学报,2002,23(4):23-37
    [53]买买提·玉努斯,热比艳木,阿衣夏木古丽.膜下滴灌高效节水技术[J].新疆农业科技,2009,2:77.
    [54]莫红,陈瑛.基于Logistic方程的植物生长过程模型与最优分析[J].焦作大学学报,2006,10:70-71.
    [55]漠海琪.杨树加压滴灌育苗管理技术[J].农村科技,2010,8:94.
    [56]穆新民.水肥耦合效应与协同管理[M].北京:中国林业出版社[M].1999,33-116
    [57]潘瑞炽,董愚得主编.植物生理学[M].北京:高等教育出版社,1982:38-47
    [58]庞云.温室无土栽培黄瓜水肥耦合效应研究初探[J].内蒙古农业科技,2006,(6):49-50.
    [59]乔云发,韩晓增,苗淑杰,等.黑土区水肥耦合对大豆产量的影响[J].大豆通报,2007,1:25-27.
    [60]热量资源[N].2005,7,28.北京市气候中心, http://www.bjclimate.com/Article/ViewArticle.aspx?id=64
    [61]茹华南.杨树速生丰产造林技术[J].现代农业科技,2010,21:246.
    [62]宋世旭.水钾耦合对烤烟抗旱特性及土壤水钾变化和烟叶产量品质的影响[D].郑州:河南农业大学,2006.
    [63]孙时轩,张振江,孙小丽,等.毛白杨在沙地造林的施肥量及其配比[J].北京林业大学学报,1995(1):31-36.
    [64]孙文涛,孙占祥,王聪翔,等.滴灌施肥条件下玉米水肥耦合效应的研究[J].中国农业科学,2006,39(3):563-568.
    [65]孙文涛,张玉龙,王思林.滴灌条件下水肥耦合对温室番茄产量效应的研究[J].土壤通报,2005,36(2):59-62.
    [66]孙向阳.土壤学[M].北京:中国林农业出版社,2005.
    [67]汪耀富,孙德梅,徐传快,等.干旱胁迫下氮用量对烤烟养分积累与分配及烟叶产量和品质的影响[J].植物营养与肥料学报,2004,10(3):306-311.
    [68]王柏,王梦雪,滕云,等.东北半干旱区大豆水肥耦合效应试验研究[J].灌溉排水学报,2007,26(5):86-89.
    [69]王邦锡.旱地施肥对春小麦产量和水分利用效率影响[J].干旱地区农业研究,1990,(4):98-104.
    [70]王聪翔,孙文涛,孙占祥,等.辽西半干旱区水肥耦合对春玉米产量的影响[J].灌溉排水学报,2008,27(2):102-105
    [71]王芳,李友宏,赵天成,等.关于宁夏压砂西甜瓜持续发展的思考[J].宁夏农林科技,2005,5:60-61.
    [72]王海艺,韩烈保,黄明勇,等.干旱条件下水肥祸合作用机理和效应[J].中国农学通报,2006,22(6):124-128.
    [73]王海艺,韩烈保,杨永利,等.水肥对洋白蜡生物量的耦合效应研究[J].北京林业大学学报,2006,6(28):64-68.
    [74]王健,梁运江,许广波,等.水肥耦合效应对保护地辣椒叶片叶绿素含量的影响[J].延边大学农学学报,2006,28(4):287-292.
    [75]王景伟,朱铁林,王海泽,等.水肥耦合对大豆生长发育的正交设计实验研究[J].大豆通报,2007,6:17-20.
    [76]王力,邵明安,侯庆春,等.不同水肥条件对杨树生物量的影响[J].西北农林科技大学学报(自然科学版),2004,32(3):53-57.
    [77]王琦,李锋瑞,等.灌溉与施氮对黑河中游新垦农田土壤硝态氮积累及氮素利用率的影响[J].生态学报,2008,28(5):2148-2159.
    [78]王瑞辉,马履一,奚如春,等.北京4种常见园林植物水分分级管理研究[J].林业科学,2007,43(9):18-22.
    [79]王同朝,魏国庆,吴克宁,等.水资源亏缺条件下水肥耦合对植物的影响[J].河南农业科学,1999,(10):10-11.
    [80]王文全,李秀江,贾玉彬,等.沙地毛白杨速生丰产林节水灌溉的研究[J].河北农业大学学报,2001,24(1):33-37.
    [81]王兴仁,张福锁,杨靖一,等.现代肥料试验设计[M].北京:中国农业出版社,1996.
    [82]王梓,王瑞辉,左海军,等.湖南5种园林地被植物蒸腾耗水特征初探[J].北京林业大学学报,2009,31(6):139-144.
    [83]王梓,马履一,贾忠奎,等.1年生欧美107杨地上生物量水肥耦合效应[J].东北林业大学学报,2011,39(3):49-51.
    [84]王梓,王瑞辉,应文思,等.3种园林灌木的蒸腾耗水特征[J].湖南林业科技,2008,35(1):27-30.
    [85]我国杨树人工林面积世界第一[D].福建纸业信息,2008,23.
    [86]肖自添,蒋卫杰,余宏军.植物水肥耦合效应研究进展[J].植物杂志,2007,6:18-22.
    [87]谢伟,黄璜,沈建凯.植物水肥耦合研究进展.植物研究[J].2007,21(5):541-545.
    [88]邢维芹,王林权,骆永明,等.半干旱地区玉米的水肥空间耦合效应研究[J].农业工程学报,2002,18(6):46-49.
    [89]徐学选,陈国良,穆兴民.春小麦水肥产出协同效应研究[J].水土保持学报,1994,8(4):72-78.
    [90]续九如,黄智慧.林业试验设计[M].北京:中国林业出版社,1995.
    [91]薛亮,周春菊,雷杨莉,等.夏玉米交替灌溉施肥的水氮耦合效应研究[J].农业工程学报2008,24(3):91-94.
    [92]薛铸,史海滨,郭云,等.盐渍化土壤水肥耦合对向日葵苗期生长影响的试验[J].农业工程学报,2007,23(3):91-94.
    [93]杨建昌,王志琴,朱庆森.不同土壤水分下氮素营养对水稻产量的影响及其机理的研究中国农业科学,1996,29(4):58-66.
    [94]杨培林,钟新才,凌慧娟,等.甘草水肥耦合效应初探[J].中国农学通报,2007,23(7):337-340.
    [95]杨涛,马兴旺,王斌,等.干旱区水肥耦合对棉花光合特性和产量的影响[J].新疆农业科技,2008,45(S2):93-98.
    [96]殷祚云Logistic曲线拟合方法研究[J].数理统计与管理[J].2002,21(1):41-46.
    [97]尹光华,陈温福,刘作新,等.风沙半干旱区春玉米水肥耦合产量效应研究初报[J].玉米科学,2007,15(1):103-106.
    [98]尹光华,刘作新,陈温福,等.水肥耦合条件下春小麦叶片的光合作用[J].兰州大学学报(自然科学版),2006,42(1):40-43.
    [99]尹光华,刘作新,李桂芳等.水肥耦合对春小麦水分利用效率的影响.水土保持学报, 2004,18(6):156-158.
    [100]尹光华.丘陵半干旱区春小麦水肥耦合效应[A].沈阳:中国科学院博士论文,2005.
    [101]余常兵,陈防,万开元.杨树人工林营养及施肥研究进展[J].西北林学院学报,2004,19(3):67-71.
    [102]余常兵,罗治建,陈卫文,等.幼龄杨树养分含量及其积累季节变化研究[J].福建林学院学报,2005,25(2):181-186.
    [103]虞娜,张玉龙,黄毅.温室滴灌施肥条件下水肥耦合对番茄产量影响的研究[J].土壤通报,2003,34(3):20-24.
    [104]袁志发,周静芋.多元统计分析.北京:科学出版社,2004.
    [105]翟晶,曹凑贵,潘圣刚,等.水肥耦合对水稻生长性状及产量的影响[J].安徽农业科学,2008,36(29):12632-12635,12662.
    [106]张昌爱,张民,马丽,等.设施芹菜水肥耦合效应模型探析[J].中国生态农业学报,2006,14(1):145-148.
    [107]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,2006,22(5):197-200.
    [108]张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略[J].植物学通报,2007,24(6):687-694.
    [109]张连翔.欧美107杨与欧美108杨的区别[N].2009,11,23,中国林业网专家,http://www.chinaforestry.com.cn/front/asp/technicinfo.asp?id=3184
    [110]张其德,刘合芹,张建华,等.限水灌溉对冬小麦旗叶某些光合特性的影响[J].植物学报,2000,26(6):869-872.
    [111]张秋英,李发东,刘孟雨,等.水分胁迫对冬小麦旗叶叶绿素a荧光参数光合速率的影响[J].干旱地区农业研究,2002,20(3):80-84.
    [112]张秋英,刘晓冰,金剑,等.水肥耦合对玉米光合特性及产量的影响[J].玉米科学,2001,9(2):64-67.
    [113]张守仁.叶绿素荧光动力学参数的意义及讨论
    [114]张依章,张秋英,孙菲菲,等.水肥空间耦合对冬小麦光合特性的影响[J].干旱地区农业研究,2006,24(2):57-60.
    [115]张志学,孙绍臣等.辽西易旱区高效农业技术(种植业)[M].沈阳:辽宁大学出版社.1996.
    [116]招礼军.我国北方主要造林树种耗水特性及抗旱造林技术研究[D].北京:北京林业大学,2003.
    [117]赵好,陈金林,于彬等.杨树速生丰产配方施肥试验[J].东北林业大学学报,2009,37(11):26-28.
    [118]赵天锡,陈章水,主编.中国杨树集约栽培[M].北京:中国科学技术出版社,1994:43-92.
    [119]郑世锴.对我国杨树集约栽培中存在问题的探讨[D].林业实用技术,2007,10:11-13.
    [120]郑险峰,翟丙年,韩建刚,等.水肥耦合对冬小麦不同生育期质膜透性的影响[J].西北植物学报,2002,22(2):221-228.
    [121]钟传飞,武晓颖,姚洪军,等.北京地区大叶黄杨春初返青过程的叶绿素荧光动力学研究[J].北京林业大学学报,2008,30(6):9-15.
    [122]仲爽,李严坤,任安,等.不同水肥组合对玉米产量与耗水量的影响[J].2009,40(2):44-47.
    [123]周荣,杨荣泉,陈海军.水、氮耦合效应对冬小麦生长、产量及土壤NO3-N分布的影响[J].北京水利,1994,(3):75-78.
    [124]周欣,滕云,王孟雪,等.东北半干旱区大豆水肥耦合效应盆栽试验研究[J].东北农业大学学报,2007,38(4):441-445.
    [125]黄宝强,工麒.杨树人工林叶营养元素季节性变化的研究[J].福建林业科技,2005,32(1):20-25.
    [126]人民网.北京酝酿一批最严管制政策整治“大城市病”[N].2011,2,9:http://politics.people.com.cn/GB/14562/13873734.html.
    [127]Agbenin J. O. Phosphate-induced zinc retention in a tropical semi-arid soil. European Journal of Soil Science,1998,49:693-700.
    [128]Ahmed S El-Gendy, Sotero Svingos, Donald Brice, Joel H Garretson, Jerald Schnoor.Assessments of the Efficacy of a Long-Term Application of a Phytoremediation System Using Hybrid Poplar Trees at Former Oil Tank Farm Sites[J]. Water Environment Research. 2009,81:486-499.
    [129]Andrew N, William J, Gburek G.Agricultural Sharpley watershedinP ennsylvania.A gricultural
    [130]Barac T., Weyens N., Oeyen L., Taghavi S., et al. Field Note:Hydraulic containment of a Btexplum using poplar trees[J]. International Journal of Phytoremediation.2009,11:619
    [131]Brown K.R., Driessche R.van den. Growth and nutrition of hybrid poplars over 3 years after fertilization at planting.Can.J.For.Res.2002.32:226-232.
    [132]Chen HYH, Klinka K, RD Kabzems.Site index, site quality, and foliar nutrients of trembling aspen:relationships and predictions.Can.J.For. Res.,1998,28(12):1743-1755.
    [133]Dai X.q., Guo X.q., Li P., et al. Yield performance of winter wheat and summer maize intercropped with young poplar[J]. Chinese Journal of Ecology,2006,25(12):1515-1519.
    [134]Driessche R v.D., Thomas BR, Kamelchuk DP. Effects of N, NP, and NPKS fertilizers applied to four-year old hybrid poplar plantation.New Forests.2008.35,221-233.
    [135]Driessche V.d. Phosphorus R.First-year growth response of four Populus trichocarpa x Populus deltoides clones to fertilizer placement and level. Can. J. For. Res.1999.29:554-562.
    [136]Driessche V.d., Phosphorus R..copper and zinc supply levels influence growth and nutrition of a young Populus trichocarpa (Torr.& Gray) x P. deltoides (Bartr.Ex Marsh) hybrid. New For.2000.19:143-157.
    [137]Dong S, Cheng L, Scagel CF, LH. Fuchigami.Nitrogen mobilization, nitrogen uptake and growth of cuttings obtained from poplar stock plants grown in different N regimes and sprayed with urea in autumn. Tree Physiology.2004.24,355-359.
    [138]Hansen E.A.A guide for determining when to fertilize hybrid poplar,1994.
    [139]Heilman P.E., Fogle D.B. Frist-order root development from cuttings of Populus trichocarpa ×P.deltoidies hybrids[J]. Tree physiology,1994,14:1005-1018.
    [140]Isaac M. E., Ulzen-Appiah F., Timmer V. R., et al. Early growth and nutritional response to resource competition in cocoa-shade intercropped systems[J]. Plant soil,2007,298:243-254.
    [141]Jacobs DF, Salifu KF, JR Seifert.Growth and nutritional response of hardwood seedlings to controlled release fertilization at outplanting. For.Ecol.Manage.2005,214:28-39.
    [142]Jiang Y.z., Wang G.y., Lu L.c., et al. Studies on Pulp-oriented Cultivation Techniques of Poplar Wood[J]. Scientia Silvae Sinicae.2004,40(1):123-130.
    [143]Kelly J.M, Ericsson T. Assessing the nutrition of juvenile hybrid poplar using a steady state technique and a mechanistic model. Forest Ecology and Management.2003,180(1-3):249-260.
    [144]Lee KH, Jose S.Nitrate leaching in cottonwood and loblolly pine biomass plantations along a nitrogen fertilization gradient. Agric. Ecosyst.Environ..2005,105:615-623.
    [145]Liu Z, Dickmann DI. Effects of water and nitrogen interaction on net photosynthesis, stomatal conductance, and water-use efficiency in two hybrid poplar clones[J].Physiol.Plant. 1996,97:507-512.
    [146]Lteif A., Whalen JK., Bradley RL., Camire C..Mixtures of papermill biosolids and pig slurry improve soil quality and growth of hybrid poplar. Soil Use and Management,2007,4(11): 393-403.
    [147]Luo Zhibin, Oplle Andrea. Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere[J]. Global Change Biology. 2009,15(1):38-47.
    [148]McLaughlin, R.A., P.E. Pope, and E.A.Hansen. Nitrogen fertilization and ground cover in a hybrid poplar plantation effects on nitrate leaching.J.Environ. Qual.1985.14:241-245.
    [149]Powell George W, Edward W Bork.Competition and facilitation in mixtures of aspen seedlings, alfalfa, and marsh reedgrass[J].Canadian Journal of Forest Research.2004,34: 1858-1870.
    [150]Schnoor J. L. Phytoremediation of Soil and Groundwater, Groundwater Remediation Technologies Analysis Center E Series; Technology Evaluation Report, TE-02-01;Groundwater Remediation Technologies Analysis Center:Pittsburgh, Pennsylvania.2002.
    [151]Song H.z., Zhang Q.w., Zhou C, j. Analysis of Genetic Diversity of Some Species in Populus by AFLP Marker[J].Scientia silvae sinicae.2007,43(12):64-69.
    [152]Stewart J.J, Akiyama T., Chapple C., Ralph J., Mansfield S.D.T he Effects on Lignin Structure of Overexpression of Ferulate 5-Hydroxylase in Hybrid Poplar1[J].Plant Physiology. 2009,150:621-636.
    [153]VIETS F.G. Water Deficits and Nutrient Availability[A].Kozlowski, T.T Water Deficits and Plant Growth[C].Vol.Ⅲ.New York:Academic Press,1972.217-236.
    [154]Welham, C., K.C.J.Van Rees, B. Seely, and H. Kimmins. Projected long-term productivity in Saskatchewan hybrid poplar plantations:weed competition and fertilizer effects. Canadian Journal of Forest Research.2007,37:356-370.
    [155]Yadav R S, Sharwa R L,Pandey U K, et al.Effect of various water potential treatment on nitrate reductase activity in wheat genotypes.Agricultural Science Digest,1998,18(2):73-75.
    [156]Zabek, Lisa M, Prescott CE..Steady-state nutrition of hybrid poplar grown from un-rooted cuttings.New Forests,2007,34:13-23.
    [157]Zakia I.Ali, Sabine D.Golombek.Interaction of Drought and Nitrogen Availability on Drought Tolerance Mechanisms of Some Sudanese Pearl Millet Genotypes.Rural Poverty Reduction through Research for Development.2004,10:5-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700