用户名: 密码: 验证码:
水力空化技术制备生物柴油的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物柴油是可再生的清洁能源,发展生物柴油产业是解决当前能源危机和环境污染的有效途径之一。生产成本高是制约我国生物柴油产业发展的最大障碍。为了降低生物柴油的生产成本,本文研究了一种新型、高效、节能的生物柴油生产技术。
     在水力空化过程中,空化泡在溃灭瞬时在其中心点会产生高温、高压,并伴随有一系列空化效应。利用该过程释放的能量和产生的特殊环境可以实现对化学过程的强化。依照此原理,本文设计了一套水力空化实验装置,以强化碱催化酯交换反应制备生物柴油。
     考察了在水力空化辅助条件下空化元件孔板的入口压力、醇油摩尔比、反应时间、催化剂用量、反应温度等因素对酯交换反应的影响。正交实验表明各因素影响顺序为:醇油比>催化剂用量>孔板入口压力>反应时间,并确定了生物柴油制备的工艺条件:孔板入口压力为600kPa,醇油摩尔比为6∶1,催化剂KOH用量为菜籽油质量的1.0%,反应时间为20 min,反应在室温下即可进行。在此反应条件下,生物柴油产率高于99%,显著优于传统的机械搅拌。
     实验中共设计六种孔数与孔径均不相同的孔板,考察了空化元件孔板结构对酯交换反应的影响。结果表明,比周长、空化数是影响酯交换反应的重要参数,当过流面积一定的条件下,应优先选用孔径较小且孔数较多的孔板。
     考察了水力空化对醇油不溶体系的乳化、强化以及节能作用。实验表明,水力空化对对油脂与甲醇不相溶的两相有很好的乳化作用,大大地增加了两相接触面积,进而强化酯交换反应过程,是一种高效、节能的生物柴油制备技术。采用与水力空化具有相似效果的超声空化方法,对油脂和甲醇体系进行超声空化混合达到两相乳化,使用激光粒度测试仪Zetasizer 3000对酯交换过程中乳液液滴的粒径进行了测定。结果表明,空化条件下乳液液滴的平均直径为37.8nm,空化技术对醇-油体系有非常显著的乳化效果。
     放大试验表明,水力空化设备简单、易于实现,克服了其他强化方法难以用于强化大规模生产过程的缺点,有望将空化技术推向实际工业生产。试验制备的生物柴油性能符合我国生物柴油标准。
Biodiesel is a sort of renewable fuel energy sources. Developing biodiesel industry is one of the effective ways to deal with energy crisis and environmental pollution today. High production cost is the biggest obstruction to the development of biodiesel industry in our country. This paper tries to develop a new-style, time and energy saving production technology for reducing the production cost of biodiesel.
     High temperature and pressure will be produced at the center point of bubbles when cavitation bubbles collapse in liquid during hydrodynamic cavitation process, accompanying with a series of cavitational effects. Because of its liberative energy and special environment, hydrodynamic cavitation can be used to intensify chemical reaction processes. Therefore, a hydrodynamic cavitation set-up was designed to intensify transesterification reaction process between rapeseed oil and methanol in this paper.
     The effects of inlet pressure of cavitation element, orifice plate, molar ratio of methanol to oil, reaction time, KOH amount and reaction temperature on transesterification were studied with the help of hydrodynamic cavitation. Orthogonality experiments indicate that the order of the impact factors is the molar ratio of methanol to oil > KOH amount > inlet pressure > reaction time, according to biodiesel yield. The effect of temperature on the yield was also investigated. The optimal reaction condition is 600 kPa inlet pressure, 6:1 molar ratio of methanol to oil, 1.0% KOH and 20 min. Under the optimal reaction condition, biodiesel yield more than 99% was obtained. The transesterification reaction time and yield obtained from hydrodynamic cavitation are better than that of mechanical stirring.
     In the present study, six kinds of orifice plates with different diameter and number of holes were used to investigate the effects of structure of orifice plates on the results of transesterification. Results shows that specific perimeter and cavitation number are the main parameters which affect the results of transesterification. If flow area is fixed on an orifice palte, many more number of holes but with smaller diameter is preferred.
     Futhermore, emulsification and intensification of hydrodynamic cavitation technology were considered. Hydrodynamic cavitation can emulsify oil and methanol system resulting in increasing the contact area greatly between the two phases of liquid, which lead to reaction process enhancement. Hydrodynamic cavitation is proved to be a time and energy saving method. Acoustic cavitation, which is similar to hydrodynamic cavitation, is applied to mix the oil and methanol system to make the two phases emulsify, and then particle size of emulsion drop is tested by laser particle size analyzer(Zetasizer 3000). Results indicate that the mean diameter of emulsion drop is 37.8 nm, and cavitation technology is an excellent process intensification method to emulsify oil and methanol system.
     The scale-up experiments indicate that the equipment of hydrodynamic cavitation is simple and reliable, and easier to be carried out in industry than other process intensification methods. The properties of the biodisel prepared from rapeseed oil are in accord with China biodiesel standard.
引文
[1]杨艳,卢滇楠,李春,等.面向21世纪的生物能源[J].化工进展,2002,21(5):299-302
    [2]翟建华,刘向欣,王蓓.酯交换法制备生物柴油及其在我国的实践[J].化工技术与开发,2006,35(10):17-21
    [3]闵恩泽,张利雄.生物柴油产业链的开拓[M].北京:中国石化出版社,2006
    [4]祖元刚,付玉杰.生物柴油[M].北京:科学出版社,2005
    [5]李昌珠,蒋丽娟,程树棋.生物柴油[M].北京:化学工业出版社,2004
    [6]ZHANG Y,DUBE M A,MCLEAN D D,et al.Biodiesel production from waste cooking oil:2.Economic assessment and sensitivity analysis[J].Bioresource Technology,2003,90(3):229-240
    [7]李永超,王建黎,计建炳,等.生物柴油工业化生产的现状及其经济可行性评估进展[J].中国油脂,2005,30(5):59-64
    [8]王一平,瞿怡,张金利,等.生物柴油制备方法研究进展[J].化工进展,2003,22(1):8-12
    [9]刘幽燕,庾乐,黄林峰,等.生物柴油制备方法的应用研究进展[J].现代化工,2006,26(4):15-20
    [10]盛梅,李为民,邬国英.生物柴油研究进展[J].中国油脂,2003,28(4):66-70
    [11]FANGRUI M,MILFORD A H.Biodiesel production:a review[J].Bioresource Technology,1999,70(1):1-15
    [12]TOMASEVIC A V,SILER-MARINKOVIC S S.Methanolysis of used frying oil[J].Fuel Processing Technology,2003,81(1):1-6
    [13]GEMMA V,MERCEDE M,JOSE A,etal.Kinetics of sunflower oil methanolysis[J].Industrial & Chemical Engineering,2005,44(15):5447-5454
    [14]TOMASEVIC A V,SILER-MAR1NKOVIC S S.Yransesterification of sunflower oil in situ[J].Fuel,1998,77(12):1389-1391
    [15]CRABBE E,NOLASCO H C,KOBAYASHI G et al.Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties[J].Process Biochemistry,2001,37(2):65-71
    [16]AKSOY H A,KAHRAMAN I,KARAOSMANOGLU F,et al.Evaluation of Turkish sulphur olive as an alternative diesel fuel[J].Journal of the American oil Chemistry Society,1988,65:936-938
    [17]Ma F,CLEMENTS L D,HANNA M A.The effect of catalyst,free fatty acids and water on transesterification of beef tallow[J].Trans.ASAE,1998A,41:1261-1264
    [18]GEMMA V,MERCEDES M,JOSE A.Integrated biodiesel production:a comparison of different homogeneous catalysts systems[J].Bioresource Technology,2004,92(3),297-305
    [19]邬国英,林西平,巫森鑫,等.棉籽油甲酯化联产生物柴油和甘油[J].中国油脂,2003,28(4):70-73
    [20]许宝库,唐晓彬.变质天然油脂脂肪酸甲酯的合成[J].皮革化工,1995,4:11-15
    [21]盛梅,郭登峰,张大华.大豆油制备生物柴油的研究[J].中国油脂,2002,27(1):70-72
    [22]MERVE C,FILIZ K.Optimization of Base-Catalyzed Transesterification Reaction of Used Cooking Oil[J].Energy & Fuels,2004,18(6):1888-1895
    [23]SCHUCHARDT U,VARGAS R M,GELBARD G.Alkylguanidines as catalysts for the transesterification of rape seed oil[J].Journal of Molecular Catalysis A:Chemical,1995,99(2):65-70
    [24]鞠庆华,曾昌凤,郭卫军,等.酯交换法制备生物柴油的研究进展[J].化工进展,2004,23(10):1053-1057
    [25]吕亮,段雪,李峰,等.固体碱催化酯交换反应的研究[J].中国皮革,2002,31(17):25-28
    [26]GRYGLEWICZ S.Rapeseed oil methyl esters preparation using heterogeneous catalysts[J].Bioresource Technology,1999,70(3):249-253
    [27]HAK J Kim,BO S K,MIN J K,et al.Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst[J].Catalysis Today,2004,93-95:315-320
    [28]FREDERIQUE R A,MELQUIZEDEQUE B A,CAIO C S M,et al.New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterificaton reaction[J].Journal of Molecular Catalysis A:Chemical,2005,227(1-2):263-267
    [29]GALEN J S,MOHANPRASAD A D,ERIC J D,et al.Transesterification of soybean oil with zeolite and metal catalysts[J].Applied Catalysis A:General,2004,257(2):213-223
    [30]FREDERIQUE R A,DANIELLA G L,Elias H H,et al.Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols[J].Journal of Molecular Catalysis A:Chemical,2004,209(1-2):29-33
    [31]TAKAHIRO E,TSUNEO E,AKIO I,et al.Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst[J].Applied Catalysis A:General,2005,283(1-2):111-116
    [32]韦德纳,甘斯温特.用醇解方法使生物来源的脂肪和/或油进行酯交换的工艺[P].中国:CN 1327472,2001
    [33]SCHUCHARDT U,VARGAS R M,GELBARD G.Tranesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes[J].Journal of Molecular Catalysis A:Chemical,1996,109(1):37-44
    [34]齐玉堂.高酸价油甲酯化工艺的研究[J],粮油加工与食品机械,2004,10:44-45
    [35]史宣明,徐廷丽,朱先龙,等.生物柴油的工业化生产及技术经济分析[J].中国油脂,2005,30(11):59-61
    [36]刘传武,杨蒸,戴小安,等.植物油制备生物柴油的研究[J].河南化工,2005,22(6):19-21.
    [37]郭萍梅,黄凤洪,黄庆德,等.高酸值废弃油脂转化生物柴油的技术研究[J],中国油脂,2006,31(7):66-69
    [38]刘鹏展,欧仕益,汪勇,等.两步法催化潲水油制备生物柴油的研究[J].中国油脂,2006,31(5):59-62
    [39]WANG Yong,OU Shiyi,LIU Pengzhan,etal.,Comparison of two different processes to synthesize biodiesel by waste cooking oil[J],Journal of Molecular Catalysis A:Chemical,2006,252:107-112
    [40]鲁志成,谷克仁,冶保献,等.浓硫酸催化脱臭馏出物脂肪酸甲酯化工艺研究[J].粮食与油脂,2005,3:21-23
    [41]VELJKOVIC V B,LAKICEVIC S H,STAMENKOVIC O S,etal.Biodiesel production from tobacco(Nicotiana tabacum L.)seed oil with a high content of free fatty acids[J],Fuel,2006,85:2671 - 2675
    [42]RAMADHAS A S,JAYARAJ S,MURALEEDHARAN C.Biodiesel production from high FFA rubber seed oil[J],Fuel,2005,84:335-340
    [43]RAMADHAS A S,JAYARAJ S,MURALEEDHARAN C.Theoretical modeling and experimental studies on biodiesel-fueled engine[J],Renewable Energy,2006,31:1813 - 1826
    [44]高文艺,任立国,张晓丽,固体超强酸S_2O_8~(2-)/ZrO_2-Al_2O_3催化合成对羟基苯甲酸乙酯[J],辽宁石油化工大学学报,2006,26(3):34-37.
    [45]奚立民,杨亦文,任其龙,棕榈油脱臭馏出物的阳离子交换树脂催化酯化反应研究[J],中国粮油学报,2006,21(3):170-174.
    [46]MARCHETTI J M,MIGUEL V U,ERRAZU A F.Heterogeneous esterification of oil with high amount of free fatty acids[J],Fuel,2007,86:906 - 910.
    [47]MASAKAZU T,ATSUSHI T,MAI O.Green chemistry:Biodiesel made with sugar catalyst[J].Nature,2005,438:178-179.
    [48]武光,吴伟,[emim]BF_4离子液体催化酯化反应研究[J],现代化工,2006,26(5):31-34.
    [49]陈文伟,高荫榆,林向阳,磁性固体催化剂催化制备生物柴油的研究[J],福建林业科技,2006,33(3):10-13.
    [50]SAKA S,KUSDIANA D.[J].Fuel,2001,80:225-331
    [51]GIRIDHAR M,CHANDANA K,Rajnish Kumar.Synthesis of biodiesel in supercritical fluids[J].Fuel,2004,(83):2029-2033
    [52]Weiliang Cao,Hengwen Han,Jingchang Zhang.Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent[J].Fuel,2005,(84):347-351
    [53]KUSDIANA D,SAKA S.[J].Bioresource Technology,2004,91:289-295
    [54]YUICHIRO W,DADAN K,SHIRO S.Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols[J].Bioresource Technology,2004,91:283-287
    [55]SASAKI,SUZUKL OKADA.Method for Preparing Fatty Acid Esters and Fuel Comprising Fatty Acid Esters[P].EP 0985654,2000
    [56]TATENO T,NILHAMA S E,SAKAKI T et al.Process for Producing Fatty Acid Esters and Fuels C omvrising Fatty Acid Ester[P].China:CN1126011.2001
    [57]杨继国,林炜铁,吴军林.酶法合成生物柴油的研究进展[J].化工环保,2004,24(2):116-120
    [58]KAMINI N R,IEFUJI H.Lipase Catalyzed Methanolysis of Vegetable Oils in Aqueous Medium by Cryptococcus spp S-2[J].Process Biochemistry,2001,37(4):405-410
    [59]KAMINI N R,FUJII T,KUROSU T,et al.Production,Purification and Characterization of an Extracellular Lipase from the Yeast,Cryptococcus sp S-2[J].Process Biochemistry,2000,36(4):317-324
    [60]NOUREDD1NI H,GAO X,PHILKANA R S.Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil[J].Bioresource Technology,2005,(96):769-777
    [61]YOMI W,YUJI S,AKIO S,et al.Conversion of Degurnmed Soybean Oil to Biodiesel with Immobilized Candida Antarctica Lipase[J].Journal of Molecular Catalysis B:Enzymatic,2002,17(3-5):151-155
    [62]TAICHI S,MASARU K,HIDEKI Fetal.Pretreatment of Immobilized Candida antarctica Lipase for Biodiesel Fuel Production from Plant Oil[J].J.of Bioscience and Bioengineering,2000,90(2):180-183
    [63]SOUMANOU M M,BORNSCHEUER U T.Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil[J].Enzyme and Microbial Technology,2003,33:97-103
    [64]MATSUMOTO T,TAKAHASHI S,KAIEDA M et al.Yeast Whole-cell Biocatalyst Constructed by Intracellular Overproduction of Rhizopus Oryzaelipase is Applicable to Biodiesel Fuel Production[J].Appl Microbiol Biotechnol,2001,57(4):515-520
    [65]KAZUHIRO B,MASARU K,TAKESHI M,et al.Whole Cell Biocatalyst for Biodiesel Fuel Production Utilizing Rhizopus Oryzae Cells Immobilized within Biomass Support Particles[J].Biochem Eng J.,2001,8(1):39-43
    [66]KAZUHIRO B,SHINJI H,KEIKO N,et al.Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production[J].Journal of Molecular Catalysis B:Enzymatic,2002,(17):157-165
    [67]MATSUMOTO T,FUKUDA H,UEDA Met al.Construction of Yeast Strains with High Cell Surface Lipase Activity by Using Novel Display Systems Based on the Flolp Flocculation Functional Domain[J].Applied and Enviromental Microbiology,2002,68(9):4517-4522
    [68]赵宗保.加快微生物油脂研究微生物柴油产业提供廉价原料[J].中国生物工程杂志,2005,25(2):8-11
    [69]薛飞燕,张栩,谭天伟.微生物油脂研究进展及展望[J].生物加工工程,2005,3(1):23-27
    [70]梁斌.生物柴油的生产技术[J].化工进展,2005,24(6):577-585
    [71]CANAKCI M,VAN G J.[J].Transactions of the American Society of Agricultural Engineer,2001,44(6):1429-1436
    [72]DAVID G B B,SAMIR K K,VINNIE M et al.[J].Biomass and Bioenergy,1993,11(1):43-50
    [73]FREEDMAN B,BUTTERFIELD R O,PRYDE H,[J].JAOCS,1986,(63):1375-1380
    [74]BARBOSA S L,DABDOUB M J,HURTADO G R,et al.Solvent free esterification reactions using Lewis acids in solid phase catalysis[J].Applied Catalysis A General,2006,313(2):146-150.
    [75]LAWSON,AlAN J et al.Chemical synthesis methods using electro-catalysis[P].USA:UP 20050262760,2005
    [76]ALOK K S,SANDUN D F,RAFAEL H.Base-Catalyzed Fast Transesterification of Soybean Oil Using Ultrasonication[J].Energy & Fuels.21(2007):1161-1164
    [77]QUINTANA E E B.Optimization Studies for the Alkaline Transesterification Biodiesel Reaction Using Ultrasound Mixing[D].USA:Proquest Imformation and Learning Company,2002
    [78]STAVATACHE C,VINATORU M,NISHIMURA R,et al.Fatty acids methyl esters from vegetable oil by means of ultrasonic energy[J].Ultrasonics Sonochemistry,2005,(12):367-372
    [79]李永超.空化技术强化碱催化酯交换反应制备生物柴油的研究.浙江工业大学硕士论 文.2006
    [80]张晓东,李志义,武君等.水力空化对化学反应的强化作用[J].化工学报,2005,56(2):262-265.
    [81]潘森森.中国大白科全书(力学卷)[M].北京:中国大百科全书出版社,1985
    [82]倪汉根.气核-空化-空蚀[M].成都:成都科技大学出版社,1993
    [83]黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991
    [84]HERVEY E N,BARNES D K,MCELROY W D,et al.Bubble formation in animals-1.physical factor[J].Cellular and Comp Physiol,1947,24(9):1-22
    [85]李志义,张晓东,刘学武等.水力空化及其对化工过程的强化作用[J].化学工程,2004,32(4):27-29.
    [86]PANDIT A B,JOSHI J B.Hydrodynamic of tatty oils:Effect of cavitation[J].Chemical Engineering Science,1993,48(19):3440-3442
    [87]JYOTI K K,PANDIT A B.Water disinfection acoustic and hydrodynamic cavitation[J].Biochemical Engineering Journal,2001,7:201-212
    [88]BOTHA C J,BUCKLEY C A.Disinfection of potable water:The role of hydrodynamic cavitation[J].Water Supply,1994,13:219
    [89]KALUMUCK K M,CHAHINE G L.The use of cavitation jets to oxidize organic compands in water[J].FED(Am.Soc.Mech.Eng.),1998,245:3-45
    [90]cavitational technique[J].Ultrasonics Sonochemistry,2002,9(3):123-131
    [91]SENTHIL P K,SIVA M K,PANDIT A B.Experimental quantification of chemical effects of hydrodynamic cavitation[J].Chemical Engineering Science,2000,55:1633-1639
    [92]计建炳,徐之超,王建黎等.水力空化制备生物柴油的方法[P].CN1687312,2005-10-26.
    [93]Jianbing JI,Jianli WANG,Yongchao LI,et al.Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation[J].Ultrasonics.44(2006):411-414.
    [94]焦学瞬,贺明波.乳状液与乳化技术新应用[M].北京:化学工业出版社,2006.
    [95]魏群,高孟理,武金明等.基于水力空化技术的废水处理装置及设计[J].水处理技术,2005,31(6):73-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700