用户名: 密码: 验证码:
五种苔类植物的化学成分及其抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苔藓植物在植物进化过程中介于藻类植物与蕨类植物之间,是一类代表着从水生到陆生过渡的高等植物类群,从形态学上可以分为苔纲、藓纲和角苔纲。在民间,苔藓植物被广泛用于治疗外伤、烧伤、炎症、肺结核、肝脏疾病、惊厥和水肿等症。大部分苔藓植物均不被各种昆虫或其他动物所采食,也不会被真菌、细菌或病毒所感染。近年来,国内外对苔类植物研究较多,已从中分离获得了大量结构新颖的萜类和芳香类化合物,其中许多具有良好的生物活性。
     本文对中国的五种苔类植物,包括采自广西的圆叶异萼苔、齿边广萼苔、延叶叶苔、透明叶苔和采自贵州的双齿异萼苔的化学成分进行了系统研究,采用MCI柱层析、硅胶柱层析、Sephadex LH-20柱层析、C1s反相硅胶柱层析以及HPLC等分离手段共分离了78个次级代谢产物。通过核磁共振、质谱、圆二色谱和X射线单晶衍射等方法确定了化合物的结构,包括60个二萜、4个三萜、6个甾体以及8个其他类化合物,其中新化合物41个。本文对圆叶异萼苔和延叶叶苔的成分研究尚属首次。
     从圆叶异萼苔Heteroscyphus tener)中分离并鉴定了8个化合物,包括5个ent-半日花烷型(1-5)和3个壳梭孢烷型(6-8)二萜,其中1-4为新化合物。测定了化合物1-8对9种细胞株(PC3, DU145, K562, A549, NCI-H292, NCI-H1299, NCI-H446, HBE, RWPE1)的细胞毒性,结果显示化合物3和5有中等偏弱的活性。对化合物5在前列腺癌PC3和DU145细胞株中的细胞毒机制进行了进一步的研究,发现其通过诱导细胞内ROS水平的升高,引起DNA氧化损伤,进而诱导细胞周期阻滞在G0/G1期,从而诱发细胞凋亡。
     从双齿异萼苔(H. coalitus)中分离并鉴定了16个化合物,骨架类型比较多,包括1个具有新颖骨架的香豆素类衍生物(9)、1个视黄烷型二萜(10)以及1个单萜查尔酮衍生物(11)等,其中10为首次从苔藓植物中分得的视黄烷型二萜类化合物。测定了化合物9-12对3株肿瘤细胞(PC3,DU145,HepG-2)的细胞毒活性,它们均表现出中等偏弱的活性。从化学分类学角度对异萼苔属植物进行了分析,发现所研究的这两种同属植物在化学上完全不同,而圆叶异萼苔有可能属于毛耳苔亚目。
     从齿边广萼苔(Chandonanthus hirtellus)中分离并鉴定了7个西松烷型二萜(25-31)、1个壳梭孢烷型二萜(6)以及3个简单芳香化合物(32-34),其中25-29为新化合物。筛选了化合物25-31对6种肿瘤细胞株(PC3, A549, NCI-H292, NCI-H1299, A172, PC12)的细胞毒性,它们大都表现出较弱的活性。我们得到的西松烷型二萜可以作为该属植物的化学标记物。
     从延叶叶苔(Jungermannia fauriana)中分离并鉴定了24个对映-贝壳杉烷型二萜化合物(35-58),其中35-54为新化合物。从透明叶苔(J. hyalina)中得到了23个相同骨架的化合物(56-78),其中59-70为新化合物。化学分类学分析表明这两种植物都富含对映-贝壳杉烷二萜化合物,这类化合物在叶苔属中较为常见,可以作为化学标记物。含有相同的3个化合物说明这两种植物可能有着一定的亲缘关系。另外,以甜菊苷为原料合成了3个相同类型的化合物80-82。系统筛选了所得化合物对24株人类细胞的细胞毒活性。发现该类化合物毒性比较大,对细胞种类的选择性差。系统的构效关系分析表明α,β不饱和酮的结构是活性的必需基团,18或19位的甲基羟基化后会降低活性,羧基化使活性进一步降低,但是羧基成酯或成酰胺会使活性大大增强。通过一种巯基荧光探针染色发现该类化合物进入细胞后显著降低了荧光强度,且没有明显的分布特点,这可能是其作用选择性差和毒性大的主要原因。化合物82具有碱性基团,对其作用的细胞巯基探针的荧光定量发现它进入细胞后只是部分降低了荧光强度。通过对溶酶体的染色发现,82作用于溶酶体,2h后就可以引起溶酶体明显的肿胀。这说明碱性基团修饰可能会使其选择性分布于溶酶体,从而改变了该类化合物在细胞内的分布和作用方式。
     对化合物的作用机制研究中,发现化合物81可以引起ROS升高,还原剂NAC可以同时逆转ROS升高和细胞毒,但是VC为还原剂时虽能逆转升高的ROS,但是不能逆转细胞死亡。通过HPLC-MS/MS的方法研究发现,当将化合物81加入到含有NAC的培养基中后几乎检测不到化合物原型的存在,但却同时检测到了加成产物81-NAC。这说明NAC之所以会逆转细胞毒是因为与化合物发生反应,使之失去药效集团。所以很多学者在研究该类化合物时用NAC作为还原剂来证明ROS的作用是不准确的,ROS也可能不是引起细胞死亡的主要因素。
     本论文对中国的五种苔类植物的系统化学成分研究得到了41个新结构化合物。抗肿瘤活性筛选发现了具有中等活性的半日花烷型二萜,并且报道了其中的化合物5通过ROS途径引起细胞周期G0/G1阻滞和凋亡,以及一批具有较好活性的对映-贝壳杉烷型二萜,并总结了其构效关系。首次采用一种小分子荧光探针来检测化合物在细胞内的分布,并针对分布特点特异性改造了化合物结构。首次采用液质联用方法证明了还原剂NAC与对映-贝壳杉烷型二萜类化合物发生反应而使其毒性消失。根据系统的化学成分研究总结了所研究植物的化学分类学规律。
The bryophytes are taxonomically placed between the algae and the pteridophytes. Morphologically, they are divided into three classes, liverworts, mosses, and hornworts. The bryophytes have been used as medicinal plants to cure cuts, burns, scalds, pneumonia, pulmonary tuberculosis, neurasthenia, convulsions, edema, and so on. Generally, almost all species of bryophytes are not attacked by insects, snails, and mammals, nor infected by bacteria, fungi, and viruses. In recent years, studies on bryophytes have revealed various diterpenoids and aromatic compounds with interesting chemical structures, many of which show significant biological activity.
     In this research, five Chinese liverworts, Heteroscyphus tener, Chandonanthus hirtellus, Jungermannia fauriana, and J. hyalina collected from Guangxi Zhuang Autonomous Region, and H. coalitus collected from Guizhou Province were phytochemically investigated. A total of78secondary metabolites,41of which were new compounds, including60diterpenoids, four triterpenoids, and six sterides, were obtained following separation and purification by column chromatography (CC) on silica gel, MCI, reversed-phase C18silica gel, and Sephadex LH-20, as well as by HPLC. Their structures were elucidated on the basis of NMR, MS, CD, and X-ray. This work represents the first phytochemical study on H. tener and J. fauriana.
     Five ent-labdane diterpenoids (1-5), four of which were new ones (1-4), and three known fusicoccane-type diterpenoids (6-8) were isolated from the Chinese liverwort Heteroscyphus tener. The absolute configuration of compound1was defined by single-crystal X-ray diffraction using Cu Ka radiation. Cytotoxicity tests of compounds1-8revealed that compounds3and5exhibited weak activity against nine cell lines (PC3, DU145, K562, A549, NCI-H292, NCI-H1299, NCI-H446, HBE, and RWPE1). Further research found that the apoptotic effect of compound5was induced through ROS-mediated DNA damage and cell cycle arrest at the G0/G1phase in both DU145and PC3cells.
     From the ether extract of the liverwort H. coalitu, sixteen compounds, including a new dihydroisocoumarin derivative, R-(-)-heteroscyphide (9) and a known retinane-type diterpenoid (10), which was the first one isolated from bryophytes. Cytotoxic test found that they exhibited moderate inhibitory activity to three human tumor cell lines (PC3, DU145, and HepG-2). Chemotaxonomy analysis of Heteroscyphus species found that H. tener and H. coalitus were different chemically, and the liverwort H. tener more like belongs to the suborder Jubulineae.
     Seven cembrane-type diterpenoids (25-31), five of which were new ones (25-29), a known fusicoccane-type diterpenoid (6), and three aromatic compounds (32-34) were obtained from the liverwort Chandonanthus hirtellus. All isolated compounds were tested for their cytotoxic activities against six tumor cell lines (PC3, A549, NCI-H292, NCI-H1299, A172, and PC12). Unfortunately, they all exhibited week activity. Cembrane-type diterpenoid could be the chemical marker of the genus Chandonanthus.
     Twenty-four ent-kaurane diterpenoids (35-58), twenty of which were new (35-54), were isolated from the liverwort Jungermannia fauriana, while twenty-three ent-kaurane diterpenoids (56-78), of which compounds59-70were new, were obtained from J. hyalina. Chemotaxonomy analysis found that these two plants were rich in ent-kaurane diterpenoids, which could be used as the chemical marker of the genus Jungermannia. Containing three same compounds demonstrated they may have a certain kinship. Three ent-kaurane derivatives (80-82) were prepared from stevioside. All of the compounds were tested for their cytotoxic activities against twenty-four human cell lines, suggesting that these compounds have relatively potent toxicity and poor selectivity of cell types. We performed a systematic structure-activity relationship analysis and found that the a,(3-unsaturated carbonyl function is a structural requirement for cytotoxicity in these compounds. The mercapto group was detected by a fluorescent probe. The fluorescence intensity of PC3cells treated with these compounds was significantly reduced, which indicated that these compounds were widely distributed in the cells. However, compound82with a basic group, only partially reduced the intensity of the fluorescence. The lysosomal staining found that82could act on lysosomes, which were observed to be swelled after2h. The basic group modified compound may selectively locate in lysosomes. This modification changed the cell distribution and mode of action of this kind compound.
     To investigate whether ROS are involved in apoptosis, we measured cellular changes in the ROS levels using a ROS-sensitive fluorometric probe, DCFH-DA. Our results found that compound81could elevate the ROS levels of treated cells. NAC, a ROS scavenger, blocked the cell death induced by81. However, another antioxidant VC could not reverse the cytotoxicity, although could reverse the rise of ROS. By HPLC-MS/MS method, we found that when compound81was added to the medium containing NAC, the prototype compound was hardly detected, but the detection of the addition product81-NAC. These results showed that the reason for the reversal of cytotoxic of NAC was not scavenging ROS, but reacting with compounds, so that loss of efficacy group. Therefore, it is not accurate that many scholars use NAC as a reducing agent to prove the role of ROS. ROS are probably not the major factor causing cell death.
     In this manuscript, phytochemical investigation of five Chinese liverworts led to41new compounds. Cytotoxic test found a group of ent-labdane diterpenoids, of which compound5induced cell cycle arrest at G0/G1and apoptosis through ROS pathway, and ent-kaurane ones, the structure-activity relationships of which were summarized. It is the first report to use a small molecule fluorescent probe to detect the intracellular distribution of these compounds. By HPLC-MS/MS method we proved that the reason for the reversal of cytotoxic of NAC was not scavenging ROS, but reacting with ent-kaurane diterpenoids. Chemotaxonomy analysis of these plants was performed according to the chemical research.
引文
[1]Vanderpoorten A, Goffinet B. Introduction to bryophytes. Cambridge University Press Cambridge, UK:2009; Vol.1.
    [2]吴鹏程.苔藓植物生物学.北京:科学出版社.1998.
    [3]Schofield WB, Schofield W. Introduction to bryology. Macmillan New York: 1985.
    [4]Cao T, Zhu R, Tan BC, et al. A report of the first national red list of Chinese endangered bryophytes. Journal-hattori botanical laboratory 2006,99,275.
    [5]衣艳君.中国药用苔藓植物资源.中草药2000,31,624-628.
    [6]黄士良,李琳,范庆书.河北省药用苔藓资源的初步研究.河北师范大学学报(自然科学版)2003,27,623-626.
    [7]Flege M, Becker H. Charaterization of the contents of oil bodies from the liverwort Radula complanata. Plant Biology 2000,2,208-210.
    [8]Asakawa Y. Chemosystematics of the Hepaticae. Phytochemistry 2004,65, 623-669.
    [9]Asakawa Y. Liverworts-potential source of medicinal compounds. Curr. Pharm. Des.2009,14,3067-3088
    [10]Asakawa Y, Ludwiczuk A, Nagashima F. Phytochemical and biological studied of bryophytes. Phytochemistry 2013,91,52-80.
    [11]娄红祥主编.苔藓化学与生物学.科学出版社.2012.
    [12]Toyota M, Tanimura K, Asakawa Y. Cytotoxic 2,3-secoaromadendrane-type sesquiterpenoids from the liverwort Plagiochila ovalifolia. Planta Med.1998, 64, A62-A6A.
    [13]Wang S, Liu SS, Lin ZM, et al. Terpenoids from the Chinese liverwort Plagiochila pulcherrima and their cytotoxic effects. J. Asian Nat. Prod. Res.2013,15,473-481.
    [14]Lin ZM, Wang LN, Guo DX, et al. Secondary metabolites from the liverwort Heteroscyphus coalitus. Phytochem. Lett.2012,5,510-513.
    [15]Asakawa Y. Bryophytes:Their Chemistry and Chemical Taxonomy. Oxford University Press,1990,369.
    [16]Baek SH, Perry NB, Lorimer SD. SD.Ent-Costunolide from the liverwort Hepatostolonophora paucistipula. J. Chem. Res.S 2003,14-15.
    [17]Komala I, Ito T, Nagashima F, et al. Cytotoxic, radical scavenging and antimicrobial Activities of sesquiterpenoids from the Tahitian liverwort Mastigophora diclados (Brid.) Nees (Mastigophoraceae). J. Nat. Med.2010,64, 417-422.
    [18]Kim YC, da S. Bolzani V, Baj N, et al. A DNA damaging sesquiterpene and other constituents from Frullania nisquallensis. Planta Med.1996,62,61-63.
    [19]Komala I, Ito T, Nagashima F, et al. Cytotoxic bibenzyls, germacrane-and pinguisane-type sesquiterpenoids from the Indonesian, Tahitian and Japanese liverworts. Nat. Prod. Commun.2011,6,303-309.
    [20]Perry NB, Burgess EJ, Foster LM, et al. Insect antifeedant sesquiterpene acetals from the liverwort Lepidolaena claviger a.2. Structures, artifacts and activity.J. Nat. Prod.2008,71,258-261.
    [21]Nagashima F, Ohi Y, Nagai T, et al. Terpenoids from some German and Russian liverworts. Phytochemistry 1993,33,1445-1448.
    [22]Komala I, Ito T, Nagashima F, et al. Zierane sesquiterpene lactone, cembrane and fusicoccane diterpenoids, from the Tahitian liverwort Chandonanthus hirtellus. Phytochemistry 2010,71,1387-1394.
    [23]Wu C, Gunatilaka AAL, McCabe FL, et al. Bioactive and other sesquiterpenes from Chiloscyphus rivularis. J. Nat. Prod.1997,60,1281-1286.
    [24]Shu YF, Wei HC, Wu CL. Sesquiterpenoids from liverworts Lepidozia vitrea and L. fauriana. Phytochemistry 1994,37,773-776.
    [25]Scher JM, Burgess EJ, Lorimer SD, et al. A cytotoxic sesquiterpene and unprecedented sesquiterpene-bisbibenzyl compounds from the liverwort Schistochila glaucescens. Tetrahedron 2002,58,7875-7882.
    [26]Burgess EJ, Larsen L, Perry NB. A cytotoxic sesquiterpene caffeate from the liverwort Bazzania novae-zelandiae. J. Nat. Prod.2000,63,537-539.
    [27]Perry NB, Burgess EJ, Tangney RS. Cytotoxic 8,9-secokaurane diterpenes from a New Zealand liverwort, Lepidolaena taylorii. Tetrahedron Lett.1996,37, 9387-9390.
    [28]Perry NB, Burgess EJ, Baek SH, et al.11-oxygenated cytotoxic 8,9-secokauranes from a New Zealand liverwort, Lepidolaena taylorii. Phytochemistry 1999,50,423-433.
    [29]Nagashima F, Kondoh M, Uematsu T, et al. Cytotoxic and apoptosis-inducing ent-kaurane-type diterpenoids from the Japanese liverwort Jungermannia infusca Nees. Chem. Pharm. Bull.2002,50,808-813.
    [30]Nagashima F, Kondoh M, Kawase M, et al. Apoptosis-inducing properties of ent-kaurene-type diterpenoidsfrom the liverwort Jungermannia truncate. Planta Medica 2003,69,377-379.
    [31]Kondoh M, Suzuki I, Sato M, et al. Kaurene diterpene induces apoptosis in human leukemia cells partly through a caspase-8-dependent pathway. J. Pharmacol. Exp. Ther.2004,311,115-122.
    [32]Nagashima F, Kasai W, Kondoh M, et al. New ent-kaurene-type diterpenoids possessing cytotoxicity from the New Zealand liverwort Jungermannia species. Chem. Pharm. Bull.2003,51,1189-1192.
    [33]Nagashima F, Kondoh M, Fujii M, et al. Novel cytotoxic kaurane-type diterpenoids from the New Zealand Liverwort Jungermannia species. Tetrahedron 2005,61,4531-4544.
    [34]Suzuki I, Kondoh M, Harada M, et al. An ent-kaurene diterpene enhances apoptosis induced by tumor necrosis factor in human leukemia cells. Planta Med. 2004,70,723-727.
    [35]Suzuki I, Kondoh M, Nagashima F, et al. A comparison of apoptosis and necrosis induced by ent-kaurene-type diterpenoids in HL-60 cells. Planta Med. 2004,70,401-406.
    [36]Kondoh M, Suzuki I, Harada M, et al. Activation of p38 mitogen-activated protein kinase during ent-hydroxy-16-kauren-15-one-induced apoptosis in human leukemia HL-60 cells. Planta Med.2005,71,275-277.
    [37]Lorimer SD, Perry NB, Burgess EJ, et al. Hydroxyditerpenes from two New Zealand liverworts, Paraschistochila pinnatifolia and Trichocolea mollissima. J. Nat. Prod.1997,60,421-424.
    [38]Kondoh M, Nagashima F, Suzuki I, et al. Induction of apoptosis by new ent-kaurene-type diterpenoids isolated from the New Zealand liverwort Jungermannia species. Planta Med.2005,71,1005-1009.
    [39]Li RJ, Lin ZM, Kang YQ, et al. Cembrane-Type Diterpenoids from the Chinese Liverworts Chandonanthus hirtellus and C. birmensis. J. Nat. Prod.2014,77, 339-345.
    [40]Lou HX, Li GY, Wang FQ. A cytotoxic diterpenoid and antifungal phenolic compounds from Frullania muscicola Steph. J. Asian Nat. Prod. Res.2002,4, 87-94.
    [41]Wang LN, Zhang JZ, Li X, et al. Pallambins A and B, unprecedented hexacyclic 19-nor-secolabdane diterpenoids from the Chinese liverwort Pallavicinia ambigua. Org. Lett.2012,14,1102-1105.
    [42]Guo DX, Zhu RX, Wang XN, et al. Scaparvin A, a novel caged cis-clerodane with an unprecedented C-6/C-11 bond, and related diterpenoids from the liverwort Scapania parva. Org. Lett.2010,12,4404-4407.
    [43]Perry NB, Burgess EJ, Baek SH, et al. The first atisane diterpenoids from a liverwort:polyols from Lepidolaena clavigera. Org. Lett.2001,3,4243-4245.
    [44]Guo DX, Du Y, Wang YY, et al. Secondary metabolites from the liverwort Ptilidium pulcherrimum. Nat. Prod. Commun.2009,4,1319-1322.
    [45]Neves M, Morais R, Gafner S, et al. Three triterpenoids and one flavonoid from the liverwort Asterella blumeana grown in vitro. Phytotherap. Res.1998,12, S21-S24.
    [46]Wong SM, Oshima Y, Pezzuto J, et al. Plant anticancer agents XXXIX. Triterpenes from Isis missouriensis (Iridaceae). J. Pharm. Sci.1986,75,317.
    [47]Guo DX, Xiang F, Wang XN, et al. Labdane diterpenoids and highly methoxylated bibenzyls from the liverwort Frullania inouei. Phytochemisty 2010, 71,1573-1578.
    [48]Lu ZQ, Fan PH, Ji M, et al. Terpenoids and bisbibenzyls from Chinese liverworts Conocephalum conicum and Dumortiera hirsuta. J. Asian Nat. Prod. Res.2006,8,187-192.
    [49]Perry NB, Foster LM, Lorimer SD, et al. Isoprenyl phenyl ethers from liverworts of the genus Trichocolea:cytotoxic activity, structural corrections, and synthesis. J. Nat. Prod.1996,59,729-733.
    [50]Asakawa Y. Phytochemistry of Hepaticae:Isolation of biologicallyactive aromatic compounds and terpenoids. Rev. Latinoamer. Quim.1984,14,109-114.
    [51]Asakawa Y, Tori M, Takikawa K, et al. Cyclic bis(bibenzyls) and related compounds from the liverworts, Marchantia polymorpha and Marchantia palmata. Phytochemistry 1987,26,1811-1816.
    [52]Asakawa Y, Matsuda R. Riccardin C, a novel cyclic bibenzyl derivative from Reboulia hemisphaerica. Phytochemistry 1982,21,2143-2144.
    [53]Asakawa Y, Toyota M, Tori M, et al. Chemical structures of macrocyclic bis(bibenzyls) isolated from liverworts (Hepaticae). Spectroscopy 2000,14, 149-175.
    [54]Keseru, GM, Nogradi, M. The chemistry of macrocyclic bis(bibenzyls). Nat. Prod. Rep.1995,12,69-75.
    [55]Harrowven DC, Kostiuk SL. Macrocyclic bisbibenzyl natural products and their chemical synthesis. Nat. Prod. Rep.2012,29,223-242.
    [56]Asakawa Y. Recent advances in phytochemistry of bryophytes-acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts. Phytochemistry 2001,56,297-312.
    [57]Schwartner C. Effect of Marchantins and related compounds on 5-lipoxygenase and cyclooxygenase and their antioxidant properties:A structure activity relationship study. Phytomedicine 1995,2,113-117.
    [58]Scher JM, Burgess EJ, Lorimerb SD, et al. A cytotoxic sesquiterpene and unprecedented sesquiterpene-bisbibenzyl compounds from the liverwort Schistochila glaucescens. Tetrahedron 2002,58,7875-7882.
    [59]Morita H, Tomizawa Y, Tsuchiya T, et al. Antimitotic activity of two macrocyclic bis(bibenzyls), isoplagiochins A and B from the liverwort Plagiochila fruticosa. Bioorg. Med. Chem. Lett.2009,19,493-496.
    [60]Huang WJ, Wu CL, Lin CW, et al. Marchantin A, a cyclic bis(bibenzyl ether), isolated from the liverwort Marchantia emarginata subsp. tosana induces apoptosis in human MCF-7 breast cancer cells. Cancer Lett.2010,291,108-119.
    [61]Jensen S, Omarsdottir S, Bwalya AG, et al. Marchantin A, a macrocyclic bisbibenzyl ether, isolated from the liverwort Marchantia polymorpha, inhibits protozoal growth in vitro. Phytomedicine 2012,19,1191-1195.
    [62]Shi YQ, Liao YX, Qu J, et al. Marchantin C, a macrocyclic bisbibenzyl, induces apoptosis of human glioma A172 cells. Cancer Lett.2008,262,173-182.
    [63]Shi YQ, Zhu CJ, Yuan HQ, et al. Marchantin C, a novel microtubule inhibitor from liverwort with anti-tumor activity both in vivo and in vitro. Cancer Lett. 2009,276,160-170.
    [64]Xi GM, Sun B, Jiang HH, et al. Bisbibenzyl derivatives sensitize vincristine-resistant KB/VCR cells to chemotherapeutic agents by retarding P-gp activity. Bioorgan. Med. Chem.2010,18,6725-6733.
    [65]Asakawa Y. Chemical Constituents of the Bryophytes. In:Herz W, Kirby WB, Moore RE, Steglich W, Tamm Ch. (Eds.), Progress in the Chemistry of Organic Natural Products,1995, vol.65. Springer, Vienna, pp.1-618.
    [66]Shi YQ, Qu XJ, Liao YX, et al. Reversal effect of a bisbibenzyl plagiochin E on multidrug resistance in adriamycin-resistant K562/A02 cells. Eur. J. Pharmacol. 2008,584,66-71.
    [67]Wang Y, Ji Y, Hu Z, et al. Riccardin D induces cell death by activation of apoptosis and autophagy in osteosarcoma cells. Toxicol. In Vitro 2013,27, 1928-1936.
    [68]Wang Y, Wang L, Hu Z, et al. A novel derivative of riccardin D induces cell death through lysosomal rupture in vitro and inhibits tumor growth in vivo. Cancer Lett.2013,329,207-216.
    [69]Qu JB, Xie CF, Guo HF, et al. Antifungal dibenzofuran bis(bibenzyl)s from the liverwort Asterella angusta. Phytochemistry 2007,68,1767-1774.
    [70]Wei HC, Ma SJ, Wu CL. Sesquiterpenoids and cyclic bisbibenzyls from the liverwort Reboulia hemisphaerica. Phytochemistry 1995,39,91-97.
    [71]Xu AH, Hu ZM, Qu JB, et al. Cyclic bisbibenzyls induce growth arrest and apoptosis of human prostate cancer PC3 cells. Acta Pharmacol. Sin.2010,31, 609-615.
    [72]Jiang H, Sun J, Xu Q, et al. Marchantin M:a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells. Cell Death Dis 2013,4, e761.
    [73]Li X, Sun B, Zhu CJ, et al. Reversal of p-glycoprotein-mediated multidrug resistance by macrocyclic bisbibenzyl derivatives in adriamycin-resistant human myelogenous leukemia (K562/A02) cells. Toxicol. In Vitro 2009,23,29-36.
    [74]Sun B, Yuan HQ, Xi GM, et al. Synthesis and multidrug resistance reversal activity of dihydroptychantol A and its novel derivatives. Bioorgan. Med. Chem. 2009,17,4981-4989.
    [75]Zheng GQ, Chang CJ, Stout TJ, et al. Ohioensins:novel benzonaphthoxanthenones from Polytrichum ohioense. J. Org. Chem.1993,58, 366-372.
    [76]Zheng GQ, Ho DK, Elder PJ, et al. Ohioensins and pallidisetins:novel cytotoxic agents from the moss Polytrichum pallidisetum. J. Nat. Prod.1994,57, 32-41.
    [77]Fu P, Lin S, Shan L, et al. Constituents of the moss Polytrichum commune. J. Nat. Prod.2009,72,1335-1337.
    [78]Sakai K, Ichikawa T, Yamada K, et al. Antitumor principles in mosses:the first isolation and identification of maytansinoids, including a novel 15-methoxyansamitocin P-3. J. Nat. Prod.1988,51,845-850.
    [79]Nozaki H, Hatashi K, Nishimura N, et al. Momilactone A and B as allelochemicals from moss Hypnum plumaeforme:first occurrence in bryophytes. Biosci. Biotechnol Biochem.2007,71,3127-3130.
    [80]Kim SJ, Park HR, Park E, et al. Cytotoxic and antitumor activity of momilactone B from rice hulls. J. Agric. Food Chem.2007,55,1702-1706.
    [1]Asakawa Y. Chemical constituents of the hepaticae. In:Herz W, Grisebach H, Kirby, GW (Eds.), Progress in the Chemistry of Organic Natural Products.1982, vol.42. Springer-Verlag, Vienna, pp.1-285.
    [2]Asakawa Y. Chemical constituents of the Bryophytes. In:Herz W, Kirby WB, Moore RE, Steglich W, Tamm Ch (Eds.), Progress in the Chemistry of Organic Natural Products.1995, vol.65. Springer-Verlag, Vienna, pp.1-618.
    [3]Asakawa Y. Liverworts-potential source of medicinal compounds. Curr. Pharm. Des.2009,14,3067-3088
    [4]Asakawa Y. Chemosystematics of the hepaticae. Phytochemistry 2004,65, 623-669.
    [5]朱瑞良,王幼芳.4种值得注意的中国苔类植物.华东师范大学学报(自然科学版)1994,15,87-92.
    [6]娄红祥主编.苔藓化学与生物学.北京,科学出版社.2012.
    [7]Ahmad N, Feyes DK, Nieminen AL, et al. J. Natl. Cancer Inst.1997,89, 1881-1886.
    [8]Mhaidat NM, Wang Y, Kiejda KA, et al. Docetaxelinduced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol. Cancer Ther.2007, 6,752-761.
    [9]Call JA, Eckhardt SG, Camidge DR. Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol.2008,9,1002-1011.
    [10]Townson JL, Naumov GN, Chambers AF. The role of apoptosis in tumor progression and metastasis. Curr. Mol. Med.2003,3,631-642.
    [11]Eisenberg-Lerner A, Bialik S, Simon HU, et al. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ.2009, 16,966-975.
    [12]Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol.1995,146,3-15.
    [13]Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003,300,650-653.
    [14]Rhee SG H2O2, a necessary evil for cell signaling. Science 2006,312, 1882-1883.
    [15]Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol.2011,7,504-511.
    [16]Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol. Biochem.2001, 11,173-186.
    [17]Mah LJ, El-Osta A, Karagiannis TC. yH2AX:a sensitive molecular marker of DNA damage and repair. Leukemia 2010,24,679-686.
    [18]Zuco V, Benedetti V, Zunino F. ATM-and ATR-mediated response to DNA damage induced by a novel camptothecin, ST1968. Cancer Lett.2010,292, 186-196.
    [19]Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007,316,1160-1166.
    [20]Dai Y, Grant S. New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin. Cancer Res.2010,16,376-383.
    [21]Mochan TA, Venere M, DiTullio RAJ, et al.53BP1 and NFBD1/MDC1-Nbsl function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res.2003,63,8586-8591.
    [22]Smith J, Tho LM, Xu N, et al. The ATM-Chk2 and ATR-Chkl pathways in DNA damage signaling and cancer. Adv. Cancer Res.2010,108,73-112.
    [23]Hsu JL, Leong PK, Ho YF, et al. Pim-1 knockdown potentiates paclitaxel-induced apoptosis in human hormone-refractory prostate cancers through inhibition of NHEJ DNA repair. Cancer Lett.2012,319,214-222.
    [24]高谦,吴玉环.中国苔纲和角苔纲植物属志.北京,科学出版社,2010.
    [25]周国艳,吴玉环,高谦.亚洲Chiloscyphus-Heteroscyphus-Lophocolea类群的系统分类研究进展.杭州师范大学学报(自然科学版)2009,5,371-374.
    [26]Toyota M, Nagashima F, Asakawa Y. Labdane type diterpenoids from the liverwort Frullania hamatiloba. Phytochemistry 1988,27,1789-1793.
    [27]Hashimotoa T, Horiea M, Toyota M. Structures of five new highly oxygenated labdane-type diterpenoids, ptychantins A-E, closely related to forskolin from the liverwort Ptychanthus striatus. Tetrahedron Lett.1994,35,5457-5460.
    [28]Guo DX, Xiang F, Wang XN, et al. Labdane diterpenoids and highly methoxylated bibenzyls fromthe liverwort Frullania inouei. Phytochemistry 2010,71,1573-1578.
    [29]Fraga BM, Diaz CE, Guadano A, et al. Diterpenes from Salvia broussonetii Transformed Roots and Their Insecticidal Activity. J. Agric. Food Chem.2005,53,5200-5206.
    [30]Huneck S, Baxter G, Cameron A.F, et al. Anadensin, a new fusicoccane diterpenoid from the liverwort Anastrepta orcadensis. Crystal structure analysis. Tetrahedron Lett.1983,24,3787-3788.
    [31]Zapp J, Burkhardt G, Becker H. Sphenolobane and fusicoccane diterpenoids from the liverwort Anastrophyllum auritum. Phytochemistry 1994,37,787-793.
    [32]Gilabert M, Ramos AN, Schiavone MM, et al. Bioactive sesqui-and diterpenoids from the Argentine liverwort Porella chilensis. J. Nat. Prod.2011,74,574-579.
    [33]Jiang J, Sun B, Wang YY, et al. Synthesis of macrocyclic bisbibenzyl derivatives and their anticancer effects as anti-tubulin agents. Bioorg. Med. Chem.2012,20, 2382-2391.
    [34]Koff A, Giordano A, Desai D, et al. Formation and activation of a cyclin E-cdk2 complex during the Gl phase of the human cell cycle. Science 1992,257, 1689-1694.
    [35]Grana X, Reddy EP. Cell cycle control in mammalian cells:role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995,11,211-219.
    [36]Malumbres M, Barbacid M. Cell cycle, CDKs and cancer:a changing paradigm. Nat. Rev. Cancer 2009,9,153-166.
    [37]Ghavami S, Hashemi M, Ande SR, et al. Apoptosis and cancer:mutations within caspase genes. J. Med. Genet.2009,46,497-510.
    [38]Gobeil S, Boucher CC, Nadeau D, et al. Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1):implication of lysosomal proteases. Cell Death Differ.2001,8,588-594.
    [39]Gogvadze V, Orrenius S, Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. BBA-Bioenergetics 2006, 1757,639-647.
    [40]Banath JP, Olive PL. Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res.2003, 63,4347-4350.
    [41]Zhang YW, Otterness DM, Chiang GG, et al. Genotoxic Stress Targets Human Chkl for Degradation by the Ubiquitin-Proteasome Pathway. Mol. Cell 2005,19, 607-618.
    [42]Wang Y, Liu Q, Liu Z, et al. Berberine, a genotoxic alkaloid, induces ATM-Chkl mediated G2 arrest in prostate cancer cells. Mutat. Res-Fund. Mol. M.2012,734,20-29.
    [43]McNeely S, Conti C, Sheikh T, et al. Chkl inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase. Cell Cycle 2010,9,995-1004.
    [44]Sheldrick, G. M.; Schneider, T. R. Methods Enzymol.1997,277,319-343.
    [1]郝存淑,史清文,卫恒巧,等.植物化学分类学及近年来在我国的研究概况.河北医学院学报1994,15,60-62.
    [2]刘叔倩,郑俊华,果德安,等.药用植物化学分类学研究进展.西北药学杂志1999,14,222-225.
    [3]Asakawa Y. Progress in the Chemistry of Organic Natural Products 65. Springer-Verlag.1995.
    [4]Asakawa Y. Recent advances in phytochemistry of bryophytes-acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts. Phytochemistry 2001,56,297-312.
    [5]Asakawa Y. Chemosystematics of the Hepaticea. Phytochemistry 2004,65, 623-669.
    [6]Asakawa Y, Ludwiczuk A, Nagashima F, et al. Bryophytes:bio-and chemical diversity, bioactivity and chemosystematics. Heterocycles 2009,77:99-150.
    [7]Asakawa Y, Toyota M, Ueda A. Sacculatane-and clerodane-type diterpenoids from the liverworts Porella perrottetiana and Heteroscyphus bescherellei. Phytochemistry 1990,29,2165-2167.
    [8]Toyota M, Nakamura I, Takaoka S, et al. Terpenoid constituents of the liverwort Heteroscyphus coalitus. Phytochemistry 1996,41,575-580.
    [9]Jong JR, Wu CL. Sesquiterpenoids and Diterpenoids from the Liverwort Heteroscyphus coalitus. J. Chin. Chem. Soc.2000,47,359-362.
    [10]Hashimoto T, Nakamura I, Tori M, et al. Epi-neoverrucosane-and ent-clerodane-type diterpenoids and ent-2,3-secoaromadendrane-and calamenene-type sesquiterpenoids from the liverwort Heteroscyphus planus. Phytochemistry 1995,38,119-127.
    [11]Nabeta K, Katayama K, Nakagawara S, et al. Sesquiterpenes of cadinane type from cultured cells of the liverwort, Heteroscyphus planus. Phytochemistry 1992, 32,117-122.
    [12]Nabeta K, Ohkubo S, Hozumi R, et al. Allomadendranes, bicyclogermacrane and 2,3-secoalloaromadendranes in cultured cells of the liverwort, Heteroscyphus planus. Phytochemistry 1996,43,83-93.
    [13]Nabeta K, Ohkubo S, Hozumi R, et al. Macrocyclic bisbibenzyls in cultured cells of the liverwort Heteroscyphus planus. Phytochemistry 1998,49,1941-1943.
    [14]Nabeta K, Oohata T, Izumi N, et al. Diterpenes of the clerodane-type from cultured cells of Heteroscyphus planus. Phytochemistry 1994,37,1263-1268.
    [15]Nabeta K, Oohata T, Ohkubo S, et al. Spiro-y-lactone diterpenes from in vitro cultures of the liverwort, Heteroscyphus planus. Phytochemistry 1996,41, 581-587.
    [16]Krohn K, Bahramsari R, Florke U, et al. Dihydroisocoumarins from fungi: Isolation, structure elucidation, circular dichroism and biological activity. Phytochemistry 1997,45,313-320.
    [17]Bedford CT, Knittel P, Money T, et al. Biosynthesis of Mycophenolic Acid. Can. J. Chem.1973,51,694-697.
    [18]Gerth K, Steinmetz H, Hofle G, et al. Studies on the Biosynthesis of Epothilones: The Biosynthetic Origin of the Carbon Skeleton. J. Antibiot.2000,53, 1373-1377.
    [19]Lin T, Lin X, Lu C, et al. Secondary Metabolites of Phomopsis sp. XZ-26, an Endophytic Fungus from Camptotheca acuminate. Eur. J. Org. Chem.2009,18, 2975-2982.
    [20]Chaturvedula VSP, Norris A, Miller JS, et al. Cytotoxic Diterpenes from Cassipourea madagascariensis from the Madagascar Rainforest. J. Nat. Prod. 2006,69,287-289.
    [21]Mimakl Y, Kameyama A, Sashida Y, et al. A novel hexahydrodibenzofuran derivative with potent inhibitory activity on melanin biosynthesis of cultured B-16 melanoma cells from lindera umbellate bark. Chem. Pharm. Bull.1995,43, 893-895.
    [22]Asakawa Y, Campobell EO. Terpenoids and bisbenzyls from some New Zealand liverworts. Phytochemistry 1982,21,2663-2667.
    [23]Lu ZQ, Fan PH, Ji M, et al. Terpenoids and bisbibenzyls from Chinese liverwort Conocephalum conicum and Dumortiera hirsuta. J. Asian Nat. Prod. Res.2006, 8,187-192.
    [24]张炎,邓志威,高天翔,等.中国红树植物角果木的化学成分.药学学报2005,40,935-939.
    [25]Zhang QY, Zhao YY, Ma LB. Chemical constituents of Stelmatocrypton khasianum. J Chin. Pharm. Sci.1999,8,237-240.
    [26]王静媛,田福利,方利,等.蒙椴树叶化学成分的研究.药物分析杂志2005,25,1019-1021
    [27]薛慧清,杨红澎,汪汉卿,等.黄毛橐吾三萜类成分研究.中国中药杂志2008,33,272-275.
    [28]Shu Y H, Jones S R, Kinney W A, et al. The synthesis of spermine analogs of the shark aminosterol squalamine. Steroids 2002,67,291-304.
    [29]Antonio G, Michele D A, Francesco P, et al. Pteridines, sterols, and indole derivatives from the Lithistid Sponge Corallistes undulatus of the coral sea. J. Nat. Prod.1993,56,1962-1970
    [30]陈苹,吴娇,戴好富,等.海南粗榧内生真菌S26化学成分研究.中国药物化学杂志2008,18,279-283.
    [31]Yoshikawa K, Ikuta M, Arihara S, et al. Two new steroid derivatives from the fruit body of Chlorophyllum molybdites. Chem. Pharm. Bull.2001,49, 1030-1032.
    [32]Wang Y, Wang L, Hu Z, et al. A novel derivative of riccardin D induces cell death through lysosomal rupture in vitro and inhibits tumor growth in vivo. Cancer Lett.2013,329,207-216.
    [33]王莉宁.四种苔类植物的化学成分及其生物活性.山东大学博士学位论文,2011.
    [34]Lin SJ, Wu CL. Isoplagiochilide from the liverwort Plagiochila elegans. Phytochemistry 1996,41,1439-1440.
    [35]Fukuyama Y, Asakawa Y. Neurotrophic secoaromadendrane-type sesquiterpenes from the liverwort Plagiochila fruticosa. Phytochemisty 1991,30,4061-4065.
    [36]Morita H, Tomizawa Y, Tsuchiya T, et al. Antimitotic activity of two macrocyclic bis(bibenzyls), isoplagiochins A and B from the liverwort Plagiochila fruticosa. Bioorg. Med.Chem. Lett.2009,19,493-496.
    [37]Toyota M, Nagashima F, Asakawa Y. Labdane type diterpenoids from the liverwort Frullania hamachiloba. Phytochemistry 1988,27,1789-1793.
    [38]Guo DX, Xiang F, Wang XN, et al. Labdane diterpenoids and highly methoxylated bibenzyls from the liverwort Frullania inouei. Phytochemistry 2010,71,1573-1578.
    [39]Hashimotoa T, Horiea M, Toyota M. Structures of five new highly oxygenated labdane-type diterpenoids, ptychantins A-E, closely related to forskolin from the liverwort Ptychanthus striatus. Tetrahedron Lett.1994,35,5457-5460.
    [40]Hashimoto T, Horie M, Takaoka S, et al. Structures of four new highly oxygenated labdane-type diterpenoids, ptychantins F-I, from the liverwort, Ptychanthus striatus. Chem. Lett.1995,6,481-482.
    [41]Wu CL, Wang CJ, Yin MH. Ptychantins from the liverwort, Ptychanthus striatus. J. Chin. Chem. Soc.2001,48,241-247.
    [42]Kawahara T, Katoh K, Nabeta K. Highly oxygenated labdane-type diterpenoids, ptychantins from cultured cells of the Ptychanthus striatus liverwort. Biosci. Biotech. Bioch.2005,69,1606-1609.
    [1]Asakawa Y. Chemical constituents of the Bryophytes. In:Herz W, Kirby WB, Moore RE, et al, Progress in the Chemistry of Organic Natural Products,1995, vol.65. Springer-Verlag, Vienna, pp.1-618.
    [2]Asakawa Y. Phytochemical and biological studies of bryophytes. Phytochemistry 2013,91,52-80.
    [3]Liu N, Li RJ, Wang XN, et al. Highly Oxygenated ent-Pimarane-Type Diterpenoids from the Chinese Liverwort Pedinophyllum interruptum and Their Allelopathic Activities. J. Nat. Prod.2013,76,1647-1653.
    [4]Asakawa Y. Chemosystematics of the hepaticae. Phytochemistry 2004,65, 623-669.
    [5]Wang LN, Zhang JZ, Li X, et al. Pallambins A and B, unprecedented hexacyclic 19-nor-secolabdane diterpenoids from the Chinese liverwort Pallavicinia ambigua. Org. Lett.2012,14,1102-1105.
    [6]Guo DX, Zhu RX, Wang XN, et al. Scaparvin A, a novel caged cis-clerodane with an unprecedented C-6/C-11 bond, and related diterpenoids from the liverwort Scapania parva. Org. Lett.2010,12,4404-4407.
    [7]高谦,中国苔藓志第九卷.北京:科学出版社,2003.
    [8]Shy HS, Wu CL, Paul C, et al. Chemical constituents of two liverworts Metacalypogeia alternifolia and Chandonanthus hirtellus. J. Chin. Chem. Soc. 2002,49,593-598.
    [9]Wang Y, Harrison LJ, Tan BC. Terpenoids from the liverwort Chandonanthus hirtellus. Tetrahedron 2009,65,4035-4043.
    [10]Komala I, Ito T, Nagashima F, et al. Zierane sesquiterpene lactone, cembrane and fusicoccane diterpenoids, from the Tahitian liverwort Chandonanthus hirtellus. Phytochemistry2010,71,1387-1394.
    [11]Wu H, Fronczek FR, Ferreira D, et al. Labdane diterpenoids from Leonurus sibiricus. J. Nat. Prod.2011,74,831-836.
    [12]Zhang GW, Ma XQ, Kurihara H, et al. New hemiketal steroid from the soft coral Cladiellasp. Org. Lett.2005,7,991-994.
    [13]Huneck S, Baxter G, Cameron A.F, et al. Anadensin, a new fusicoccane diterpenoid from the liverwort Anastrepta orcadensis. Crystal structure analysis. Tetrahedron Lett.1983,24,3787-3788.
    [14]苏华,朱校斌,袁兆慧,等.瘤状软骨凹顶藻化学成分研究.海洋科学2009,33.33-35.
    [15]刘岱琳,庞发根,张家欣,等.密花石豆兰的化学成分研究.中国药物化学杂志 2005,15,103-108.
    [16]郑卫平,唐于平,楼凤昌,等.迭鞘石斛的化学成分研究.中国药科大学学报2000,31,5-7.
    [17]Jiang J, Sun B, Wang YY, et al. Synthesis of macrocyclic bisbibenzyl derivatives and their anticancer effects as anti-tubulin agents. Bioorg. Med. Chem.2012,20, 2382-2391.
    [18]Sheldrick, G. M.; Schneider, T. R. Methods Enzymol.1997,277,319-343.
    [19]Asakawa Y. Chemical constituents of the Hepaticeae. In:Herz, W., Grisebach, H., Kirby, G.W. (Eds.), Progress in the Chemistry of Organic Natural Products, 1982, vol.42. Springer-Verlag, Vienna, pp.1-285
    [20]Tori M, Nagai T, Asakawa Y. Setiformenol, isolated from the liverwort Tetralophozia setiformis, the first example of cembrane type diterpene from bryophyte. Tetrahedron Lett.1993,34,643-644.
    [1]高谦.中国苔藓志第九卷.北京:科学出版社,2003,204-289。
    [2]高谦,张光初.东北苔类植物志.北京:科学出版,1981,81-83.
    [3]张雯,熊源新,马建鹏,等.贵州省叶苔属植物初步研究.山地农业生物学报2011,30,314-318.
    [4]Qu JB, Zhu RL, Zhang et al. Ent-kaurane diterpenoids from the liverwort Jungermannia atrobrunnea. J. Nat. Prod.2008,71,1418-1422.
    [5]Fumihiro N, Masuo K, Yoshinori A, et al. Cytotoxic and apoptosis-inducing ent-kaurane-type diterpenoids from the Japanese liverwort Jungermannia truncata Nees. Chem. Pharm. Bull.2002,50,808-813.
    [6]Nagashima F, Tanaka H, Asakawa Y. Ent-kaurane-type diterpenoids from the liverwort jungermannia rotundata. Phytochemistry 1997,44,653-657.
    [7]Nagashima F, Kondoh M, Fujii M, et al. Novel cytotoxic kaurane-type diterpenoids from the New Zealand Liverwort Jungermannia species. Tetrahedron 2005,61,4531-4544.
    [8]Tazaki H, Iwasaki T, Nakasuga I, et al.Ent-kaurane-type diterpenoids produced by cell culture of the liverwort Jungermannia subulata. Phytochemisty 1999,52, 1427-1430.
    [9]Nagashima F, Suzuki M, Takaoka S, et al. New acorane-and cuparane-type sesqui-and new labdane-and seco-labdane-type diterpenoids from the Japanese liverwort Jungermannia infusca (Mitt.) steph. Tetrahedron 1999,55,9117-9132.
    [10]Wu CL, Lin HR. Labdanoids and bis(bibenzyls) from Jungermannia species. Phytochemistry 1997,44,101-105.
    [11]Nagashima F, Tanaka H, Asakawa Y. Sesqui-and di-terpenoids from the liverwort Jungermannia vulcanicola. Phytochemisty 1996,42,93-96.
    [12]Nagashima F, Tanaka H, Kan Y, et al. Clerodane-and halimane-type diterpenoids from the liverwort Jungermannia hyalina. Phytochemisty 1995,40,209-212.
    [13]Harrison LJ, Connolly JD, Rycroft DS. Ent-clerodane diterpenoids from the liverwort Jungermannia paroica. Phytochemisty 1992,31,1420-1421.
    [14]Nagashima F, Suzuki M, Takaoka S, et al. Sesqui-and diterpenoids from the Japanese liverwort Jungermannia infusca. J. Nat. Prod.2001,64,1309-1317.
    [15]Harrison LJ, Asakawa Y.3a,18-Dihydroxytrachyloban-19-oic acid from the liverwort Jungermannia exsertifolia subsp. cordifolia. Phytochemistry 1989,28, 1533-1534.
    [16]Scher JM, Schinkovitz A, Zapp J, et al. Structure and anti-TB activity of trachylobanes from the liverwort Jungermannia exsertifolia ssp. cordifolia. J. Nat. Prod.2010,73,656-663.
    [17]Buchanan MS, Connolly JD, Kadir AA, et al. Sesquiterpenoids and diterpenoids from the liverwort jungermannia truncate. Phytochemistry 1996,42,1641-1646.
    [18]Nagashima F, Tanaka H, Takaoka S, et al. Sesquiand diterpenoids from the Japanese liverwort Jungermannia hattoriana. Phytochemistry 1997,45,353-363.
    [19]Nagashima F, Suzuki M, Asakawa Y. Seco-cuparane-type sesquiterpenoid from the Japanese liverwort Jungermannia infusca. Phytochemistry 2001,56, 807-810.
    [20]Matsuo A, Terada I, Nakayama M, et al. Cuprenenol and rosulantol, new cuparane class sesquiterpene alcohols from the liverwort jungermannia rosulans. Tetrahedron Lett.1977,43,3821-3824.
    [21]Nagashima F, Momosaki S, Watanabe Y, et al. Terpenoids and aromatic compounds from six liverworts. Phytochemistry 1996,41,207-211.
    [22]Nagashima F, Kasai W, Kondoh M, et al. New ent-Kaurene-Type Diterpenoids Possessing Cytotoxicity from the New Zealand Liverwort Jungermannia Species. Chem. Pharm. Bull.2003,51,1189-1192.
    [23]Hutchison M, Lewer P, MacMillan J. Carbon-13 Nuclear Magnetic Resonance Spectra of Eighteen Derivatives of ent-Kaur-16-en-19-oic Acid. J. Chem. Soc., Perkin Trans.11984,10,2363-2366.
    [24]Santos HS, Barros FWA, Albuquerque MRJR, et al. Cytotoxic Diterpenoids from Croton argyrophylloides. J. Nat. Prod.2009,72,1884-1887.
    [25]Wijeratne EMK, Bashyal BP, Liu MX, et al. Geopyxins A-E, ent-Kaurane Diterpenoids from Endolichenic Fungal Strains Geopyxis aff. majalis and Geopyxis sp. AZ0066:Structure-Activity Relationships of Geopyxins and Their Analogues. J. Nat. Prod.2012,75,361-369.
    [26]Hong SS, Lee SA, Han XH, et al. Kaurane Diterpenoids from Isodon excisus Inhibit LPS-Induced NF-κB Activation and NO Production in Macrophage RAW264.7 Cells. J. Nat. Prod.2007,70,632-636.
    [27]Matsuo A, Uto S, Kodama J, et al. Structures and reactions of two new diterpene acetates isolated from the liverwort, Jungermannia infusca. Nippon Kagaku Kaishi 1978,12,1680.
    [28]Connolly JD, Thornton IMS. ent-Kaurene diterpenoids from Solenostoma triste (Nees) K. Mull (Hepaticae). J. Chem. Soc. Perkin Trans.1,1973,736-738
    [1]Nagashima F, Tanaka H, Kan Y, et al. Clerodane-and halimane-type diterpenoids from the liverwort Jungermannia hyalina. Phytochemisty 1995,40,209-212.
    [2]Buchanan MS, Connolly JD, Kadir AA, et al. Sesquiterpenoids and diterpenoids from the liverwort jungermannia truncate. Phytochemistry 1996,42,1641-1646.
    [3]Qu JB, Zhu RL, Zhang et al.Ent-kaurane diterpenoids from the liverwort Jungermannia atrobrunnea. J. Nat. Prod.2008,71,1418-1422
    [4]Nagashima F, Kondoh M, Fujii M, et al. Novel cytotoxic kaurane-type diterpenoids from the New Zealand Liverwort Jungermannia species. Tetrahedron 2005,61,4531-4544.
    [5]Nagashima F, Tanaka H, Takaoka S, et al. Ent-kaurane-type diterpenoids from the liverwort Jungermannia exsertifolia ssp. cordifolia. Phytochemistry 1996,41, 1129-1141.
    [6]Connolly JD, Thornton IMS. ent-Kaurene diterpenoids from Solenostoma triste (Nees) K. Mull (Hepaticae). J. Chem. Soc. Perkin Trans.1,1973,736-738.
    [7]Nagashima F, Kasai W, Kondoh M, et al. New ent-Kaurene-Type Diterpenoids Possessing Cytotoxicity from the New Zealand Liverwort Jungermannia Species. Chem. Pharm. Bull.2003,51,1189-1192.
    [8]Hutchison M, Lewer P, MacMillan J. Carbon-13 Nuclear Magnetic Resonance Spectra of Eighteen Derivatives of ent-Kaur-16-en-19-oic Acid. J. Chem. Soc., Perkin Trans.11984,10,2363-2366.
    [9]Li LM, Li GY, Li SH, et al. Cytotoxic ent-kauranoids from Isodon parvifolius. Chem. Biodivers.2006,3,1031-1038.
    [10]Santos HS, Barros FWA, Albuquerque MRJR, et al. Cytotoxic Diterpenoids from Croton argyrophylloides.J. Nat. Prod.2009,72,1884-1887.
    [11]Wijeratne EMK, Bashyal BP, Liu MX, et al. Geopyxins A-E, ent-Kaurane Diterpenoids from Endolichenic Fungal Strains Geopyxis aff. majalis and Geopyxis sp. AZ0066:Structure-Activity Relationships of Geopyxins and Their Analogues. J. Nat. Prod.2012,75,361-369.
    [12]Giang P M, Son P T, Hamada Y, et al. Cytotoxic diterpenoids from Vietnamese medicinal plant Croton tonkinensis GAGNEP. Chem. Pharm. Bull.2005,53, 296-300.
    [13]Nagashima F, Kondoh M, Uematsu T, et al. Cytotoxic and Apoptosis-Inducing ent-Kaurane-Type Diterpenoids from the Japanese Liverwort Jungermannia truncata NEES. Chem. Pharm. Bull.2002,50,808-813.
    [14]Matsuo A, Kodama J, Nakayama M, et al. Ent-kaurane diterpenoids from the liverwort Jungermannia infusca. Phytochemistry 1977,16,489-490.
    [15]Li C, Lee D, Graf TN, et al. Bioactive constituents of the stem bark of Mitrephora glabra.J. Nat. Prod.2009,72,1949-1953.
    [1]徐任生,叶阳,赵维民.天然产物化学.科学出版社,北京,2004,p351-361.
    [2]孙汉董,许云龙,姜北.香茶菜属植物二萜化合物.北京:科学出版社.2001.
    [3]Asakawa Y. Chemosystematics of the Hepaticae. Phytochemistry 2004,65, 623-669.
    [4]Asakawa Y, Lin X, Tori M, et al. Fusicoccane-, dolabellane-and rearranged labdane-type diterpenoids from the liverwort Pleurozia gigantea. Phytochemistry 1990,29,2597-2603.
    [5]Toyota M, Nakaishi E, Asakawa Y. Terpenoid constituents of the new Zealand liverwort Jamesoniella tasmanica. Phytochemistry 1996,43,1057-1064.
    [6]Nagashima F, Tanaka H, Takaoka S, et al. Ent-kaurane-type diterpenoids from the liverwort Jungermannia exsertifolia ssp. Cordifolia. Phytochemistry 1996,41, 1129-1141.
    [7]Perry NB, Burgess EJ, Tangney RS. Cytotoxic 8,9-secokaurane diterpenes from a New Zealand liverwort, Lepidolaena taylorii. Tetrahedron lett.1996,52, 9387-9390.
    [8]Dong, YF, Ding, YM. Sesquiterpene lactones from Carpesium abrotanoides. J. Integr. Plant. Biol.1988,30,71-75.
    [9]Quang DN, Asakawa Y. Chemical constituents of the Vietnamese liverwort Porella densifolia. Fitoterapia 2010,81,659-661.
    [10]Nagashima F, Kasai W, Kondoh M, et al. New ent-kaurene-type diterpenoids possessing cytotoxicity from the New Zealand liverwort Jungermannia species. Chem. Pharm. Bull.2003,51,1189-1192.
    [11]Nagashima F, Kondoh M, Fujii M, et al. Novel cytotoxic kaurane-type diterpenoids from the New Zealand Liverwort Jungermannia species. Tetrahedron 2005,61,4531-4544.
    [12]Suzuki I, Kondoh M, Harada M, et al. An ent-kaurene diterpene enhances apoptosis induced by tumor necrosis factor in human leukemia cells. Planta Med. 2004,70,723-727.
    [13]Suzuki I, Kondoh M, Nagashima F, et al. A comparison of apoptosis and necrosis induced by ent-kaurene-type diterpenoids in HL-60 cells. Planta Med. 2004,70,401-406.
    [14]Kondoh M, Suzuki I, Harada M, et al. Activation of p38 mitogen-activated protein kinase during ent-11α-hydroxy-16-kauren-15-one-induced apoptosis in human leukemia HL-60 cells. Planta Med.2005,71,275-277.
    [15]Sun HD, Huang SX, Han, QB. Diterpenoids from Isodon species and their biological activities. Nat. Prod. Rep.2006,23,673-698.
    [16]Wijeratne EMK, Bashyal BP, Liu MX, et al. Geopyxins A-E, ent-Kaurane Diterpenoids from Endolichenic Fungal Strains Geopyxis aff. majalis and Geopyxis sp. AZ0066:Structure-Activity Relationships of Geopyxins and Their Analogues. J. Nat. Prod.2012,75,361-369.
    [17]Zheng H, Chen Q, Zhang M, et al. Cytotoxic ent-Kaurane Diterpenoids from Salvia cavaleriei. J. Nat. Prod.2013,76,2253-2262.
    [18]Zhan R, Li X N, Du X, et al. Bioactive ent-Kaurane Diterpenoids from Isodon rosthornii.J. Nat. Prod.2013,76,1267-1277.
    [19]Britton RA, Piers E, Patrick BO. Total Synthesis of (±)-13-Methoxy-15-oxozoapatlin, a Rearranged Kaurane Diterpenoid J. Org. Chem.2004,69,3068-3075.
    [20]Rundle NT, Nelson J, Flory MR, et al. An ent-Kaurene That Inhibits Mitotic Chromosome Movement and Binds the Kinetochore Protein Ran-Binding Protein 2. ACS Chem. Biol.2006,1,443-450.
    [21]王京滨,梁念慈,莫丽儿.中国药理学能报2002,18,418.
    [22]Gu ZM, Wu YL, Zhou MY, et al. Pharicin B stabilizes retinoic acid receptor-a and presents synergistic differentiation induction with ATRA in myeloid leukemic cells. Blood 2010,116,5289-5297.
    [23]Liu CX, Yin QQ, Zhou HC, et al. Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells. Nat. Chem. Biol.2012,8,486-493.
    [24]Hsieh TC, Wijeratne EK, Liang JY, et al. Differential control of growth, cell cycle progression, and expression of NF-κB in human breast cancer cells MCF-7, MCF-10A, and MDAMB-231 by ponicidin and oridonin, diterpenoids from the Chinese herb Rabdosia rubescens. Biochem. Biophys. Res. Commun.2005,337, 224-231.
    [25]Liu YQ, Mu ZQ, You S, et al. Fas/FasL signaling allows extracelluar-signal regulated kinase to regulate cytochrome c release in oridonin-induced apoptotic U937 cells. Biol. Pharm. Bull.2006,29,1873-1879.
    [26]Zhou GB, Kang H, Wang L, et al. Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood 2007,109,3441-3450.
    [27]Zhang Y, Wu Y, Tashiro S, et al. Involvement of PKC signal pathways in oridonin-induced autophagy in HeLa cells:a protective mechanism against apoptosis. Biochem. Biophys. Res. Commun.2009,378,273-278.
    [28]Zhang CL, Wu LJ, Tashiro S, et al. Oridonin induces a caspase-independent but mitochondria-and MAPK-dependent cell death in the murine fibrosarcoma cell line L929. Biol. Pharm. Bull.2004,27,1527-1531.
    [29]Leung CH, Grill SP, Lam W, et al. Novel mechanism of inhibition of nuclear factor-kB DNA-binding activity by diterpenoids isolated from isodon rubescens. Mol. Pharmacol.2005,68,286-297.
    [30]Wang HJ, Li·D, Yang FY, et al. Oridonin induces human melanoma A375-S2 cell death partially through inhibiting insulin-like growth factor 1 receptor signaling. J. Asian. Nat. Prod. Res.2008,10,787-798.
    [31]Li D, Wu LJ, Tashiro S, et al. Oridonin inhibited the tyrosine kinase activity and induced apoptosis in human epidermoid carcinoma A431 cells. Biol. Pharm. Bull. 2007,30,254-260.
    [32]Li D, Wu LJ, Tashiro S, et al. Oridonin-induced A431 cell apoptosis partially through blockage of the Ras/Raf/ERK signal pathway. J. Pharmacol. Sci.2007, 103,56-66.
    [33]Huang J, Wu L, Tashiro S, et al. Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways. J. Pharmacol. Sci. 2008,107,370-379.
    [34]Wu JN, Huang J, Yang J, et al. Caspase inhibition augmented oridonin-induced cell death in murine fibrosarcoma 1929 by enhancing reactive oxygen species generation. J. Pharmacol. Sci. 2008,108,32-39.
    [35]Zhen T, Wu C F, Liu P, et al. Targeting of AML1-ETO in t(8;21) Leukemia by Oridonin Generates a Tumor Suppressor-Like Protein. Sci. Transl. Med.2012,4, 127ra38-127ra38.
    [36]Yu ZY, Liang YG, Xiao H, et al. Melissoidesin G, a diterpenoid purified from Isodon melissoides, induces leukemic-cell apoptosis through induction of redox imbalance and exhibits synergy with other anticancer agents. Int. J. Cancer 2007, 121,2084-2094.
    [37]Peng H, Cheng Y, Dai C, et al. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew. Chem. Int. Edit.2011,50, 9672-9675.
    [38]Xuan W, Sheng C, Cao Y, et al. Fluorescent probes for the detection of hydrogen sulfide in biological systems. Angew. Chem. Int. Edit.2012,51,2282-2284.
    [39]Li W, Sun W, Yu X, et al. Coumarin-based fluorescent probes for H2S detection. J. Fluoresce.2013,23,181-186.
    [40]Li J, Zhang D, Wu X. Synthesis and biological evaluation of novel exo-methylene cyclopentanone tetracyclic diterpenoids as antitumor agents. Bioorg. Med. Chem. Lett.2011,21,130-132.
    [41]Shigematsu Y, Murofushi N, Takahashi N. Structures of the metabolites from steviol methyl ester by gibberella fujikuroi. Agric. Biol. Chem.1982,46, 2313-2318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700