用户名: 密码: 验证码:
不同湖泊沉积物营养特征与沉水植物菹草生长的应答关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉水植物恢复是富营养化湖泊生态恢复的重要措施,但目前沉水植物很难在富营养湖泊中存活生长,环境中的营养物质水平对沉水植物生长有着重要影响。本文通过在室内进行的太湖、汤逊湖和月湖沉积物中的沉水植物菹草栽培实验,从沉积物矿质营养角度研究了不同富营养化湖泊沉积物中菹草的恢复过程,比较了不同湖泊沉积物中菹草长势的差异,菹草营养含量及变化趋势的差异;在菹草恢复生长后,研究菹草对水体pH的影响及菹草根斑的形成,通过比较种菹草处理和不种菹草对照中沉积物-上覆水营养含量的差异,研究菹草生长过程中对沉积物-上覆水营养水平产生的影响。通过研究,得到如下主要结果:
     1)通过研究不同底质和上覆水类型中菹草的生长发现,太湖表层沉积物促进菹草的营养生长,对繁殖体的产生有抑制作用;石英砂底质不利于菹草茎叶生长,利于繁殖体产生。菹草体内Ca、Mg含量主要受上覆水营养水平的影响;Fe、Mn含量主要受沉积物营养水平的影响;Cu、Zn含量受上覆水和底质营养水平的共同影响。
     2)通过比较菹草在太湖、月湖和汤逊湖沉积物中的长势发现,菹草在太湖、月湖和汤逊湖沉积物中均能生长良好,但菹草长势在3个湖泊沉积物中表现出明显差异,太湖沉积物中菹草长势好于月湖,汤逊湖沉积物中菹草长势最差。不同湖泊沉积物中菹草茎叶生物量、根系生物量和繁殖体生物量都表现出明显的差异,且不同湖泊沉积物中菹草繁殖体的发芽率有差异。
     3)通过研究菹草在太湖和月湖不同样点沉积物中的生长发现,菹草旺盛的营养生长有利于繁殖体产生,但菹草繁殖体发芽率与菹草长势没有表现出相关性。沉积物营养水平与菹草长势具有一定的相关关系:在菹草生长初期沉积物营养丰富抑制菹草生长,随着菹草生长,沉积物营养的影响作用降低;旺盛生长期后,沉积物锰含量丰富促进菹草生物量增加;沉积物中高磷、铜和锌含量会抑制菹草繁殖体产生。
     4)菹草体内不同营养元素的含量表现出明显而又不同的季节性变化。不同湖泊沉积物中菹草体内相同营养元素含量的季节变化表现出相似性,沉积物对菹草营养含量有影响,但不会改变其季节性变化趋势。不同营养元素在菹草体内的分布具有差异,一般表现为:Fe、Mn、Zn,根系>茎叶>繁殖体;Mg,茎叶>根系>繁殖体;繁殖体中P、Ca含量低于茎叶和根系;繁殖体Cu含量则居于茎叶和根系之间。菹草不同部位营养含量受沉积物营养水平的影响,相较于茎叶和根系而言,菹草繁殖体营养含量受沉积物营养水平的影响较小。
     5)随着菹草生长,上覆水pH明显升高,光照对菹草影响水体pH值有重要作用,使得菹草生长的上覆水pH表现出明显的日变化。除菹草生长对上覆水pH有影响外,沉积物类型对上覆水pH也有直接和间接的影响。
     6)菹草根斑的形成导致根斑处根系表面元素富集,影响根系对营养元素的吸收,进而影响元素在根系截面的分布。菹草根斑形成对菹草根系表面Fe、Mn、Si、P营养有明显影响,对Al、Ca也有一定的影响,而对于Mg、Cu、Zn没有影响。不同沉积物中菹草根斑对根系表面营养元素的富集及含量的影响表现出差异。
     7)与不种菹草对照相比,菹草生长对沉积物水浸提营养含量、间隙水和上覆水营养含量均有影响,在不同时期对不同营养元素含量的影响表现出了复杂性,在汤逊湖和月湖沉积物不同底质中也表现出了明显的差异。菹草生长后一般在返青期和旺盛生长期对营养含量的季节变化有比较明显的作用。菹草生长对上覆水营养含量的变化趋势影响较小,而对沉积物水浸提营养含量、间隙水营养含量的变化趋势具有明显影响。
The recovery and growth of aquatic submersed macrophytes is an important and effective measure for phytoremediation of eutrophic lake ecosystem.But so far it was difficult for aquatic submersed macrophytes to grow successfully in eutrophic lake.In this process,nutritional levels in the environment had great influence on the submersed macrophytes growth.Through the transplanted experiments of submersed macrophyte Potamogeton crispus L.in Taihu Lake,Tangxunhu Lake and Yuehu Lake sediment in the laboratory,from the view of mineral nutrients,we studied the growth of P. crispus in different lake sediment,by comparing the variance of P.crispus growth,nutrients content and seasonal change in different lake sediment.And after P.crispus grew successfully,we kept on the study of the influence of P.crispus growth on water pH,the formation of root plaques around root,the effects of P.crispus growth on nutritional levels in sediment and overlying water by comparing the variance of nutrients content in sediment and overlying water between treatments of P.crispus growth with controls of no P.crispus growth.Through the study,we got the primary results as followed:
     1) By the study of P.crispus growth in different types of substrate and overlying water,we found that as surface sediment of Taihu Lake was substrate,P.crispus shoots growth was advanced while propagules generation was inhibited.As quartz sand was substrate,P.crispus shoots growth was inhibited while propagules generation was advanced.The concentration of Ca and Mg in P.crispus was mainly influenced by Ca and Mg concentration in overlying water.The concentration of Fe and Mn in P.crispus was mainly influenced by Fe and Mn levels in sediment.The concentration of Cu and Zn in P.crispus was influenced by overlying water and sediment at the same time.
     2) By comparing P.crispus growth in Taihu Lake,Yuehu Lake and Tangxunhu Lake sediment, we found that P.crispus could grew well in all sediments,but there was difference for P.crispus growth in different sediment.P.crispus grew better in Taihu Lake sediment when compared with that in Yuehu lake sediment;P.crispus grew worst in Tangxunhu Lake sediment.There were significant differences for shoots biomass,roots biomass,propagules biomass and germination rates in different sediments.
     3) By the study of P.crispus growth in sediment of different sites in Taihu Lake and Yuehu Lake, it was found that flourish shoots growth would be helpful for the generation of propagules of P. crispus,although there was no corresponding relationship between germination rates of propagules with P.crispus growth.The significant relationship existed between sediment nutritional levels and P. crispus growth.In the initial stage of P.crispus growth,the enrichment of nutrients in sediment inhibited shoots growth.With the time gone,influence of sediment nutritional levels became weak gradually.After the period of flourish growth,there was significant positive relationship between Mn content in sediment with biomass of P.crispus.The enrichment of P,Cu and Zn in sediment would inhibit the propagules generation.
     4) The different nutrients in P.crispus represented obvious and different seasonal changes.The same nutrient had similar seasonal changes in tissue of P.crispus growing in different sediment.The nutritional levels in sediment had influence on the nutrients concentration in P.crispus,while had no influence on the trend of seasonal changes of nutrients in P.crispus.There were differences for the distribution of different nutrient elements in plant tissue.In general,Fe,Mn and Zn conc.were highest in roots,then in shoots,lowest in propagules.Mg conc.was highest in shoots,then in roots,lowest in propagules.Ca and P conc.were lowest in propagules compared with shoots and roots.Cu conc.in propagules was in-between of shoots and roots.Nutrients conc.in different parts of P.crispus was influenced by the nutritional levels in sediment.Compared with shoots and roots,the influence of sediment was less in nutrients concentration in propagules.
     5) With P.crispus growth,pH of overlying water was significantly elevated.The illumination had great influence on the changes of pH in overlying water,which caused overlying water pH represented diurnal changes.Beside of P.crispus growth,substrate had some influence on the pH changes of overlying water by direct and indirect effects.
     6) The formation of root plaque around P.crispus root caused elements concentrated in the root surface,further influenced the elements uptook by roots and elements distribution in root section.Root plaque formation around the roots of P.crispus had influence on Fe,Mn,Si and P conc.and distribution in root surface and section,had some effects on Al and Ca,while had no effects on Mg, Cu and Zn in roots.For the different characteristics of root plaque formation around roots in Tangxunhu Lake sediment and Yuehu Lake sediment,the influence of root plaque on nutrient elements uptook by roots was different between P.crispus grew in Tangxunhu Lake sediment with Yuehu Lake sediment.
     7) Compared with the control,P.crispus growth had influence on the water-extracted nutrients conc.in sediment and nutrients conc.in pore water,overlying water.The effect of P.crispus growth on water-extracted nutrients conc.in sediment,nutrients conc.in pore water and overlying water was complicated for different time,different nutrients and different sediment.Generally,after the period of returning-green and flourish growth,the influence of P.crispus growth became more obvious.P. crispus growth had less influence on the nutrient conc.changes in overlying water,by comparing with the influence on changes in water-extracted nutrient conc.and nutrient conc.in pore water.
引文
1.包先明,陈开宁,范成新.浮叶植物重建对富营养化湖泊氮磷营养水平的影响.生态环境,2005,14(6):807-811
    2.蔡妙珍,罗安程,章永松,林咸永,叶继术.水稻根表铁膜对磷的富集作用及其与水稻磷吸收的关系.中国水稻科学,2003,17(2):187-190
    3.陈飞星,朱斌.利用水生植物改善北京动物园水环境的研究初探.上海环境科学,2002,21(8):469-472
    4.陈国祥,刘双,王娜等.磷对水生植物菱及睡莲叶生理活性的影响.南京师大学报(自然科学版),2005,25(1):71-77
    5.陈洪达.菹草的生活史、生物量和断枝的无性繁殖.水生生物学报,1985,9(1):32-39
    6.陈洪达.菹草生产力的研究.水生生物学报,1989,13(2):49-64
    7.陈小峰,陈开宁,肖月娥,张寿栋,王庆亚.光和基质对菹草石芽萌发、幼苗生长及叶片光合效率的影响.应用生态学报,2006,17(8):1413-1418
    8.成小英,李世杰.长江中下游典型湖泊富营养化演变过程及其特征分析.科学通报,2006a,51(7):848-855
    9.成小英,李世杰,濮培民.城市富营养化湖泊生态恢复——南京莫愁湖物理生态工程试验.湖泊科学,2006b,18(3):218-224
    10.成小英,王国祥,濮培民,张圣照,陈宝君.冬季富营养化湖泊中水生植物的恢复及净化作用.湖泊科学,2002,14(2):139-144
    11.戴莽,倪乐意,谢平等.利用大型围隔研究沉水植被对水体富营养化的影响.水生生物学报,1999,23(2):97-101
    12.高健,罗青,李刚,杨劭.溶氧、温度、氮和磷对菹草冬芽萌发和生长的影响.武汉大学学报(理学版),2005,51(4):511-516
    13.关保华,葛滢,常杰等.富营养化水体中植物的元素吸收与净化能力的关系.浙江大学学报(理学版),2002,29(2):190-197
    14.何池全,叶居新.石菖蒲(Acourus tatarinowii)克藻效应的研究.生态学报,1999,19(5):754-758
    15.何春娥,刘学军,张福锁.植物根表铁膜的形成及其营养与生态环境效应.应用生态学报,2004,15(6):1069-1073
    16.间永兴,王建波,何国庆,陈家宽.水深、基质、光和去苗对菹草石芽萌发的影响.水生生物学报,2001,25(3):224-229
    17.金送笛,李永函,倪彩虹等.菹草(Potamogeton crispus)对水中氮、磷的吸收及若干影响因素.生态学报,1994a,14(2):168-173
    18.金送笛,李永函,陶永明.有效碳对菹草光合作用及吸收氮、磷的影响.大连水产学院学报,1994b,9(2):6-11
    19.金相灿,胡小贞.中国湖泊富营养化控制技术.见:国家环境保护总局科技标准司编,中国湖泊富营养化及其防止研究.北京:中国环境科学出版社,2001,8-15
    20.李世杰,窦鸿身,舒金华等.我国湖泊水环境问题与水生态系统修复的探讨.中国水利,2006,13:14-17
    21.李文朝.浅水湖泊生态系统的多稳态理论及其应用.湖泊科学,1997,9(2):97-103
    22.李文朝,连光华.几种沉水植物营养繁殖体萌发的光需求研究.湖泊科学,1996,8(增刊):25-29
    23.李永函,金送笛,刘国才.菹草型水体的理化因子和水生生物状况.大连水产学院学报,1992,6(2):1-11
    24.刘鸿亮,金相灿,荆一凤.湖泊底泥环境疏浚工程技术.中国工程科学,1999,1(1):81-84
    25.柳惠清.湖泊污染内源治理中的环保疏浚.见:国家环境保护总局科技标准司编,中国湖泊富营养化及其防止研究.北京:中国环境科学出版社.2001,76-84
    26.刘文菊,张西科,尹军,毕淑琴,甄兰.磷胁迫对水稻基因型根系形态及吸收铁锰铜锌的影响.生态环境,2003,12(1):49-51
    27.刘正文.湖泊生态系统恢复与水质改善.中国水利,2006,17:30-33
    28.娄玉杰,杨连玉,张庆华.菹草的生物学特性及营养价值.中国饲料,2(130,10:27-31
    29.陆景陵.植物营养学.北京:中国农业大学出版社,2003,13-99
    30.马井泉,厨怀东,董哲仁.我国应用生态技术修复富营养化湖泊的研究进展.中国水利水电科学研究院学报,2005,3(3):209-215
    31.马立珊,骆永明,吴龙华等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究.土壤,2000,2:99-101
    32.倪乐意.大型水生植物.见:刘建康主编,高级水生生物学.科学出版社,1999,224-233
    33.濮培民,李正魁,王国祥.提高水体净化能力控制湖泊富营养化.生态学报,2005,25(10):2757-2763
    34.濮培民,王国祥,胡春华等.底泥疏浚能控制湖泊富营养化吗?湖泊科学.2000,12(3):269-279
    35.秦伯强.长江中下游浅水湖泊富营养化发生机制及控制途径初探.湖泊科学,2002,14(3):193-201
    36.邱东茹,吴振斌.武汉东湖水生植物生态学研究——Ⅲ沉水植被重建的可行性研究.长江流域资源与环境,1998,7(1):42-48
    37.任久长,乔建荣,董巍等.菹草(Potamogeton crispus)的生态习性和在京密饮水渠的发生规律研究.北京大学学报(自然科学版),1997,33(6):749-755
    38.沈明卫,陈志银,苗香雯,Mercks R.利用水葫芦净化养鳖废水的问题研究.农业环境保护,2002,21(4):337-339
    39.司友斌,包军杰,曹德菊等.香根草对富营养化水体净化效果研究.应用生态学报,2003,14(2):277-279
    40.宋祥甫,邹国燕,吴伟明等.浮床水稻对富营养化水体中氮、磷的去除效果及规律研究.环境科学学报,1998,18(3):489-494
    41.孙文浩,余淑文,杨善元等.凤眼莲根系分泌物中的克藻物质.植物生理学报,1993,19(1):92-96
    42.孙亚敏,董曼玲,汪家权.内源污染对湖泊富营养化的作用及对策.合肥工业大学学报(自然科学版),2000,23(2):210-213
    43.田永杰,唐志坚,李世斌.我国湖泊富营养化的现状和治理对策.环境科学与管理,2006,31(5):119-121
    44.王斌,周莉萍,李伟.不同水质条件下菹草的净化作用及其生理反应初步研究.武汉植物学研究,2002,20(2):150-152
    45.王国祥,成小英,濮培民.湖泊藻型富营养化控制——技术、理论及应用.湖泊科学,2002,14(3):273-282
    46.王开宇.我国湖泊的主要环境问题及综合治理对策.见:国家环境保护总局科技标准司编,中国湖泊富营养化及其防止研究.北京:中国环境科学出版社.2001,23-28
    47.王勇,焦念志.营养盐对浮游植物生长上行效应机制的研究进展.海洋科学,2000,24(10):30-33
    48.吴洁,虞左明.西湖浮游植物的演替及富营养化治理措施的生态效应.中国环境科学,2001,21(6):540-544
    49.吴玉树,余国莹.根生沉水植物菹草(potamogenton crispus)对滇池水体的净化作用.环境科学学报,1991,11(4):411-416
    50.吴振斌,邱东茹,贺锋,刘保元,邓家齐,詹发萃.水生植物对富营养水体水质净化作用研究.武汉植物学研究,2001,19(4):299-303
    51.夏会龙,吴良欢,陶勤南.凤眼莲加速水溶液中马拉硫磷降解.中国环境科学,2001,21(6):553-555
    52.夏会龙,吴良欢,陶勤南.凤眼莲植物修复水溶液中甲基对硫磷的效果与机理研究.环境科学学报,2002,22(3):329-332
    53.谢苏婧,谢树莲,谢宝妹.藻类植物中钙、镁、铁、锰、铜和锌含量分析.光谱学与光谱分析,2003,23(3):615-616
    54.徐德兰,刘正文,曾勇,王洪君.芦苇对太湖沉积物的影响.中国矿业大学学报,2005,34(2):148-151
    55.颜素珠.中国水生高等植物图说.科学出版社,1983,1-16
    56.杨丹菁,靖元孝,陈兆平等.水翁对富营养化水体氮、磷去除效果及规律研究.环境科学学报,2001,21(3):637-639
    57.杨富亿.菹草的经济价值及其栽培养鱼技术.资源开发与市场,1996,195-197
    58.余国营,张晓华,梁小民等.滇池水-植物系统金属元素的分布特征和相关性研究.水生生物学报,2000,24(2):172-177
    59.喻勋林,曹铁如.水生观赏植物.中国建筑工业出版社,2005,
    60.曾宪锋,邱贺媛,刘稳昌.菹草石芽的初步研究.生物学杂志,1996,1:28
    61.曾祥忠,吕世华,刘文菊等.根表铁、锰氧化物胶膜对水稻铁、锰和磷、锌营养的影响.西南农业学报,2001,14(4):34-38
    62.张圣照,王国祥,濮培民.太湖藻型富营养化对水生高等植物的影响及植被的恢复.植物资源与环境,1998,7(4):52-57
    63.张西科,张福锁,毛如达.水稻根表铁氧化物胶膜对水稻吸收磷的影响.植物营养与肥料学报,1997,7(3):262-267
    64.赵文,董双林,申屠青春,张兆琪,戴昀娣.盐碱池塘水生大型植物的研究.植物研究,2001,21(1):140-146
    65.朱斌,陈飞星.利用水生植物净化富营养化水体的研究进展.上海环境科学,2002,21(9):564-576
    66.庄源益,赵凡,戴树桂等.高等水生植物对藻类生长的克制效应.环境科学进展,1995,3(6):44-49
    67.左进城,贺锋,成水平,吴娟,吴振斌.富营养底质对沉水植物的胁迫研究1.乙酸对伊乐藻和菹草萌发与幼芽生长的影响.武汉植物学研究,2006,24(5):424-428
    68.AGvan der V,Rhymer J M.,Murkin H R.Flooding and the decomposition of litter of four emergent plant species in a prairie wetland Wetlands,1991,11(1):1-16
    69.Aldridge K T,Ganf G G.Modification of sediment redox potential by three contrasting macrophytes:implications for phosphorous adsorption/desorpation.Marine and Freshwater Research,2003,54:87-94
    70.Ali M B,Vajpayee P,Tripathi R D,Rai U N,Kumar A,Singh N,Behl H M,Singh S P.Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L.Bulletin of Environmental Contamination and Toxicology,2000,65(5):573-582
    71.Amicucci E,Gaschler K,Ward JM.NADPH oxidase genes from tomato(Lycopersicon esculentum) and curly-leaf pondweed(Potamogeton crispus).Plant Biology,1999,1(5):524-528
    72.Anderson B.Aquatic macrophytes in the north part of Lake Malaren,1969-1971.Vatten,1972,28(1):40-48
    73.Anderson M R.The relationships between sediment nutrients and aquatic macrophyte biomass in situ.Dissertation Abstracts International B Sciences and Engineeering,1986,46(11):
    74.Assani A A,Franc ois P,Louis L.The relation between geomorphological features and species richness in the low flow channel of the Warche,downstream from the Bu"tgenbach dam (Ardennes,Belgium).Aquatic Botany,2006,85:112-120
    75.Balls H,Moss B,lrvine K.The effects of high nutrient loading on interactions between aquatic plants and phytoplankton.International Association of Theoretical and Applie Limnology,1984,22(2):2912-2915
    76.Barko J W,Gunnison D,Carpenter S R.Sediment interactions with submersed macrophyte growth and community dynamics.Aquatic Botany,1991,41(1-3):41-65
    77.Batty L C,Baker A J M,Wheeler B D,Curtis C D.The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis(Cav.) Trin ex.Steudel.Annals of Botany,2000,86:647-653
    78.Bayly I L,Freeman E A.Seasonal variation of selected cations in Acorus calamus L.Aquatic Botany,1977,3:65-84
    79.Best E P H.Seasonal changes in mineral and organic components of Ceratophyllum demersum and Elodea canadensis.Aquatic Botany.1977,3:337-348
    80.Bini L M,Thomaz S M.,Murphy K J,Camargo A F M.Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir,Brazil.Hydrobiologia,1999,415:147-154
    81.Black K P,Parry G D.Sediment transport rates and sediment disturbance due to scallop dredging in Port Phillip Bay.Oceanographic Literature Review,1995,42(6):502
    82.Boar,R.R.Temporal variations in the nitrogen content of Phragrnites australis(Cav.) Trin.ex Steud.from a shallow fertile lake.Aquatic Botany,1996,55(3):171-181
    83.Boston,H L.A discussion of the adaptations for carbon acquisition in relation to the growth strategy of aquatic isoetids.Special Issue:Submerged macrophytes,Aquatic Botany,1986,26(3-4):259-270
    84.Boyer K E,Fong P,Vance R R,Ambrose R F.Salicomia virginica in a southern California salt marsh:Seasonal patterns and a nutrient-enrichment experiment.Wetlands,2001,21(3):315-326
    85.Bradley P M,Morris J T.Effect of salinity on the critical nitrogen concentration of Spartina alterniflora Loisel.Aquatic Botany,1992,43(2):149-161
    86.Brock Th C M,Bongaerts M C M,Heijnen G J M,Heijthuijsen A J H F G.Nitrogen and phosphorus accumulation and cycling by Nymphoides peltata(Gmel.) O.Kuntze (Menyanthaceae).Aquatic Botany,1983,17(3-4):189-214
    87.Burkholder J M,Wetzel R G.Epiphytic alkaline phosphatase on natural and artificial plants in an oligotmphic lake:Re-evaluation of the role of macrophytes as a phosphorus source for epiphytes.Limnology and Oceanography,1990,35(3):736-747
    88.Byl T D,Bailey F C,Klaine S J.Oxidation of the rhizosphere by aquatic plant roots:does acid volatile sulfide adequately predict metal availability? 13th Annual Meeting Society of Environmental Toxicology and Chemistry,1992,Pensacola,USA
    89.Canfield D E Jr,Hoyer M V.Influence of nutrient enrichment and light availability on the abundance of aquatic macrophytes in Florida streams.Canadian Journal of Fisheries and Aquatic Sciences,1988,45(8):1467-1472
    90.Cao T,Ni L,Xie P.Acute biochemical responses of a submersed macrophyte,Potamogeton crispus L.,to high ammonium in an aquarium experiment.Journal of Freshwater Ecology,2004,19(2):279-284
    91.Carpenter S R,Adams M S.The macrophyte tissue nutrient pool of a hardwater eutrophic lake:Implications for macrophyte harvesting.Aquatic Botany,1977,3:239-255
    92.Carpenter S R,Elser J J,Olson K M.Effects of Myriophyllum verticillatum L.on sediment redox.Aquatic Botany,1983,17(3-4):243-249
    93.Carpenter S R,Lodge D M.Effects of submersed macrophytes on ecosystem processes.Aquatic Botany,1986,26:341-370
    94.Carr G M,Bod S A E,Duthie H C,Taylor W D.Macrophyte biomass and water quality in Ontario rivers.Journal of the North American Benthological Society,2003,22(2):182-193
    95.Carr G M,Chambers P A.Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river.Freshwater Biology,1998,39(3):525-536
    96.Cathleen W,Stevenson J C,Comwell J C.Effects of different submersed macrophytes on sediment biogeochemistry.Aquatic Botany,1997,56(3-4):233-244
    97.Chabbi A,Hines M E,Rumpel C.The role of organic carbon excretion by bulbous rush roots and its turnover and utilization by bacteria under iron plaques in extremely acid sediments.Environmental and Experimental Botany,2001,46(3):237-245
    98.Chambers P A,Kalff J.The influence of sediment composition and irradiance on the growth and morphology of MyriophyUum spicatum L.Aquatic Botany,1985,22,253-263
    99.Chambers P A,Kalff J.Light and nutrients in the control of aquatic plant community structure.1.In situ experiments.Journal of Ecology,1987,75(3):611-619
    100.Chambers P A,Prepas E E,Bothwell M L.Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters.Can.J.Fish.Aquat.Sci,1989,46:435-439
    101.Chambers R M,Fourqurean J W.Alternative criteria for assessing nutrient limitation of a wetland macrophyte(Peltandra virginica(L.) Kunth).Aquatic Botany,1991,40(4):305-320
    102.Chanita P,Clough B,Patanaponpaiboon P.Salt uptake and shoot water relations in mangroves.Aquatic Botany,2004,78:349-360
    103.Christensen K K,Wigand C.Formation of root plaques and their influence on tissue phosphorus content in Lobelia dortmanna.Aquatic Botany,1998,61:111-122
    104.Cizkova H,Istvanovics V,Bauer V,Balazs L.Low levels of reserve carbohydrates in reed (Phragmites australis) stands of Kis-Balaton,Hungary.Aquatic Botany,2001,69(2-4):209-216
    105.Craft C B,Vymazal J,Richardson C J.Response of Everglades plant communities to nitrogen and phosphorus additions.Wetlands,1995,15(3):258-271
    106.Cronin G,William M L Jr,Michael A S.Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir.Aquatic Botany,2006,85:37-43
    107.Daoust R J,Childers D L.Controls on emergent macrophyte composition,abundance,and productivity in freshwater Everglades wetland communities.Wetlands,1999,19(1):262-275
    108.Dubois J P.Uptake of macroelements by the helophyte Phalaris arundinacea L.Aquatic Sciences,1994,56(1):70-79
    109.Durate C M.Nutrient concentration of aquatic plants:Patterns across species.Limnology and Oceanography,1992,37(4):882-889
    110.Edit A-S,Ma'ria D,La'szlo' N,Ga'bor H.Decomposition of Phragmites australis rhizorne in a shallow lake.Aquatic Botany,2006,85:309-316
    111.Falcao M,Gaspar M.B,Caetano M,Santos M N,Vale C.Short-term environmental impact of clam dredging in coastal waters(south of Portugal):chemical disturbance and subsequent recovery of seabed.Marine Environmental Research,2003,56(5):649-664
    112.Fernandez-Alaez M,Fernandez-Alaez C,Becares E.Nutrient content in macrophytes in Spanish shallow lakes.Hydrobiologia,1999,408/409:317-326
    113.Finlayson C M,Farrell T P,Griffiths D J.Studies of the hydrobiology of a tropical lake in north-weaten Queensland.Ⅲ.Growth,chemical composition and potential for harvesting of the aquatic vegetation.Aust.J.Mar.Freshwat.Res.,1984,35(5):525-536
    114.Flessa H.Plant-induced changes in the redox potential of rhizosphers of the submerged vascular macrophytes Myriophyllum verticillatum L.and Ranunculus circinatus L.Aquatic Botany,1994,47:119-129
    115.Fouad M B,Garrard L A,Hailer W T.Absorption of iron and growth of Hydrilla verticillata (L.F.) Royle.Aquatic Botany,1977,3:349-356
    116.Garver E G,Dubbe D R,Pratt D C.Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp.Aquatic Botany,1988,32(1-2):115-127
    117.Gentner S-R.Uptake and transport of iron and phosphate by Vallisneria spiralis L.Aquatic Botany,1977,3:267-272
    118.Gerritsen J,Greening H S.Marsh seed banks of the Okefenokee Swamp:Effects of hydrologic regime and nutrients.Ecology,1989,70(3):750-763
    119.Gratton C,Denno R F.Inter-year carryover effects of a nutrient pulse on Spartina plants,herbivores,and natural enemies.Ecology,2003,84(10):2692-2707
    120.Greenway M.Litter accession and accumulation in a Melaleuca quinquenervia(Cav.) S.T.Blake wetland in south-eastern Queensland.Aust.J.Mar.Freshwat.Res.,1994,45(8):1509-1519
    121.Guenzl H.The growth and senescence of Potamogeton crispus in Lake Federsee after the opening of a sewage pipeline.Lakeshore Deterioration and Restoration Works in Central Europe,1993,5:33-39
    122.Hafez M B,Hafez N,Ramadan Y S.Uptake of cerium,cobalt and cesium by Potamogeton crispus.Journal of Chemical Technology and Biotechnology,1992,54(4):337-340
    123.Hafez N,Abdalla S,Ramadan Y S.Accumulation of phenol by Potamogeton crispus from aqueous industrial waste.Bull Environ Contam Toxicol,1998,60:.944-948
    124.Hansen J W,Pedersen A.-GU,Berntsen J,Roenboeg I S,Hansen L S,Lomstein B A.Photosynthesis,respiration,and nitrogen uptake by different compartments of a Zostera marina community.Aquatic Botany,2000,66(4):281-295
    125.Haraguchi A,Uemura S,Yabe K.Effects of nutrient loadings from catchments on Asajino mire,a small coastal ombrotrophic mire in northernmost Japan.Ecological Research,2000,15(1):107-112
    126.Heilmeier H,Ratcliffe R G,Hartung W.Urea:a nitrogen source for the aquatic resurrection plant Chamaegigas intrepidus Dinter.Oecologia.,2000,123(1):9-14
    127.Hennessy M,Murphy K J.Nutrient and aquatic plant status of freshwater lochs in the Shetland Islands.Abstract,Thirty-second annual meeting and international symposium on the biology and management of aquatic plant,1992,14
    128.Herad T A,Winterton S L.Interactions between nutrient stares and weevil herbivory in the biological control of water hyacinth.Journal of Applied Ecology,2000,37(1):117-127
    129.Hoagland C R,Gentry L E,David M B,Kovacic D A.Plant nutrient uptake and biomass accumulation in a constructed wetland.Journal of Freshwater Ecology,2001,16(4):527-540
    130.Hosoi Y,Kido Y,Miki M,Sumida M.Field examination on reed growth,harvest and regeneration for nutrient removal.Water Science & Technology,1998,38(1):351-359
    131.Huebert D B,Shay J M.The effect of external phosphorus,nitrogen and calcium on growth of Lemna trisulca.Aquatic Botany,1991,40(2):175-183
    132.Hupfer M,Dollan A.Immobilisation of phosphorus by iron-coated roots of submerged macrophytes.Hydrobiologia,2003,506-509(15):635-640
    133.Jian Y,Li B,Wang J,Chen J.Control of turion germination in Potamogeton crispus.Aquatic Botany,2003,75(1):59-69
    134.Jian Y,Wang J,He G,Chen J.Effects of water-depth gradients,matrices,light and removal of plantlets on germination of turions of Potamogeton crispus L Acta Hydrobiologica Sinica,2001,25(3):224-229
    135.Jin S,Li Y,Wang Y.Effects of ecological factors on photosynthesis of Potamogeton crispus.Acta Hydrobiologica sinica,1991,15(4):295-302
    136.Johnson M W,Kenneth L H,James W.Fourqurean.Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico:Evidence of phosphorus and nitrogen limitation.Aquatic Botany,2006,85(2):103-111
    137.Jones J I.Short communication:The metabolic cost of bicarbonate use in the submerged plant Elodea nuttallii.Aquatic Botany,2005,83:71-81
    138.Jordan T E,Whigham D F,Correll D L.Effects of nutrient and litter manipulations on the narrow-leaved cattail,Typha angustifolia L.Aquatic Botany,1990,36(2):179-191
    139.Kadomo Y.Germination of the turion of Potamogeton crispus L..Physiology & Ecology of Japan,1982,19(1):1-5
    140.Kamal M,Ghaly A E,Mahmoud N,Cote R.Phytoaccumulation of heavy metals by aquatic plants.Environment International,2004,29:1029-1039
    141.Kasper K C.Difference in iron,manganese,and phosphorus binding in freshwater sediment vegetated with Littorella uniflora and Benthic microalgae.Water,Air and Soil Pollution,1997,99:265-273
    142.Kerry K S,Ornes W H.Mineral nutrition of sawgrass(Cladium Jamaicense Crantz) in relation to nutrient supply.Aquatic Botany,1983,16:349-359
    143.Kiehl K,Esselink P,Bakker J P.Nutrient limitation and plant species composition in temperate salt marshes.Oecologia,1997,111(3):325-330
    144.Koerselman W,Meuleman A F M.The vegetation N:P ratio:A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology,1996,33(6):1441-1450
    145.Kohl J-G,Woitke P,Kuehl H,Dewender M,Koenig G.Seasonal changes in dissolved amino acids and sugars in basal culm intemodes as physiological indicators of the C/N-balance of Phragmites australis at littoral sites of different trophic status.Aquatic Botany,1998,60(3):221-240
    146.Kufel I.Lead and molybdenum in reed and cattail-open versus closed type of metal cycling.Aquatic Botany,1991,40(3):275-288
    147.Kufel L,Ozimek T.Can Chara control phosphorus cycling in Lake Luknajno(Poland)? Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes.Hydrobiologia,1994,275-276:277-283
    148.Kuhl H,Hohl J G.Seasonal nitrogen dynamics in reed beds(Phramites australis) in relation of productivity.Hydrobiologia,1993,251:1-12
    149.Kumar P,Gupta R K.Growth characteristics of Potamogeton crispus and Elodea canadensis in polluted water.Pollution Research,2002,21(3):305-307
    150.Kunii H.Life cycle and growth of Potamogeton crispus L.in a shallow pond,Ojagaike.Bot.Mag.Tokyo,1982,95:109-124
    151.Kunii H.Continuous growth and clump maintenance of Potamogeton crispus L.in Narutoh River,Japan.Aquatic Botany,1989,33(1-2):13-26
    152.Lauridsen T L,Jeppesen E,Soendergaard M.Colonization and succession of submerged macrophytes in shallow Lake Vaeng during the first five years following fish manipulation.Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes,Hydrobiologia,1994,257-276:233-242
    153.Leel A A,Bukaveckas P A.Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities.Aquatic Botany,2002,74:273-285
    154.Lesley C B,Baker A J M,Wheeler B D.Aluminium and phosphate uptake by Phragmites australis:The role of Fe,Mn,and Al root plaques.Annals of Botany,2002,89:443-449
    155.Levine J M,Brewer J S,Bertness M D.Nutrients,competition and plant zonation in a New England salt marsh.Journal of Ecology,1998,86,(2):285-292
    156.Lilit V G,Ingole B S.Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim(India) lake systems.Envrionment International,2006,32:208-218
    157.Lorenzen B,Brix H,Mendelssohn I A,McKee K L,Miao S L.Growth,biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability.Aquatic Botany,2001,70(2):117-133
    158.Louise S-C,Peter G C C.Bioavailability of sediment-bound metals for Vallisneria americana Michx,a submerged aquatic plant,in the St.Lawrence river.Canadian Journal of Fisheries and Aquatic Sciences,2000,57(7):1330-1340
    159.Lyngby J E,Brix H.Seasonal changes in the concentrations of Ca,Fe,K,Mg,Mn and Na in eelgrass(Zostera marina L.) in the Limfjord,Denmark.Aquatic Botany,1983,17:107-117
    160.Madsen T V,Cedergreen N.Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream.Freshwater Biology,2002,47(2):283-291
    161.Mary L J,Carpenter S R.Effects of vasctdar and nonvascular macrophytes on sediment redox and solute dynamics.Ecology,1986,67(4):875-882
    162.McComas S.The role of lake soils in diagnosing and manageing excessive aquatic plant growth.Lake and Reservoir Management,1994,9(2):97-98
    163.McFarland D G,Barko J W,McCreary N J.Effects of sediment fertility and initial plant density on growth of Hydrilla verticillata(L.F.) Royle and Potamogeton nodosus Poiret.Journal of freshwater ecology,1992,7(2):191-200
    164.McIntosh A W,Shephard B K,Mayes R A,Atchison G J,Nelson D W.Some aspects of sediment distribution and macrphyte cycling of heavy metals in a contaminated lake.Journal of Environmental Quality,1978,7(2):301-305
    165.McJannet C L,Keddy P A,Pick F R.Nitrogen and phosphorus tissue concentrations in 41wetland plants:A comparison across habitats and functional groups.Functional Ecology,1995,9(2):231-238
    166.Meegoda J N,Wakeman T H,Arulmoli A K,Librizzi W J.Dredging and management of dredged material.Oceanographic Literature Review,1998,45(7):1254
    167.Miao S,Newman S,Sklar F H.Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis.Aquatic Botany,2000,68(4):297-311
    168.Michael R C,Bailey P C,Boon P I.Effects of salinity on the decay of the freshwater macrophyte,Triglochin procerum.Aquatic Botany,2006,84:45-52
    169.Morris K,Ganf G G.The response of an emergent sedge Bolboschoenus medianus to salinity and nutrients.Aquatic Botany,2001,70(4):311-328
    170.Mulligan H F,Baranowski A.Growth of phytoplankton and vascular aquatic plants at different nutrient levels.Veda.Internat.Verein.Limnol.,1969,17:802-810
    171.Mulligan H F,Baranowski A,Johnson R.Nitrogen and phosphorus fertilization of aquatic vascular plants and algae in replicated ponds Ⅰ.Initial response to fertilization.Hydrobiologia,1976,48(2):109-116
    172.Nichols S A,Shaw B H.Ecological life histories of the three aquatic nuisance plants,Myriophyllum spicatum,Potamogeton crispus and Elodea canadensis.Hydrobiologia,1986,131(1):3-21
    173.Ni L.Stress of fertile sediments on the growth of submersed macrophytes in eutrophic waters.Acta Hydrobiologica Sinica,2001,25(4),399-405
    174.Omer L St.Small-scale resource heterogeneity among halophytic plant species in an upper salt marsh community.Aquatic Botany,2004,78:337-448
    175.Othman S B.The growth and biomass production of Rhizophora mucronata in response to the varying concentrations of nitrogen and phosphorus in water culture:Tropical Ecology,1992,33(2):164-171
    176.Pelton D K,Levine S N,Braner M.Measurements of phosphorus uptake by macrophytes and epiphytes from the LaPlatte River(VT) using ~(32)P in stream microcosms.Freshwater Biology,1998,39(2):285-299
    177.Peralta G B,Tjeerd J van S,Jos P-L,Jose L,Ignacio H.On the use of sediment fertilization for seagrass restoration:a mesocosm study on Zostera marina L.Aquatic Botany,2003, 75(2):95-110
    178.Peverly J H.Elemental distribution and macrophyte growth downstream from an organic soil.Aquatic Botany,1979,7(4):319-338
    179.Peverly J H,Brittain J.Effect of milfoil(Myriophyllum spicatum L.) on phosphorus movement between sediment and water.Journal of Great Lakes Research,1978,4(1):62-68
    180.Qu W,Mike D,Wang S.Multivariate analysis of heavy metal and nutrient concentrations in sediments of Taihu Lake,China.Hydrobiologial,2001,450:83-89
    181.Rattray M R,Howard-Williams C,Brown J M A.Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes.Aquatic Botany,1991,40:225-237
    182.Richardson C J,Ferrell G M,Vaithiyanathan P.Nutrient effects on stand structure,resorption efficiency,and secondary compounds in Everglades sawgrass.Ecology,1999,80(7):2182-2192
    183.Rip W J,Rawee N,Jong A de.Alternation between clear,high-vegetation and turbid,low-vegetation states in a shallow lake:the role of birds.Aquatic Botany,2006,85(3):184-190
    184.Rogers K H,Bleen C M.Growth and reproduction of Potamogeton crispus in a south Africa lake.J.Ecol,1980,68:561-571
    185.Samecka-Cymerman A,Kempers A J.Concentrations of heavy metals and plant nutrients in water,sediments and aquatic macrophytes of anthropogenic lakes(former open cut brown coal mines) differing in stage of acidification.The Science of the Total Environment,2001,281,87-98
    186.Samecka-Cymerman A,Kempers A J.Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry.Ecotoxicology and Envrionmental Safety,2004,59,64-69
    187.Sand-Jensen K.Photosynthetic carbon sources of stream macrophytes.Journal of Experimental Botany,1983,34(139):198-210
    188.Sastroutomo S S.Environmental control of turion formation in curly pondweed.Physiol.Plant,1980,49(3):261-264
    189.Sastroutomo S S.Turion formation,dormancy and germination of curly pondweed,Potamogeton cirspus L.Aquatic Botany,1981,10(2):161-173
    190.Schulz M,Bjorn G.Macrophytes increase spatial patchiness of fluvial sedimentary records and effect temporal particulate nutrient storage.Aquatic Geochemistry,2005,11,89-107
    191.Scinto L J,Reddy K R.Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland.Aquatic Botany,2003,77(3):203-222
    192.Shardendu,Ambasht R S.Relationship of nutrients in water with biomass and nutrient accmmulafion of submerged macrophytes of a tropical wetland.New Phytologist,1991,117(3):493-501
    193.Sheldon S P.Factors influencing the numbers of branches and inflorescences of Potamogeton richardsonii(A.Beun.) Rydb.Aquatic Botany,1986,24(1):27-34
    194.Shin H C,Kim Y S,Cho K H,Choi H K.Relationship between the distribution of hydrophytes and water quality in Asan City,Korea with special reference to submerged hydrophytes.Korean Journal of Limnology,1997,30(4):423-429
    195.Shrivastav A K,Ambasht R S,Kumar R.Net biomass production,energy and nutrients of Potamogeton crispus L.in unpolluted and polluted waters of Ganga River at Varanasi,India.Geo-Eco-Trop,1993,17(1-4):137-147
    196.Smil V.Phosphorus in the envieomnent:Natural flows and human interferences.Annual Review of Energy and the Enviromnent,2000,25:53-88
    197.Smith C S,Adams M S.Phosphorus transfer from sediments by Myriophyllum spicatum.Limnology and Oceanography,1986,31(6):1312-1321
    198.Steve S,Matt N.Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plant.Environmental Science & Technology,2001,35(19)3863-3868
    199.Susanne S,Arnulf M.Sediment and water nutrient characteristics in patches of submerged macrophytes in running waters.Hydmbiologia,2004,527:195-207
    200.Szankowski M.,Klosowski S.Habitat conditions of nymphaeid associations in Poland.Hydrobiologia,1999,415(15):177-185
    201.Takamura N,Yasuro K,Michio F,Megumi N,Kim B-H O.Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes.Ecological Research,2003,18(4):381-396
    202.Tanner C C.Plants for constructed wetland treatment systems-a comparison of the growth and nutrient uptake of eight emergent species.Ecological Engineering,1986,7(1):59-83
    203.Tanner C C.Growth and nutrient dynamics of soft-stem bulrush in constructed wetlands treating nutrient-rich wastewaters.Wetlands Ecology and Management,2001,9(1):49-73
    204.Terry W S,Tanner G W.Mineral concentration within freshwater marsh plant communities.Journal of freshwater ecology,1984,2(5):509-518
    205.Thomas E A,Schanz F.The relationship between the water chemistry and primary production in flowing water,a limnological problem.Vierteljahrsschr.Naturforsch.Ges.Zurich,1976,121(4):309-317
    206.Thormann M N,Bayley S E.Response of aboveground net primary plant production to nitrogen and phosphorus ferfiliiztion in peatlands in southern boreal Alberta,Canada.Wetlands,1997,17(4):502-512
    207.Tobiessen P,Snow P D.Temperature and light effects on the growth of Potamogeton crispus in Collins Lake,New York State.Canadian Journal of Botany,1984,62(12):2822-2826
    208.Twilley R R,Ejdung G,Romare P,Kemp W M.A comparative study of decomposition,oxygen consumption and nutrient release for selected aquatic plants occurring in an estuarine environment.Oikos,1986,47(2):190-198
    209.Twilley R R,Kemp W M,Staver K W.Nutrient enrichment of estuarine submersed vascular plant communities.I.Algal growth and effects on production of plants and associated communities.Marine Ecology,1985,23:179-191
    210.Tyler G,Olsson T.Plant uptake of major and minor mineral elements as influenced by soil acidity and liming.Plant and Soil,2001,230(2):307-321
    211.Vandycke S.New developments in environmental dredging:from scoop to sweep dredge.Oceanographic Literature Review,1997,44(4):389
    212.Van Eeckhout G,Quade H W.An examination of nutrient partitioning in a entmphic south central Minnesota lake dominated by the macrophyte Potamogeton crispus.Lake and Reservoir Management,1994,9(2):120
    213.Vellidis G,Lowrance R,Gay P,Hubbard R K.Nutrient transport in a restored riparian wetland.J.Environ.Qual,2003,32:711-726
    214.Vincent W J.Nutrient partitioning in the upper Canning River,Western Australia,and implications for the control of cyanobacterial blooms using salinity.Ecological Engineering,2001,16(3):359-371
    215.Waisel Y,Oertli J J,Stahel A.The role of macrophytes in phosphorus turnover:Sources and sinks.8th International Symposium on Aquatic Weeds,1990,199:243-248,Uppsala,Sweden
    216.Wehrmeister J R,Stuckey R L.Life history of Potamogeton crispus.Michigan Botanist,1992,31(1):3-16
    217.Wigand C,Finn M,Findlay S,Fischer D.Submersed macrophyte effects on nutrient exchanges in riverine sediments.Estuaries,2001,24(3):398-406
    218.Willby N J,Pulford I D,Flowers T H.Tissue nutrient signatures predict herbaceous-wetland community responses to nutrient availability.New Phytologist,2001,152(3):463-481
    219.Xie Y,Deng W,Wang J.Growth and root distribution of Vallisneria natans in heterogeneous sediment environments.Aquatic Botany,2007,86:9-13
    220.Xie Y H,Yu D.The significance of lateral roots in phosphorus(P) acquisition of water hyacinth (Eichhomia crassipes).2003,75(4):311-321
    221.Zhu D,Hamilton D.Effects of micronutrients on algae blooms with in-situ incubation in New Zealand Lakes.Scientific Research Monthly,2007,3:85-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700