用户名: 密码: 验证码:
基于虚拟现实与局部自主的空间机器人遥操作技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用空间机器人代替宇航员进行太空作业,不仅可以使宇航员避免在恶劣太空环境中作业时可能受到的伤害,还可以降低成本、提高空间探索活动的效率。由于空间工作环境非结构化及工作任务多变的特点,同时受计算机、控制、人工智能和机构等关键支撑技术发展水平的制约,目前研制出在空间环境下完全自主工作的机器人还很难实现。因此,切实可行的方法是充分利用人的智能进行高层任务规划,采用地面遥操作空间机器人的方式完成空间作业。本文针对卫星在轨维护任务,建立了卫星自维护的地面遥操作演示平台,对基于虚拟现实和局部自主的空间机器人遥操作进行了研究。
     本文建立了一套卫星在轨自维护的地面遥操作演示系统。利用人为增加时延的方法,位于武汉的操作者通过Internet遥操作位于哈尔滨的机器人完成卫星维护任务,模拟了地面遥操作空间机器人的大时延情况,并利用虚拟现实技术实现了三维图形预测显示,有效地克服了大时延对遥操作的影响。利用反馈的机器人实际位置和视觉识别操作对象结果,在虚拟环境下重新构建了虚拟的实际机器人和操作对象场景,有效地克服了低带宽对流畅视频传输的限制,使操作者直观形象地感知远端实际状态。
     在遥操作的主操作端,遥操作的操作安全性与操作性能之间是互斥的。手动操作的操作性能差但处理异常能力(安全性)强,离线任务规划的操作性能好但处理异常能力差。本文提出了在主端利用柔性虚拟夹具方法辅助遥操作,通过柔性系数调节机器人倾向于理想运动方向的程度,有效地将离线任务规划与操作者手动控制结合起来,在遥操作的安全性与操作性能之间进行折衷,保证了遥操作的操作精度与异常处理能力。并在此基础上,将虚拟力反馈、颜色识别及虚拟厚度方法融合到柔性虚拟夹具中,进一步提高了操作性能。
     在遥操作的从机器人端,实现了基于关节位置、关节力矩、腕力传感器和视觉的多传感器机器人局部自主功能,提高了机器人的智能水平。在自由运动阶段,采用基于视觉的机器人最优接近速度控制。在约束运动阶段,针对空间机器人经常与高刚度环境接触情况,基于力外环思想,本文提出了基于阻抗内环的力跟踪方法,对比实验证明该方法保证了机器人与高刚度环境接触时较好的力控制性能。
     基于虚拟现实遥操作的前提是虚拟模型与实际场景的一致性。然而,受空间环境变化及传感器测量误差等影响,虚拟模型与实际场景之间存在着不可避免的模型误差。本文将模型修正法与机器人的控制方法结合起来,一方面在遥操作主端利用反馈的机器人实际位置和视觉识别结果分别对虚拟机器人和虚拟操作对象的位姿进行修正,尽可能地减小虚拟模型与实际场景的差别;另一方面,对于仍残存的模型误差,在从机器人端采用对模型误差具有一定的鲁棒性的阻抗控制、混合阻抗控制方法,进一步消除残存的模型误差。实验证明了该方法能够消除模型误差对遥操作的影响。
     在本文的最后,对于结构化空间环境,采用基于虚拟现实的遥操作方式克服了约14秒的大通讯时延对遥操作的影响,顺利地完成了打开卫星天线的卫星维护任务。对于存在误差的非结构化空间环境,分别进行了打开卫星太阳能帆板和擦拭卫星镜头的两个典型卫星维护遥操作实验,克服了模型误差对遥操作的影响,验证了本文提出的空间机器人遥操作方法的正确性和有效性。
Space robots are utilized to complete space tasks instead of astronauts, which will not only avoid potential injury of astronauts while carrying out space tasks, but also decrease the cost and improve the efficiency of space exploration activities. Space robots usually works in an changeable workspace, and due to the limit of computer, control, artificial intelligence and mechanism technology, it is difficult to develop an autonomous space robot which could work automatically in the space environment. Therefore, the feasible way to control the space robot is ground teleoperation, which uses the human intelligence to achieve the high task planning. In this dissertation, the ground demonstration platform of satellite self-serving teleoperation is built, and virtual reality and local autonomy based space robot teleoperation is investigated.
     The ground teleoperation demonstration system of satellite on-orbit self-serving is established in this dissertation. In order to simulate the large time delay of space teleoperation, the artificial time delay is added and the operator(in Wuhan, China) teleoperates the space robot(in Harbin, China) to complete the satelliate serving tasks through Internet. The three-dimensional graphic predictive display is realized by virtual reality and the influernce of large time delay to teleoperation is conquered. Furthermore, according to the limit communication bandwidth, a virtual model of the actual environment is created at the operator side by the feedback robot joint angles and target visual recognition result, which overcomes the lack of smooth video due to the limit bandwidth, and the operator can obtain the remote status intuitively.
     At the master side, the manipulative safety and performance are mutually exclusive. Freehand control can achieve low precision and good abnormity handling ability, and the off-line task planning can obtain good precision and worse abnormity handling ability. In this paper an flexible virtual fixture is proposed to assist teleoperation at the operator side. It utilizes a flexible coefficient to regulate the prefered degree for robot movement, then combines freehand control and off-line task planning effectively, and makes a tradeoff between the manipulative safety and performance. Furthermore, the virtual force feedback, color recognition and virtual thickness are added to the flexible virtual fixture to enhance the manipulative performance.
     At the slave robot side, the robot intelligence is improved by local autonomy based on multi-sensors, which includes the robot joint position sensors, joint torque sensors, wrist force/torque sensor and vision sensor. During free space operation, the robot is control though the optimal approaching velocity based on vision. While during constraint space operation, according to the usual high stiffness contact tasks, a force tracking method based on the explicit control strategy is proposed in this thesis, which uses the impedance controller instead of the conventional position controller as the inner loop. The comparative experimental results show better force tracking performance according to the conventional method.
     The virtual reality based teleoperation seriously relies on the consistency of virtual model and real scene. However, because of the varying space environment and error of sensors measuring, there is inevitable model errors between the virtual model and real scene. In this thesis the method of model calibration and slave robot control with robustness against model errors are combined together to eliminate these errors. On one hand, at the operator side the virtual robot is correted through feedback robot joint angles, and virtual manipulative object is correted through vision, which eliminates the model errors at the largest degree. On the other hand, according to the small remaining model errors, at the remote slave robot side the impedance control and hybrid impedance control are used to eliminate the model errors further.
     At the last part of this dissertation, according to the structure space environment, the virtual reality is used to overcome the large communication time delay(bout 14 seconds)influence, and the deploying the antenna teleoperation experiment is accomplished successfully. According to the space environment with model errors, two representative satelliate self-serving teleoperation experimnets of deploying solar panel and rubbing camera lens are carried out, which overcomes the influence of model errors during teleoperation. The experimental results show the validity of the proposed space robot teleoperation method.
引文
1 L. Pedersen, D. Kortenkamp and D. Wettergreen. A Survey of Space Robotics. 7th International Symposium on Atificial Intelligence, Robotics and Automation in Space. Munich, Germany, 2003.
    2 T.B. Sheridan. Space Teleoperation through Time Delay: Review and Prognosis. IEEE Transactions on Robotics and Automation. 1993, 9(5): 959~606.
    3 L.F. Penin and K. Matsumoto. Teleoperation with Time Delay-A Survey and its Use in Space Robotics. Technical Report of National Aerospace Laboratory. 1999, 1~25.
    4 P. Arcara and C. Melchiorri. Control Schemes for Teleoperation with Time Delay- A Comparative Study. Robotics and Autonomous Systems. 2002, 38(1): 49~64.
    5李成,梁斌.空间机器人的遥操作.宇航学报. 2001, 22(1): 95~98.
    6丹宁.加拿大为国际空间站建造机械臂.中国航天, 1998, 3(4): 26~28.
    7 K. Landzettel, B. Brunner and etc. MSS Ground Control Demo with MARCO. Proceeding of 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Quebec, Canada, 2001: 1~5.
    8 B. Brunner, G. Hirzinger, and etc. Multisensory Shared Autonomy and Tele-sensor-programming-Key Issues in the Space Robot Technology Experiment ROTEX. Proceedings of IEEWRSJ International Conference on Intelligent Robots and Systems. 1993, 2123~2129.
    9 G. Hirzinger, B. Brunner and etc.. Sensor-based Space Robotics-ROTEX and its Telerobotic Features. IEEE Transactions on Robotics and Automation. 1993, 9(5): 649~663.
    10 I. Takashi, Y. Yasuyoshi. Ground-space Bilateral Teleoperation of ETS-VII Robot Arm by Direct Bilateral Coupling under 7-s Time Delay Condition. IEEE Transactions on Robotics and Automation. 2004, 20(3): 499~511.
    11 O. Mitsushige and D. Toshitsugu. Teleoperation System of ETS-VII Robot Experiment Satellite. IEEE International Conference on Intelligent Robots and Systems, Grenoble, France , 1997, Piscataway: 1644~1650.
    12 W. K. Yoon, T. Goshozono and etc.. Model-based Space Robot Teleoperation ofETS-VII Manipulator. IEEE Transactions on Robotics and Automation. 2004, 20(3): 602~612.
    13 S. Wakabayashi and K. Matsumoto. Results of the ETS-7 Direct Teleoperation Experiment-Using Additional Time Delay Method. Proceeding of 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Quebec, Canada, 2001: 10~17.
    14 K. Shinichi and T. Shigeru. Antenna-assembly Experiments Using ETS-VII. European Space Agency. 1999, 440(1): 307~312.
    15 A.A. Schaffer, W. Bertleff, and etc.. ROKVISS-current Experimental Results on Parameter Identification. Proceedings of International Conference on Robotics and Automation. Orlando, FL, 2006: 3879~3885.
    16 P. Carsten, R. Detlef and etc.. Robotics Component Verification on ISS-ROKVISS Preliminary Results for Telepresence. IEEE International Conference on Intelligent Robots and Systems. Beijing, China, 2006, Piscataway: 4595~4601.
    17 K. Landzettel, A.A. Schaffer and etc.. ROKVISS Verification of Advanced Light Weight Robotic Joints and Tele-presence Concepts for Future Space Missions. Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space. Noordwijk, Netherlands, 2006: 110~115.
    18 R. O. Ambrose, H. Aldridge and etc.. Robonaut NASA's Space Humanoid. IEEE Intelligent Systems and Their Applications. 2000, 15(4): 57~63.
    19 R. A. Peters, C. L. Campbell and etc.. Robonaut Task Learning through Teleoperation. Proceedings of International Conference on Robotics and Automation. Taipei, Taiwan, 2003, 2806~2811.
    20 B. William, A. Robert and etc.. Robonaut: A Robot Designed to Work with Humans in Space. Autonomous Robots. 2003, 14(2): 179~197.
    21 W. S. Kim, P. S. Schenker and etc.. Advanced Operator Interface Design with Preview-predictive Displays for Ground-controlled Space Telerobotic Servicing. Proceedings of International Society for Optical Engineering. Boston, MA, 1993, Bellingham: 96~107.
    22 A. K. Bejczy, S. Venema and W. S. Kim. Role of computer graphics in space tlerobotics: preview and predictive displays. Cooperative Intelligent Robotics in Space. 1990, Vol.1387: 365~377.
    23刘伟军,朱枫,董再励.虚拟现实辅助机器人遥操作技术研究.机器人. 2001, 23 (5): 385~390.
    24 W. S. Chou, T. M. Wang, and Y. R. Zhang. Augmented Reality Based Preoperative Planning for Robot Assisted Tele-Neurosurgery. Proceedings of International Conference on Systems, Man and Cybernetics, Hague, Netherlands, 2004: 2901~2906.
    25游松,王田苗,朱广超.基于网络的空间机器人遥操作体系结构.高技术通讯. 2000, 10(1): 71~75.
    26田小峰,宋爱国,黄惟一.空间机器人自适应无源控制技术研究.东南大学学报. 2000, 30 (5): 51~55.
    27庄骏,邱平,孙增圻.大时延环境下的分布式遥操作系统.清华大学学报. 2000, 40 (1) : 80~83.
    28李焱,贺汉根.应用遥编程的大时延遥操作技术.机器人. 2001, 23(5): 391~396.
    29胡小强.虚拟现实技术.北京邮电大学出版社. 2005: 2~9.
    30 I. R. Belousov, R. Chellali and G. J. Clapworthy. Virtual Reality Tools for Internet Robotics. Proceeding of International Conference on Robotics and Automation. Seoul, Korea, 2001: 1878~1883.
    31 R. Marin, P. J. Sanz, A. P. Pobil. A Predictive Interface Based on Virtual and Augmented Reality for Task Specification in a Web Telerobotic System. IEEE International Conference on Intelligent Robots and Systems. Lausanne, Switzerland, 2002: 3005~3010.
    32 F. Eckhard, R. Juergen, S. Michael. Projective Virtual Reality in Space Applications: A Telerobotic Ground Station for a Space Mission. Proceedings of International Society for Optical Engineering. Boston, USA, 2000, Bellingham: 279~290.
    33刘威.基于虚拟现实的力觉临场感遥操作研究.东南大学博士论文. 2006: 5~12.
    34 M. V. Noyes. Superposition of Graphics on Low Bit-Rate Video as an Aid to Teleoperation. Master Thesis. Massachusetts Institute of Technology. 1984: 15~36.
    35 F. Buzan and T. B. Sheridan. A Model-Based Predictive Operator-Aid for Telemanipulators with Time Delay. Proceedings of the IEEE InternationalConference on Systems, Man and Cybernetics. Cambridge, MA, 1989, Piscataway: 138~143.
    36 A. K. Beiczy, W. S. Kim, and S. C. Venema. The Phantom Robot: Predictive Displays for Teleoperation with Time Delay. Proceedings of IEEE International Workshop Intelligent Robots System. Cincinnati, OH, 1990, Los Alamitos: 546~550.
    37 Kim W S.Virtual Reality Calibration for Telerobotic Servicing[A]. IEEE International Conference on Robotics and Automations. 1994.2769-2775.
    38 R. A. Browse and S. A. Little. The Effectiveness of Real-Time Graphic Simulation in Telerobotics. Proceeding of the International Conference on Systems, Man and Cybernetics. Charlottesville, VA, 1991, Piscataway: 895~898.
    39 M. Mitsuishi, T. Hori and T. Nagao. Predictive, Augmented and Transformed Information Display for Time Delay Compensation in Tele-Handling/ Machining. Proceedings of IEEE International Conference on Robotics and Automation. Nagoya, Japan, 1995, Piscataway: 45~52.
    40 B. J. Nelson and P. K. Khosla. Integrating Force and Vision Feedback within Virtual Environments for Telerobotic Systems. Proceedings of International Conference on Robotics and Automation. Albuquerque, NM, 1997, Piscataway: 1588~1593.
    41 A. Rastogi. Design of an Interface for Teleoperation in Unstructured Environments using Augmented Reality Displays. University of Toronto Master Thesis. 1996: 30~47.
    42 P. Milgram, A. Rastogi and J. J. Grodski. Telerobotic Control Using Augmented Reality. Proceedings of 4th International Workshop on Robot and Human Communication, Tokyo, Japan, 1995: 21~29.
    43 J. Martin. Image Based Predictive Display for Tele-Manipulation. Proceedings of IEEE International Conference on Robotics and Automation. Detroit, USA, 1999, Piscataway: 550~556.
    44 M. Barth, T. Burkert and etc.. Photo-Realistic Scene Prediction of Partially Unknown Environments for the Compensation of Time Delays in Telepresence Applications. Proceedings of International Conference on Robotics and Automation. San Francisco, CA, 2000, Piscataway: 3132~3137.
    45 G. D. Hager, G. Grunwald and G. Hirzinger. Feature-based Visual Servoing and Its Application to Telerobotics. International Conference on Intelligent Robots and Systems. Munich, Germany, 1994: 164~171.
    46 M. E. Stieber, M. Mckay and G. Vukovich. Vision-based Sensing and Control for Space Robotics Applications. IEEE Transactions on Instrumentation and Measurement. 1999, 48(4): 807~812.
    47 N. Inaba and M. Oda. Autonomous Satellite Capture by a Space Robot-World First On-orbit Experiment on a Japanese Robot Satellite ETS-VII. Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, CA, 2000, Piscataway:1169~1174.
    48 D. Kragic and H. I. Christensen. Survey on Visual Servoing for Manipulation. Report from Computational Vision and Active Perception Laboratory. 2002: 4~7.
    49王麟琨,徐德,谭民.机器人视觉伺服研究进展.机器人. 2004, 26(3): 277~281.
    50 P. Corke. High-performance Visual Servoing for Robot End-point Control. Proceedings of International Society for Optical Engineering. Grove, California, 1993: 378~387.
    51 N. P. Papanikolopoulos, B. J. Nelson and P. K. Khosla. Six Degree of Freedom Hand-eye Visual Tracking with Uncertain Parameters. IEEE Transactions on Robotics and Automation. 1998, 11(5): 725~732.
    52 N. P. Papanikolopoulos and P. K. Khosla. Shared and Traded Telerobotic Visual Control. Proceedings of IEEE International Conference on Robotics and Automation. Nice, France, 1992, Piscataway: 878~885.
    53 W. B. Griffin. Shared Control for Dexterous Telemanipulation with Haptic Feedback. Dissertation of Stanford University. 2003:10~45.
    54 A. Douglas and Y. S. Xu. Real-time Shared Control System for Space Telerobotics. Journal of Intelligent and Robotic Systems. 1995, 13(3): 247~262.
    55 E. Sheridan, W. William and H. Carol. Telerobotic Part Assembly with Shared Visual Servo Control. Proceedings of IEEE International Conference on Robotics and Automation. Washington, United States, 2002: 3763~3768.
    56李海超,高洪明,吴林等.基于共享控制策略的遥控弧焊机器人焊缝跟踪.焊接学报. 2006, 27(4): 5~10.
    57 N. Bojan and Z. Leon. Force Control of Redundant Robots in Unstructured Environment. IEEE Transactions on Industrial Electronics. 2002, 49(1): 233~240.
    58 M. H. Raibert and J. J. Craig. Hybrid Position/Force Control of Manipulators. Journal of Dynamics Systems, Measurement, and Control. 1981, 102(1): 126~133.
    59 N. Hogan. Impedance Control: an Approach to Manipulation: Part I-Theory. Journal of Dynamics Systems, Measurement, and Control. 1985, 107(1): 1~7.
    60 N. Hogan. Impedance Control: an Approach to Manipulation: Part II– Implementation. Journal of Dynamics Systems, Measurement, and Control. 1985, 107(1): 8~16.
    61 N. Hogan. Impedance Control: an Approach to Manipulation: Part III- Applications. Journal of Dynamics Systems, Measurement, and Control. 1985, 107(1): 17~24.
    62 A.S. Alin, and G. Hirzinger. Cartesian Impedance Control Techniques for Torque Controlled Light-Weight Robots. Proceedings of IEEE International Conference on Robotics and Automation. Washington, United States, 2002: 657~663.
    63 O. Christian, A. S. Alin and etc.. A Passivity Based Cartesian Impedance Controller for Flexible Joint Manipulators-Part I: Torque feedback and gravity compensation. Proceedings of IEEE International Conference on Robotics and Automation. New Orleans, United States, 2004: 2659~2665.
    64 O. Christian. Cartesian Impedance Control for Flexible Joint Manipulators. PhD Thesis.Universitat Des Saarlandes. 2003: 35~48.
    65 B. Hannaford and W. S. Kim. Force Reflection, Shared Control, and Time Delay in Telemanipulation. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Cambridge, USA, 1989, Piscataway: 133~137.
    66 Patrick Lim, Jeffery Yang, and etc.. Application of Shared Telerobotic Control for Contour Following Processes. Proceedings of Australasian Conference on Robotics and Automation,2002: 88~93.
    67 G. Hirzinger, J. Heindl, and etc.. Multisensory Shared Autonomy-A Key Issue in the Space Robot Technology Experiment ROTEX. IEEE InternationalConference on Intelligent Robots and Systems. Yokohama, Japan, 1992, Piscataway: 221~230.
    68 L. B. Rosenberg. Virtual Fxtures: Perceptual Tools for Telerobotic Manipulation. IEEE Annual Virtual Reality International Symposium. Seattle, USA, 1993, Piscataway: 76~82.
    69 D. Aarno, S. Ekvall and D. Kragic. Adaptive Virtual Fixtures for Machine-Assisted Teleoperation Tasks. Proceedings of 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, Piscataway: 1151~1156.
    70 C. Sayers. Remote Control Robotics. Springer-Verlag, New York, 1999.
    71 L. D. Joly and C. Andriot. Imposing Motion Constraints to a Force Reflecting Telerobot Through Real-Time Simulation of a Virtual Mechanism. Proceedings of IEEE International Conference on Robotics and Automation. Nagoya, Japan, 1995, Piscataway: 357~362.
    72 A. Micaelli, C. Bidard and C. Andriot. Decoupling Control Based on Virtual Mechanisms for Telemanipulation. Proceedings of IEEE International Conference on Robotics and Automation. Leuven, Belgium, 1998, Piscataway: 1924~1931.
    73 T. Itoh, K. Kosuge and T. Fukuda. Human-machine Cooperative Telemanipulation with Motion and Force Scaling Using Task-Oriented Virtual Tool Dynamics. IEEE Transaction on Robotics and Automation. 2000, 16(5): 505~516.
    74 S. Park, R. D. Howe, and D. F. Torchiana. Virtual Fixtures for Robotic Cardiac Surgery. Proceedings of 4th International Conference on Medical Image Computing and Computer- Assisted Intervention, 2001: 1419~1420
    75 N. Turro and O. Khatib. Haptically Augmented Teleoperation. Proceedings of 7th International Symposium on Experimental Robotics, Seoul, Korea, 2000: 1~10.
    76 S. Payandeh and Z. Stanisic. On Application of Virtual Fixtures as an Aid for Telemanipulation and Training. Proceedings of 10th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, 2002: 18~23.
    77 C. A. Moore, M. A. Peshkin and J. E. Colgate. Cobot Implementation of Virtual Paths and 3-D Virtual Surfaces. IEEE Transaction on Robotics andAutomation. 2003, 19(2): 347~351.
    78 Y. S. Park, H. Kang and etc.. Enhanced Teleoperation for D&D. Proceedings of IEEE International Conference on Robotics and Automation. New Orleans, United States, 2004: 3702~3707.
    79 P. Y. Li and R. Horowitz. Passive Velocity Field Control of Mechanical Manipulators. IEEE Transaction on Robotics and Automation. 1999, 15(4): 751~763.
    80 R. Taylor, P. Jensen, and etc.. Steady-hand Robotic System for Microsurgical Augmentation. International Journal of Robotics Research, 1999, 18(12): 1201~1210.
    81 M. Li and A. M. Okamura. Recognition of Operator Motions for Real-time Assistance Using Virtual Fixtures. Proceedings of 11th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems. 2003: 125~131.
    82 D. Kragic, P. Marayong, and etc.. Human-Machine Collaborative Systems for Microsurgical Applications. International Journal of Robotics Research. 2005, 24(9): 731~741.
    83 M. Li and R. H. Taylor. Performance of Surgical Robots with Automatically Generated Spatial Virtual Fixtures. Proceedings of IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005, Piscataway: 217~222.
    84 Y. Tsumaki, Y. Hoshi and H. Naruse. Virtual Reality Based Teleoperation which Tolerates Geometrical Modeling Errors. IEEE International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996, Piscataway: 1023~1030.
    85 Y. Tsumaki and M. Uchiyama. A Model-Based Space Teleoperation System with Robustness against Modeling Errors. Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, USA, 1997, Piscataway: 1594~1599.
    86 R. O. Ambrose, R. T. Savely and etc.. Mobile Manipulation using NASA’s Robonaut. Proceedings of IEEE International Conference on Robotics and Automation. New Orleans, United States, 2004: 2104~2109.
    87 P. K. Cheng and Y. K. Young. VR-Based Teleoperation for Robot Compliance Control. Journal of Intelligent and Robotic Systems. 2001, 30(4): 377~398.
    88张宗美.航天故障手册.宇航出版社. 1994: 10~35.
    89 D. A. Lawrence. Stability and Transparency in Bilateral Teleoperation. IEEE Transactions on Robotics and Automation. 1993, 9(5): 624~637
    90王文涛.基于虚拟手的人机交互技术研究.华中科技大学硕士论文. 2005: 39~40.
    91胡海鹰. HIT/DLR机器人灵巧手遥操作系统的研究.哈尔滨工业大学博士论文. 2006: 19~38.
    92彭刚,黄心汉等.网络延时和负荷变化对基于网络的遥操作机器人系统的影响和解决方法.计算机工程与应用, 2002, 12~16.
    93 C. Preusche and G. Hirzinger. Haptics in Telerobotics-Current and Future Research and Applications. Visual Computation. 2007, 23(1): 273~284.
    94 J. Rosell, C. Vazquez and etc.. Motion Planning for Haptic Guidance. Journal of Intelligent Robot System. 2008, 53(1): 223~245.
    95 I. Tomotaka, Y. Koji and etc.. New Predictive Display Method of Motion and Force Information for Network Teleoperation without Virtual Environmnet Model. Proceeding of IEEE Conference on Intelligent Robots and Systems. Las Vegas, United States. 2003: 2815~2822.
    96 N.Y. Chong, T. Kotoku and etc.. A Collaborative Multi-site Teleoperation over an ISDN. Mechatronics. 2003, 13(1): 957~979.
    97 H. Liu, Y. C. Liu, and etc.. An Experimental Study on Cartesian Impedance Control for Joint Torque Based Manipulator. Advanced Robotics. 2008, 22(11): 1155~1180.
    98 K. Oussama and B. Joel. Motion and Force Control of Robot Manipulators. Proceeding of IEEE International Conference on Robotics and Automation. San Francisco, USA, 1986, New York: 1381~1386.
    99 I. Hiroshi, S. Chihiro1 and etc. Stable Compliance Control and its Implementation for a 6 DOF Manipulator. IEEE International Conference on Robotics and Automation. Scottsdale, USA, 1989, Piscataway: 98~103.
    100 S. Homayoun and C. Richard. Force Tracking in Impedance Control. International Journal of Robotics Research. 1997, 16(1): 97~117.
    101 P. J. Norberto, R. John and etc.. Force/Torque Sensing Applied to Industrial Robotic Deburring. Sensor Review. 2002, 22(3): 232~241.
    102 Y. C. Liu, M. H. Jin, H. Liu. Joint Torque-based Cartesian Impedance Control with Friction Compensations. Journal of Southeast University (English Edition).2008, 24(4): 492~497.
    103李杰,韦庆等.基于阻抗控制的自适应力跟踪方法.机器人. 1999, 21(1): 23~29.
    104 R. W. Drossber. An Approach to Model Reference Adaptive Control System. IEEE Transaction on Automation and Control. 1967: 75~80.
    105 H. D. Taghirad and P. R. Belanger. Torque Ripple and Misalignment Torque Compensation for the Built-In Torque Sensor of Harmonic Drive Systems. IEEE Transactions on Instrumentation and Measurement. 1998, 47(1): 309~315.
    106 R.Y. Tsai. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation. 1987, 3(4): 323~344.
    107 S. Y. Cheung and A. Shaheen. Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX=XB. IEEE Transactions on Robotics and Automation. 1989, 5(1): 16~27.
    108王捷,谢宗武等.卫星在轨自维护地面平台自主操作.吉林大学学报. 2008, 38(5):1231~1236
    109 Douglas D. and etc. Algorithms for the Reductino of the Number of Points Required to Represent a Digitised Line or its Caricature. International Journal for Geographic Information and Geovisualization. 2006, 10(2): 112~122.
    110谢宗武. HIT-1机器人灵巧手柔顺控制的研究.哈尔滨工业大学博士论文. 2003: 8~12.
    111姜力.具有力感知功能的机器人灵巧手手指及控制的研究.哈尔滨工业大学博士论文. 2001:3~6.
    112 E.Lee, J. Park and etc. Hybrid Impedance/Time-Delay Control from Free Space to Constrained Motion. Proceedings of the American Control Conference. Denver, USA, 2003: 2132~2137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700