用户名: 密码: 验证码:
遥操作虚拟工程机器人的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥操作工程机器人系统是指在人操作下完成复杂工程作业任务的一种远距离操作系统,它能够帮助人类在危险和极端环境下工作。但是,操作者与远端工程机器人之间的信号传输存在较大的时延,严重影响了系统的稳定性和可操作性。在遥操作工程机器人系统中采用虚拟现实技术可以有效解决时延对系统的影响,有助于操作者更好地掌握工作现场的信息,提高遥操作作业的工作效率。
     虚拟工程机器人是基于虚拟现实的遥操作工程机器人系统的重要组成部分,包含了多种技术,主要是建模技术和碰撞检测技术。在理论条件下,只要虚拟环境与作业现场真实环境相同,虚拟工程机器人的状态变化可以在真实环境中显示出来,所以建模方法的选择格外重要,合适的建模方法不仅可以满足模型逼真的要求,还可以降低建模难度。虚拟工程机器人与待抓物体之间的碰撞检测的精度和效率在很大程度上影响了遥操作系统的沉浸感和临场感,优异的碰撞检测算法可以最大程度地减少误判现象及保证系统的实时性。
     所以,为了提高遥操作系统的沉浸感、临场感、实时性,本文对虚拟工程机器人的建模技术以及碰撞检测技术进行了研究,主要工作和结论如下:
     1.为了提高虚拟环境真实性及降低开发难度,针对工程机器人的结构和运动特点,采用OpenGL函数建模和SolidWorks建模的混合建模方法对虚拟工程机器人进行了几何建模。
     2.为了满足虚拟工程机器人的运动控制要求,在分析虚拟工程机器人运动特性基础上,采用D-H表示法,推导了虚拟工程机器人的运动学模型,建立了各伺服液压缸位移变化量与相邻关节转角角度之间的转换数学模型。
     3.推导了虚拟机械手爪与待抓物体之间的位置关系数学模型,为虚拟机械手爪与待抓物体之间的精确碰撞检测奠定数学基础。
     实验结果表明:所采用的建模方法不仅满足了虚拟工程机器人建模逼真的要求,且降低了建模难度,缩短了开发周期;所开发的碰撞检测算法可行、有效,实现了虚拟机械手爪与待抓物体之间的精确碰撞检测。
The tele-operation construction robot system is a remote operating system that completes complex engineering tasks under the operation of human-beings, which can help human beings work in dangerous and extreme environment. However, there is a large time-delay in the signal transmission between the operator and the remote construction robot, and so the stability and maneuverability of the system are greatly influenced. Using virtual reality technology in the tele-operation construction robot system can effectively resolve the time-delay influence to the system, helping the operator to know the information of the work site better and improving the work efficiency of the tele-operation.
     The virtual construction robot is an important part of the tele-operation construction robot system based on virtual reality,which includes a variety of techniques, the main of them are modeling techniques and collision detection techniques. In the theoretical conditions, as long as the virtual environment is consistent with the real environment, the state changing of virtual construction robot can be reflected in the real environment. Therefore, the choosing of modeling method is particularly important, appropriate modeling method can not only meet the realistic model requirement, but also can reduce modeling difficulty. The accuracy and efficiency of collision detection between the virtual construction robot and the object largely affects the immersion and telepresence of the tele-operation system. And excellent collision detection algorithm can minimize misjudgment and ensure the system in real time.
     Therefore, to improve the immersion, tele-presence and real-time of tele-operation system, virtual construction robot's modeling and collision detection technology are studied in this paper. The main work and conclusions are following:
     1.To improve the authenticity of the virtual environment and to reduce development difficulty, according to the structure and motion characteristics of the construction robot, the hybrid modeling method of combining OpenGL functions modeling with SolidWorks modeling is adopted to the geometric modeling of the virtual construction robot.
     2. To meet the motion control requirements of the virtual construction robot, the kinematics model of virtual construction robot is deduced by D-H nonation and the conversion mathematical model between each of the servo-hydraulic cylinder displacement variation and the angle of adjacent joint angle is established on the basis of analyzing motion characteristics of the virtual construction robot.
     3. The mathematical model of position relationship between the virtual manipulator and the object is deduced, which is laid a mathematical foundation for the accurate collision detection between the virtual manipulator and the object.
     The experimental results show that:The modeling method adopted not only meet the realistic modeling requirement of the virtual construction robot, but reduce modeling difficulty and shorten the development cycle;The collision detection algorithm is feasible and effective,accurate collision detection between the virtual manipulator and the object is achieved.
引文
[1]郑笑红,唐武道主编.工业机器人技术及应用[M].北京:煤炭工业出版社,2004:1-9.
    [2]郭晓波,宋爱国.基于Internet力觉临场感遥操作机器人系统的研究[J].制造业自动化,2006,11:40-46.
    [3]黄玉明.遥科学-提高空间技术效益的新途径[J].宇航学报,1995,16(1):24-29.
    [4]Michael W.Telescience-A Space Station Goal[J].SPIE,1985,580:352-367.
    [5]David G,Hunter et al.Time-Delayed Remote Operation & Maintenance of Space Station Freedom[J]. IAF,1991:91-092.
    [6]Jungius C,et al.Towards A Telescience Program for Columbus[J]. IAF,1991:91-022.
    [7]Nagatomo M,Harada C,Hisadome Y.Operation of Crew-tended Space Robot in MFD[C]. Proc.41th Space Sciences and Technology Conf,1997,97:15-11.
    [8]Hirzinger G,Brunner B,J. Dietrich, Sensor-Based Space Robotics-ROTEX And Its Telerobotic Features[J].IEEE Trans Robot Automat,1993,9:649-663.
    [9]Ferrell W.R,Sheridan T.B, Supervisory control of remote manipulation[J].IEEE Spectrum,1967:81-88.
    [10]Yokokohji Y,Imaida T and Yoshikawa T. Bilateral Teleoperation Under Time-Varying Communication Delay[C],Proceedings of the IEEE/RSJ International Conference on Intelligent Bobots and Systems,1999:1854-1859.
    [11]Xi N,Tarn T J. Action Synchronization And Control Of Internet Based Telerobotic Systems[C],Proceedings of IEEE International Conference on Robotics & Automation, 1999:219-224.
    [12]Munir S.Internet based teleoperation [D].Georgia:Georgia University Press,2001.
    [13]Sheridan T B.Space teleoperation through time delay:Review and prognosis[J].IEEE Transactions on Robotics and Automation,1993,9(5):592-606.
    [14]邓乐,电液力反馈操纵杆及双向伺服控制技术研究[D].长春:吉林大学,2007.
    [15]Hirzinger G,Sensor-based space robotics-ROTEX and its telerobotic features [J],IEEE Trans.Robot.Automat,1993,9:649-663.
    [16]李会军,空间遥操作机器人虚拟预测环境建模技术研究[D].南京:东南大学,2005.
    [17]Furness T A.The super cockpit and its human factor challenges[M].Proc.Bunan Factory Society,1986.
    [18]Sheridan T.Human Supervisory Control of Robot Systems[C],Proc.of IEEE Inter.Conf.on Rob and Auto,1986,3:808-812.
    [19]Bejczy A.K,Kim W.S and Venema S.C,The Phantom Robot:Predictive Displays For Teleoperation With Time Delay[J].IEEE Int. Conf.on Robotics and automation,1990:646-551.
    [20]耿海霞,陈启军.基于Web的远程控制机器人研究[J].机器人,2002,24(4):375-410.
    [21]Hirzinger G,Brunner B,Dietrich J,ROTEX-the first remotely controlled robot in space[C].Proc.of IEEE Inter.Conf.on Rob and Auto,1994:2604-2611.
    [22]Hironao YAMADA/Takayoshi MUTO,Yupeng Xia and Toshifumi Iwase. Development of a hydraulic tele-operated construction robot using virtual reality (new master-slave control method and an evaluation of a visual feedback system)[J]. International Journal of Fluid Power,2003.7,4(2):35-42
    [23]Jinki Moon,Youngwan Son,Shinsuk Park and Jinwook Kim. Development of immersive Augmented Reality Interface for Construction Robotic System[J]. Control, Automation and Systems,2007. ICCAS'07. International Conference on,2007.10:1172-1197
    [24]徐惜明,叶秦,淘品等.基于视觉临场感的机器人遥操作系统[J].高技术通讯,2000,3:57-60.
    [25]马良,闫继宏,赵杰,陈志峰.基于虚拟环境的多操作者多机器人协助遥操作系统[J]机器人,2011,33(1):169-173.
    [26]张斌,黄攀峰,刘正雄,朱建军.基于虚拟夹具的交互式空间机器人遥操作实验[J].宇航学报,2011,32(2):446-450.
    [27]赵迪,李式其,朱文革等.基于虚拟现实的空间机器人遥操作在维护作业中的应用[J].航天器工程,2010,19(4):92-98.
    [28]丑武胜,孟偲,陈建新等.空间科学实验机器人辅助遥操作系统[J].中国空间科学技术,2003,6:7-13.
    [29]赵国瑞,孙炜,谢岚.虚拟现实辅助冰机器人遥操作系统[J].计算机系统应用,2011,20(5):174-176.
    [30]倪涛,赵丁选,倪水等.基于虚拟现实的遥操作工程机器人图形仿真[J].农业机械学报,2005,36(5):80-82.
    [31]刘伟军,朱枫,董再励.虚拟现实辅助机器人遥操作技术研究[J].机器人,2001,23(5):385-390.
    [32]李刚俊,陈永.机器人的三维运动仿真[J].西南交通大学学报,2002,37(3):273-276.
    [33]张志春等.虚拟现实系统中手与虚拟空间物体交互的一种算法.中国系统仿真学会学术年会,1997.
    [34]Dave Shreiner,Mason Woo,Jackie Neider.OpenGL编程指南[M].北京:人民邮电出版社,2005.
    [35]郝文化,文自勇,王浩强,曹华伟OpenGL高级编程与可视化系统开发高级编程[M].北京:中国水利水电出版社,2006.
    [36]侯俊杰.深入浅出MFC[M]武汉:华中科技大学出版社,2001.
    [37]周晓晶.遥操作机器人系统中虚拟环境的构建[J].现代电子技术,2006:73-75.
    [38]汪木兰,张崇巍,徐开芸.多关节虚拟机器人构建与运动学实现[J].制造业自动化,2006.2,28(2):60-68.
    [39]张晓,刘培玉OpenGL技术在虚拟现实三维重建中的应用[J].计算机工程与设计,2008.9,29(18):4875-4880.
    [40]杜宵,唐涛.三维实景仿真中动态模型的建立[J].微计算机信息,2006(1):248-250.
    [41]倪涛,赵丁选,倪水,曾春平.基于虚拟现实的遥操作工程机器人图形仿真[J].农业机械学报,2005.5,36(5):80-83.
    [42]侯国柱,汤学华.基于Open Inventor的机器人运动仿真技术研究[J].机械设计与制造,2010.6:161-162.
    [43]王爱民,许志峰.基于3DSMAX和OpenGL的遥操作机器人图形建模[J].工业仪表与自动化装置,2007:77-80.
    [44]杨志晓,韩金池,欧仁辉.基于OpenGL的虚拟机器人建模的优化方法[J].计算机系统应用.2008,11:106-109.
    [45]杨华,田新诚,许传俊.工业机器人三维仿真系统的运动学建模[J].微计算机信息,2002,18(11):20-21.
    [46]付宜利,王树国,马玉林等.机器人通用运动学自动建模技术[J].哈尔滨工业大学学报,1995.8,27(4):115-120.
    [47]唐刚,白雪岭,王洪生等.基于关节坐标系的人体运动学仿真[J].计算机仿真,2011,28(8):94-98.
    [48]黄可.层次包围盒的碰撞检测算法研究[J].中国科技信息,2010,17:97-98.
    [59]王困锋,王太勇,孙志强等.基于HV分割的精确碰撞检测及其应用[J].天津大学学报,2004,37(6):485-488.
    [50]魏迎梅,吴泉源,石教英.虚拟环境中德碰撞检测算法[J].计算机工程与科学,2001,23(2):44-47.
    [51]刘健鑫,崔汉国,张晶等.包围盒碰撞检测算法的优化[J].计算机工程与应用,2008,44(18):51-54.
    [52]谢华,严新平.利用包围盒技术实现车辆的碰撞检测[J].中国水运,2006,4(7):180-181.
    [53]王晓荣,王萌,李春贵.基于AABB包围盒的碰撞检测算法的研究[J].计算机工程与科学,2010,32(2):59-61.
    [54]龚建伟,熊光明Visual C++/Turbo C[M]北京:电子工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700