用户名: 密码: 验证码:
微电网多逆变器控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电网是在新能源分布式发电基础上新兴的前沿技术,与大电网互为支撑,是提高分布式发电供能效益的有效方式。微电网具有并网和离网(孤岛)两种运行模式。在并网工作模式下,微电网与中低压配电网并网运行,互为支撑,实现能量的双向交换。在外部电网故障或计划孤岛情况下,微电网可转为离网运行模式为微电网内部重要负荷供电。由于光伏、风力、燃料电池等分布式微源和储能装置大多通过逆变器在公共连接点并联接入微电网,因此,微电网多逆变器并联普遍存在。但由于逆变器的输出阻抗差异、连接阻抗不同、负载的非线性、控制方式不同以及微电网内部结构的多元化,在微电网逆变器并网控制、多逆变器并联控制和微电网电能质量主动控制等方面仍存在诸多技术难题,亟待突破。
     本文在国家自然科学基金重点项目“微电网多逆变器并联及电能质量控制方法研究”、国家重点基础研究发展计划项目(973计划)“分布式发电供能系统相关基础研究”等资助下,在并网运行模式下微电网逆变器并网控制技术、孤岛模式下微电网多逆变器并联环流分析与均流控制技术、微电网逆变器的电能质量主动控制技术方面开展研究,解决了微电网中逆变器并网与多逆变器并联运行关键技术难题,为微电网示范与推广提供理论依据与实践指导。主要技术创新点如下:
     1、在光伏并网控制中,延时和滤波电感量变化会影响系统响应速度、稳定性及并网电流畸变率。对此,本文提出一种功率前馈的鲁棒预测无差拍并网控制方法。通过引入功率前馈控制加快系统的响应速度。鲁棒预测无差拍控制方法被提出用于并网电流控制,以增强系统的鲁棒性,降低因控制延时和电感量偏差对并网电流造成的畸变。分析了带延迟环节的z域无差拍控制模型,并讨论了延时和电感量取值对系统稳定性的影响。给出了鲁棒预测无差拍控制的设计方法,并根据z域内的传递函数对其进行了稳定性分析,确定了控制参数的选取范围。仿真与实验结果证明了所提控制方法的有效性。
     2、通过改进逆变器并网控制策略,使微电网和分布式发电DG具备一定的无功补偿和电压频率调整功能是一种解决微电网电能质量问题的有效途径,可进一步降低分布式发电并网门槛。对此,本文针对分布于电网末梢的单相光伏并网发电系统,提出了兼具无功补偿功能的并网功率控制方法,使系统在向电网和本地负载快速提供有功电能的同时,也能提供负载所需的无功电能。在分析系统结构基础上,通过构建两相正交电流和利用瞬时无功电流ip-iq算法,检测出单相负载的无功电流的直流分量,通过直流侧电压外环PI控制输出得到有功电流的直流分量,从而获取并网指令电流。结合鲁棒预测无差拍控制,该系统无需增加额外的功率器件,可并接于电网末梢,在实现并网发电的同时,实现了对本地负载的动态无功补偿,提高了供电质量。为了解决构造单相无功电流带来的延时问题,进一步提高系统响应速度和电流控制精度,提出了一种无延时的兼具无功补偿功能的并网功率控制方法,该方法由无功电流检测、电压电流双环控制、功率前馈及电网电压前馈构成。提出了对负载电流求导来构建两相正交电流的方法,实现了无延时单相无功电流检测,与传统延时方法相比,解决了传统单相无功电流检测因采样数据不具备同时性以及负载电流跟踪存在滞后造成的较大延时问题,提高了系统稳定性。电流内环采用准谐振PR控制实现并网电流的零稳态误差控制,并降低电网频率偏移对电流的影响;引入电网电压前馈降低电压畸变或扰动造成的电流畸变。给出了并网功率控制系统的设计,分析了准谐振PR控制中不同控制参数对系统性能的影响,并选取了合适的设计参数。仿真与实验结果验证了所提方法的有效性。
     3、微电网中并联逆变器的等效输出阻抗和线路阻抗差异对功率分配和环流抑制存在较大影响。本文从逆变器并联的功率传输特性出发,分析了现有下垂控制对阻性逆变器并联功率分配的影响,并在分析阻性逆变器环流特性的基础上,提出了一种鲁棒下垂多环控制方法,包括功率外环和电压电流内环构成。提出功率外环鲁棒下垂控制来减少阻抗差异对功率精确分配的影响;通过引入含阻性分量和感性分量的虚拟复阻抗,将逆变器的等效输出阻抗设计呈阻性;采用准谐振PR控制实现在较宽频带内逆变器输出电压的零稳态误差控制,进而减少逆变器间输出电压偏差并抑制环流。采用输出电压前馈和电容电流比例控制提高系统暂态响应和电流抗扰动能力。深入对比分析了控制方式和控制参数对等效输出阻抗的影响,并择优选取了控制参数。仿真与实验结果验证了所提方法的可行性与有效性。
     4、在低压微电网多逆变器并联系统中,负荷突变会导致微电网电压波动,逆变器具备快速无功支撑能力是维持电压稳定的必要途径。本文通过将阻容性虚拟复阻抗引入到逆变器输出电流反馈中,提出了一种快速无功支撑的阻容性逆变器(RC型逆变器)及其并联功率分配方法。该逆变器将其等效输出阻抗设计成阻容性,可实现微电网在公共连接点处的无功功率快速支撑,从而保持系统电压稳定,并可抑制逆变器输出阻抗和电网阻抗间的谐振,进一步降低电压畸变。在对阻容性逆变器进行等效建模基础上,通过设计阻容性虚拟复阻抗,给出了该类逆变器并联的多环功率精确分配方法,包括功率下垂控制外环,虚拟阻抗中间环及输出电压控制内环。分析了虚拟复阻抗参数对并联环流的影响,并选取了合适的控制参数。仿真和实验验证了控制方法的有效性。
Microgrid is an emerging frontier technology based on distributed generation of new energy, and is also an effective way to improve energy supply efficiency of distributed power generation for supporting each other with the grid. Microgrid has two operation modes:grid-connected mode and off-grid (island) mode. In grid-connected mode, microgrid and the low and medium voltage distribution network operate grid-connected and support each other to realize bidirectional exchange of energy. In the situation of external power fault or planned island, microgrid can be converted to off-grid operation mode and supply energy for the critical loads in microgrid. Distributed generation microsources such as photovoltaic, wind, and fuel cells and energy storage devices mostly connect through the inverters to the microgrid at the public point of coupling, so the multi-inverters are universal in microgrid. Due to the difference among the output impedance and the coupling impedance of the inverters, non-linearity of loads, difference among the control methods, and diversification of the internal structure of microgid, there are still many technical problems in the aspects of grid-connected control of microgird inverters, operation control of parallel multi-inverters and power quality active control in microgrid, which are urgent to breakthrough.
     This dissertation is funded by the National Natural Science Foundation of China "research of multi-inverter parallel operation and power quality control methods in microgrid", and the National Basic Research Program of China (973program)"basic research related to energy supply system of distributed generation". It carries out these researches on the inverter grid-connected control technology in grid-connected mode of microgrid, circulating current analysis and its sharing control technoque of parallel inverters in island mode of microgrid, and power quality active control technoque of microgrid inverters. It has solved the key problems of grid-connected inverter control and multi-inverter parallel operation in microgrid, and provided theoretical basis and practical guidance for demonstration and promotion of microgrid. The main technical innovations are as follows:
     1. In photovoltaic grid-connected control system, the delay and the filtering inductance variation affect the system response speed, stability, and the current distortion. In this paper, a robust predictive deadbeat grid-connected control method based on power feed-forward is proposed. Power feed-forward control is introduced to speed up the system response. For the grid-connected current controller, a robust predictive deadbeat control method is proposed to enhance system robustness and to reduce the current distortion due to the control delay and inductance deviation. A delayed z-domain deadbeat control model was analyzed, and the delay and inductance effects on system stability were discussed. The design of the proposed robust predictive deadbeat control was given. In z-domain, the system transfer function was derived, and the system stability was analyzed, and the control parameters were selected. Simulation and experimental results verified the validity of the proposed control method.
     2. By improving the grid-connected control strategy of the inverter, microgrid and distributed generation (DG) have the ability of reactive power compensation and voltage and frequency regulation, which is an effective way to solve the power quality problems of microgrid and can further reduce the threshold of distributed generation. For the single-phase photovoltaic grid-connected generation system installed at the end of the grid, a grid-connected power control method with reactive power compensation was proposed in this paper. By this way, the system can quickly provide not only active power for the grid and the local loads but also the required reactive power for the loads. Based on the analysis of the system structure, the dc component of single-phase load reactive power can be detected by constructing two-phase orthogonal current and using the ip-iq algorithm based on the instantaneous reactive current, and the dc component of active current can be obtained by the PI outer voltage loop, thus the grid-connected reference current is derived. Combined with robust predictive deadbeat control, the system need not the additional power devices and can be installed at the end of the grid, which can realize dynamic reactive power compensation of the local loads and gird-connected power generation. As a result, the power quality is improved. To solve the delay of single-phase reactive current detection, and to improve further system response and current control accuracy, a grid-connected power control method with the function of reactive power compensation without delay is proposed. The method consists of reactive current detection, the voltage and current dual control loop, power feedforward, and grid voltage feedforword. The method of constructing two-phase quadrature current by doing the derivation over the load current is proposed to realize the detection of single-phase reactive current without delay. Compared with the traditional delay method, the big delay caused by asynchronism of sampled data in traditional single-phase reactive current detection and the lag in load current tracking is solved, which has improved the system stability. The quasi-PR control is adopted in the inner current loop to realize the zero steady error control of grid-connect current and reduce the influence on the current due to the grid frequency offset. Grid voltage feed-forward was introduced to reduce the current distortion due to the distortion and disturbance of the grid voltage. The design of the grid-connected power control system is given. The effects on the system performance were analyzed under the different control parameters of the quasi-PR controller, and the proper parameters were selected. Simulation and experimental results verified the validity of the proposed control methods.
     3. For parallel multi-inverters in island microgrid, the difference of equivalent output impedance and line impedance affects greatly on power sharing and circulating current restraining. From power transmission characteristics of parallel inverters, the influence of power sharing among resistive inverters was analyzed in this paper, where the conventional droop control was applied. Based on the analysis of circulating current characteristics of resistive inverters, a robust droop multiple loop control method was proposed, which included the outer power loop and the inner voltage and current loop. In the outer power loop, a robust droop controller is adopted to reduce the effects on accurate power sharing due to the impedance difference. Introducing virtual complex impedance including resistive component and inductive component, the equivalent output impedance of inverters is redesigned as pure resistance. Quasi proportional-resonant (QPR) control is applied to realize zero steady-state errors control of the output voltage with wide bandwidth for parallel inverters, which will reduce further the deviation of output voltage and restrain circulating current. The output voltage feedforward control and the proportional control of the capacitor current are adopted to improve the transient response and current disturbance. The effects on the equivalent output impedance in the different control mode and parameters were analyzed comparatively, and the proper parameters were selected. Simulation and experimental results show the correctness and validity of the proposed control method.
     4. For parallel multi-inverters in low voltage microgrid, load mutation will lead to voltage fluctuation, and providing rapid reactive power for inverters is a necessary way to maintain the system voltage stability. Thus, an inverter using resistive-capacitive output impedance (RC-inverter) was proposed in this paper. The equivalent output impedances of RC-inverter were designed as resistive-capacitance by introducing resistive-capacitive virtual complex impedance into the feedback of the output current. RC-inverters cannot only provide rapid reactive power for low-voltage microgrid to maintain the system voltage stability, but also restrain high frequency resonance between output impedance of inverters and the grid impedance. Based on the equivalent modeling of RC-inverter, a multi-loop power sharing control method for parallel inverters was presented, which mainly includes the outer power droop control, the virtual impedance, and the output voltage control. The effects of the virtual complex impedance on parallel circulating current were analyzed, and the appropriate control parameters were selected. Both the simulation and experimental results verify the effect of the control method.
引文
[1]S. S. Venkata. What future distribution engineers need to learn. IEEE Transactions on Power Systems,2004,19(1):17-21.
    [2]D. Abbott. Keeping the energy debate clean:How do we supply the world's energy needs? Proceedings of the IEEE,2010,98(1):42-66.
    [3]Bimal K. Bose. Global Energy Scenario and Impact of Power Electronics in 21st Century. IEEE Transactions on Industrial Electronics,2011,60(7):2638-2651.
    [4]Liserre M, Sauter T, Hung J. Y. Future energy systems:Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Industrial Electronics Magazine,2010,4(1):18-37.
    [5]G. Spagnuolo, G. Petrone, S. V. Araujo, et al. Renewable energy operation and conversion schemes:A summary of discussions during the seminar on renewable energy systems. IEEE Industrial Electronics Magazine,2010,4(1):38-51.
    [6]余贻鑫,栾文鹏.智能电网述评.中国电机工程学报,2009,34(29):1-6.
    [7]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of control and grid synchronization for distributed power systems. IEEE Transactions on Industrial Electronics,2006,53(5):1398-1409.
    [8]Lopes J A, Hatziargyriou N, Mutale J, et al. Integrating distributed generation into electric power systems:A review of drivers, challenges and opportunities. Electric Power Systems Research,2007,77(9):1189-1203.
    [9]王成山,李鹏.分布式发电、微电网与智能配电网的发展与挑战.电力系统自动化,2010,34(2):10-16.
    [10]Lasseter R H, Piagi P. Micro-gird:a conceptual solution. Proceedings of IEEE 35th Annual Power Electronics Specialists Conference, Germany, Aachen,2004: 4285-4295.
    [11]Driesen J, Katiraei F. Design for distributed energy resources. IEEE Power and Energy Magazine,2008,6(3):30-40.
    [12]Ackermann T, Andersson G, Soder L. Distributed generation:a definition. Electric Power Systems Research,2001,57(3):195-204.
    [13]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述.电力系统自动化,2006,29(24):90-97.
    [14]王成山,王守相.分布式发电供能系统若干问题研究.电力系统自动化, 2009,32(20):1-4.
    [15]郭力,王成山,王守相,等.两类双模式微型燃气轮机并网技术方案比较.电力系统自动化,2009,33(8):84-88.
    [16]陈燕东,罗安,谢三军,等.一种无延时的单相光伏并网功率控制方法.中国电机工程学报,2012,32(25):118-125.
    [17]周德佳,赵争鸣,袁立强,等.300kW光伏并网系统优化控制与稳定性分析.电工技术学报,2008,23(11):116-122.
    [18]赵争鸣,雷一,贺凡波,等.大容量并网光伏电站技术综述.电力系统自动化,2011,35(12):101-107.
    [19]Barker P, Johnson B, Maitra A. Investigation of the Technical and Economic Feasibility of Micro-Grid Based Power Systems. EPRI, Palo Alto,2001.
    [20]European Commission. Green Paper:a European Strategy for Sustainable, Competetive and Secure Energy. OOPEC,2006.
    [21]International Energy Agency. World Energy Ourlook 2013, IE A,2013.
    [22]Lasseter Robert, Akhil Abbas, Marnay Chirs, et al. Integration of Distributed Energy Resources-The CERTS MicroGird Concept. Consortium for Electric Reliability Technology Solutions White Paper,2002.
    [23]Lasseter Robert. Microgrids. IEEE Power Engineering Society Winter Meeting, New York,2002:305-308.
    [24]S. Vazquez, S. M. Lukic, E. Galvan, et al. Energy storage systems for transport and grid applications. IEEE Transactions on Industrial Electronics,2010,57(12): 3881-3895.
    [25]B. Fies. Distributed renewable energy generation impacts on Micro-Grid operation and reliability. EPRI, Palo Alto,2002.
    [26]盛昆,孔力,齐智平,等.新型电网——微电网(Micro grid)研究综述.继电器,2007,35(12):75-81.
    [27]Carrasco J M, Franquelo L G, Bialasiewicz J, et al. Power-electronic systems for the grid integration of renewable energy sources:A survey. IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
    [28]王成山,杨占刚,王守相,等.微电网实验系统结构特征及控制模式分析.电力系统自动化,2010,34(1):99-105.
    [29]李振杰,袁越.智能微电网——未来智能配电网新的组织形式.电力系统自动化,2009,33(17):42-48.
    [30]蔡声霞,王守相,王成山,等.智能电网的经济学视角思考.电力系统自动化,2009,33(20):13-16.
    [31]余贻鑫.面向21世纪的智能配电网.南方电网技术研究,2006,2(6):14-16.
    [32]Lopes J A P, Moreira C L, Madureira A G. Defining control strategies for microgrid island operation. IEEE Transactions on Power Systems,2006,21(2): 916-924.
    [33]Katiraei F, Iravani M. R. Power Management Strategies for a Microgrid with Multiple Distributed Generation Units. IEEE Transactions on Power Systems, 2006,21(4):1821-1831.
    [34]鲁宗相,王彩霞,闵勇,等.微电网研究综述.电力系统自动化,2007,31(19):100-107.
    [35]王成山,肖朝霞,王守相.微电网综合控制与分析.电力系统自动化,2008,32(7):98-103.
    [36]Pecaslopes J A, Moreira C. L, Resende F O. Control strategies for microgrids black start and islanded operation. International Journal of Distributed Energy Resoures,2005,1(3):241-261.
    [37]郑竞宏,王燕廷,李兴旺,等.微电网平滑切换控制方法及策略.电力系统自动化,2011,35(18):17-24.
    [38]王成山,高菲,李鹏,等.低压微电网控制策略研究.中国电机工程学报,2012,32(25):2-8.
    [39]张庆海,彭楚武,陈燕东,等.一种微电网多逆变器并联运行控制策略.中国电机工程学报,2012,32(25):126-132.
    [40]Li Xiaofei, Ai Xin, Wang Yonggang. Study of single-phase HFAC microgrid based on Matlab/Simulink.4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Weihai,2011: 1104-1108.
    [41]Kakigano H, Miura Y, Ise T. Configuration and control of a DC microgrid for residential houses. Transmission & Distribution Conference & Exposition:Asia and Pacific, Seoul,2009:1-4.
    [42]Ricchiuto D, Mastromauro R.A, Liserre M, et al. Overview of multi-DC-bus solutions for DC microgrids.4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Rogers,2013:1-8.
    [43]Chiang Loh Poh, Li Ding, Blaabjerg, F. Autonomous control of interlinking converters in hybrid AC-DC microgrids with energy storages. IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix,2011:652-658.
    [44]Guerrero J M, Vasquez J C, Matas J, et al. Hierarchical control of droop-controlled AC and DC microgrids-a general approach towards standardization. IEEE Transactions on Industrial Electronics,2011,58(1): 158-172.
    [45]Majumder R. A Hybrid Microgrid with DC Connection at Back to Back Converters. IEEE Transactions on Smart Grid,2014,5(1):251-259.
    [46]Laaksonen H, Saari P, Komulainen R. Voltage and Frequency Control of Inverter Based Weak LV Network Micro-grid. International Conference on Future Power Systems,2005:16-18.
    [47]关雅娟,邬伟扬,郭小强.微电网中三相逆变器孤岛运行控制技术.中国电机工程学报,2011,31(33):52-60.
    [48]纪明伟,张兴,杨淑英,等.基于电压源逆变器的微电网综合控制策略.合肥工业大学学报,2009,32(11):1678-1682.
    [49]Guerrero Josep M, De Vicuna Luis Garcia. Output Impedance Design of Parallel-Connected UPS Inverters with Wireless Load-Sharing Control. IEEE Transactions on Industrial Applications,2005,52(4):1126-1135.
    [50]Guerrero J M, De Vicuna L Garcia, Matas J, et al. Wireless Control Strategy for Parallel Operation of Distributed Generation Inverters. IEEE Transactions on Industrial Electronics,2006,53(5):1461-1470.
    [51]Guerrero J M, De Vicuna L Garcia, Matas J, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Transactions on Power Electronics,2004,19(5):1205-1213.
    [52]姚玮,陈敏,牟善科,等.基于改进下垂法的微电网逆变器并联控制技术.电力系统自动化,2009,33(6):77-80.
    [53]杨旭升,盛万兴,王孙安.多Agent电网运行决策支持系统体系结构研究.电力系统自动化,2002,26(18):45-50.
    [54]王成山,余旭阳.基于Multi-Agent系统的分布式协调紧急控制.电网技术,2004,28(3):1-5.
    [55]Dou Chun-Xia, Liu Bin. Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid. Smart Grid,2013,4(2):771-778.
    [56]Dimeas A, Hatziargyriou N. Operation of a multi-agent system for micro-grid control. IEEE Transactions on Power Systems,2005,20(3):1447-1455.
    [57]Nikos Hatziargyriou, Hiroshi Asano, Reza Iravani et al. Microgrids. IEEE power and energy magazine,2007,5(4):78-94.
    [58]Stevens J. Development of sources and a testbed for CERTS micro-grid testing. 2004 IEEE Power Engineering Society General Meeting, Denver,2004.
    [59]Stevens J, Vollkommer H, Klapp D. CERTS microgrid system tests. Power Engineering Society General Meeting,2007:1-4.
    [60]Funabashi T, Yokoyama R. Micro-grid field test experiences in Japan. IEEE Power Engineering Society General Meeting, Montreal,2006.
    [61]Morozumi S. Overview of Microgrid Research and Development Activities in Japan. International Symposium of Microgrids, Montreal,2006.
    [62]Morozumi S. Micro-grid demonstration projects in Japan. Power Conversion Conference, Nagoya,2007.
    [63]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述.电网技术,2008,32(15):71-75.
    [64]杨为,丁明,毕锐,等.微电网实验平台的设计.合肥工业大学学报(自然科学版),2010,33(1):38-41.
    [65]杨占刚,王成山,车延博.可实现运行模式灵活切换的小型微电网实验系统.电力系统自动化,2009,33(14):89-92.
    [66]Hassan Nikkhajoei, Reza Iravani. Steady-State Model and Power Flow Analysis of Electronically-Coupled Distributed Resource Units. IEEE Transactions on Power Delivery,2007,22(1):721-728.
    [67]Katiraei F, Iravani M.R, Lehn P.W. Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources. IET on Generation, Transmission & Distribution,2007,1(3):369-378.
    [68]郭力,王成山.含多种分布式电源的微电网动态仿真.电力系统自动化,2009,33(2):82-86.
    [69]周德佳,赵争鸣,吴理博,等.基于仿真模型的太阳能光伏电池阵列特性分析.清华大学学报(自然科学版),2007,47(7):1109-1112.
    [70]Weiss G, Zhong Q Ch, Green T C, et al. Repetitive control of DC-AC converters in micro-grids. IEEE Transactions on Power Electronics,2004,19(1):219-230.
    [71]鞠洪新,丁明,杜燕.逆变电源无线并联系统稳态频率无差的仿真实现.合肥工业大学学报(自然科学版),2006,29(5):513-516.
    [72]Guerrero J M, Matas J, De Vicuna L G., et al. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Transactions on Industrial Electronics,2007,54(2):994-1004.
    [73]汪海宁,苏建徽,丁明,等.光伏并网功率调节系统.中国电机工程学报,2007,27(2):76-79.
    [74]Wu Tsai-Fu, Nien Hung-Shou, Shen Chi-Lung. A Single-Phase Inverter System for PV Power Injection and Active Power Filtering With Nonlinear Inductor Consideration. IEEE Transactions on Industry Applications,2005,41(4): 1075-1081.
    [75]周德佳,赵争鸣,袁立强,等.具有改进最大功率跟踪算法的光伏并网控制系统及其实现.中国电机工程学报,2008,28(31):94-100.
    [76]Yang B, Li W, Zhao Y, et al. Design and analysis of a grid-connected photovoltaic power system. IEEE Transactions on Power Electronics,2010, 25(4):992-1000.
    [77]刘飞,查晓明,周彦,等.基于极点配置与重复控制相结合的三相光伏发电系统的并网策略.电工技术学报,2008,23(12):130-136.
    [78]姜卫东,杜少武,史晓锋,等.中点箝位型三电平逆变器空间矢量与虚拟空间矢量的混合调制方法.中国电机工程学报,2009,29(18):47-53.
    [79]Juan Manuel Carrasco, Leopoldo Garcia Franquelo, Jan T Bialasiewicz, et al. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources:A Survey. IEEE Transactions on Industrial Electronics,2006,53(4): 1002-1016.
    [80]Zhu M. Luo F. L. Switched-inductor Z-source inverter for renewable energy systems. IEEETransactions on Power Electronics,2010,25(40):652-659.
    [81]Zhong Qing-Chang, G Weiss. Static synchronous generators for distributed generation and renewable energy. In Proceeding of the 2009 IEEE PES Power Systems Conference and Exhibition (PSCE), Washington,2009:1-6.
    [82]吕志鹏,罗安,蒋雯倩,等.四桥臂微电网逆变器高性能并网H∞控制研究.中国电机工程学报,2012,32(6):1-9.
    [83]陈炜,陈成,宋战锋,等.双馈风力发电系统双PWM变换器比例谐振控制.中国电机工程学报,2009,29(15):1-7.
    [84]Chiang S J, Yen C Y, Chang K T. A multimodule parallelable series-connected PWM voltage regulators. IEEE Transactions on Industry Electronics,2001, 48(3):506-516.
    [85]Barklund E, Pogaku N, Prodanovic M, et al. Energy management in autonomous microgrid using stability constrained droop control of inverters. IEEE Transactions on Power Electronics,2008,23(5):2346-2352.
    [86]Zhang Yao, Ma Hao. Theoretical and experimental investigation of networked control for parallel operation of inverters. IEEE Transactions on Industrial Electronics,2012,59(4):1961-1970.
    [87]姜桂宾,裴云庆,杨旭,等.SPWM逆变电源的无互联信号线并联控制技术.中国电机工程学报,2003,23(12):94-98.
    [88]王成山,肖朝霞,王守相.微电网中分布式电源逆变器的多环反馈控制策略. 电工技术学报,2009,24(2):100-107.
    [89]方天治,阮新波,肖岚,等.一种改进的分布式逆变器并联控制策略.中国电机工程学报,2008,28(33):30-36.
    [90]K D Brabandere, B Bolsens, J V Keybus, et al. A voltage and frequency droop control method for parallel inverters. IEEE Transactions on Power Electronics, 2007,22(4):1107-1115.
    [91]Tuladhar A, Jin H, Unger T, et al. Control of parallel inverters in distributed ac power systems with consideration of line impedance effect. IEEE Transactions on Industry Applications,2000,36(1):131-138.
    [92]Chen C-L, Wang Y, Lai J-S, et al. Design of parallel inverters for smooth mode transfer microgrid applications. IEEE Transactions on Power Electronics,2010, 25(1):6-15.
    [93]Diaz G, Gonzalez-Moran C, Gomez-Aleixandre J, et al. Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids. IEEE Transactions on Power Systems,2010,25(1):489-496.
    [94]Yao Wei, Chen Min, Matas J, et al. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Transactions on Industrial Electronics,2011,58(2): 576-587.
    [95]Mohamed Y, El-Saadany E. Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Transactions on Power Electronics,2008,23(6):2806-2816.
    [96]Gary W. Chang, Hung-Lu Wang, Shou-Yung Chu. A Probabilistic Approach for Optimal Passive Harmonic Filter Planning. IEEE Transactions on Power Delivery,2007,22(3):1790-1798.
    [97]Stone Philip E. C, Wang Jingjiang, Shin Yong-June, et al. Efficient Harmonic Filter Allocation in an Industrial Distribution System. IEEE Transactions on Industrial Electronics,2012,59(2):740-751.
    [98]Vlachogiannis John G, Lee Kwang Y. Quantum-Inspired Evolutionary Algorithm for Real and Reactive Power Dispatch. IEEE Transactions on Power Systems, 2008,23(4):1627-1636.
    [99]李俊,刘小宁,张广明.微网中电能质量调节器的稳定性及其容量分析.上海交通大学学报,2011,45(8):1240-1245.
    [100]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006.
    [101]雷之力,艾欣,崔明勇.微网电压暂降串并联协调补偿策略.华北电力大学 学报,2010,37(5):1-5.
    [102]Katiraei F, Iravani M. R, Lehn P. W. Micro-Grid Autonomous Operation During and Subsequent to Islanding Process. IEEE Transactions on Power Delivery, 2005,20(1):248-256.
    [103]Prodanovic M, Green T. C. High-quality power generation through distributed control of a power park Microgrid. IEEE Transaction on Industrial Electronics, 2006,53(5):1471-1482.
    [104]吴理博,赵争鸣,刘建政,等.具有无功补偿功能的单级式三相光伏并网系统.电工技术学报,2006,21(1):28-32.
    [105]Ritwik Majumder. Reactive Power Compensation in Single-Phase Operation of Microgrid. IEEE Transactions on Industrial Electronics,2013,60(4): 1403-1416.
    [106]Xue Y, Chang L S, Kajer B, et al. Topologies of single-phase inverters for small distributed power generators:An overview. IEEE Transactions on Power Electronics,2004,19(5):1305-1311.
    [107]Teodorescu R, Blaabjerg F, Liserre M, et al. Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proceedings of Electric Power Application,2006,153(5):750-762.
    [108]Kang B J, Liaw C M. Robust hysteresis current controlled PWM scheme with fixed switching frequency. IEE Proceedings of Electric Power Application,2001, 148(6):503-512.
    [109]Peng Shuangjian, Luo An, Chen Yandong, et al. Dual-Loop power control for single-phase grid-connected converters with LCL filter. Journal of Power Electronics,2011,11(4):1-8.
    [110]Liu B, Duan S, Cai T. Photovoltaic DC-building-module-based BIPV system-concept and design considerations. IEEE Transactions on Power Electronics,2011,26(5):1418-1429.
    [111]Hang L, Liu S, Yan G, et al. An improved deadbeat scheme with fuzzy controller for the grid-side three-phase PWM boost rectifier. IEEE Transactions on Power Electronics,2011,26(4):1184-1191.
    [112]Fang Y, Xing Y. Design and analysis of three-phase reversible high-power-factor correction based on predictive current controller. IEEE Transactions on Industrial Electronics,2008,55(12):4391-4397.
    [113]Huerta J, Castello-Moreno J, Fischer J R, et al. A synchronous reference frame robust predictive current control for three-phase grid-connected inverters. IEEE Transactions on Industrial Electronics,2010,57(3):954-962.
    [114]A-R Y, Mohamed I, El-Saadany E. A robust natural-frame-based interfacing scheme for grid-connected distributed generation inverters. IEEE Transactions on Energy Conversion,2011,26(3):728-736.
    [115]Espi J M, Castello J, Garcia-Gil R, et al. An adaptive robust predictive current control for three-phase grid-connected inverters. IEEE Transactions on Industrial Electronics,2011,58(8):3537-3546.
    [116]张国荣,张铁良,丁明.光伏并网发电与有源电力滤波器的统一控制.电力系统自动化,2007,31(8):61-66.
    [117]彭双剑,罗安,荣飞,等.LCL滤波器的单相光伏并网控制策略.中国电机工程学报,2011,31(21):17-24.
    [118]章玮,王宏胜,任远,等.不对称电网电压条件下三相并网型逆变器的控制.电工技术学报,2010,25(12):103-110.
    [119]年珩,曾嵘.分布式发电系统离网运行模式下输出电能质量控制技术.中国电机工程学报,2011,31(12):22-28.
    [120]张纯江,张婧,邬伟扬,等.基于Delta算子的谐振控制器实现高频链逆变器波形控制.电工技术学报,2008,23(7):81-85.
    [121]陈燕东,罗安,龙际根,等.阻性逆变器并联环流分析及鲁棒下垂多环控制.中国电机工程学报,2013,33(18):18-29.
    [122]阚加荣,吴云亚,谢少军.控制参数对并联逆变器性能的影响,电工技术学报,2009,24(9):120-126.
    [123]张尧,马皓,雷彪,等.基于下垂特性控制的无互联线逆变器并联动态性能分析.中国电机工程学报,2009,29(3):42-48.
    [124]Yu Xiaoxiao, Khambadkone A M, Wang Huanhuan, et al. Control of parallel-connected power converters for low-voltage microgrid-Prat I:a hybrid control architecture. IEEE Transactions on Power Electronics,2010,25(12): 2962-2970.
    [125]Vasquez J C, Mastromauro R A, Guerrero J M, et al. Voltage support provided by a droop-controlled multifunctional inverter. IEEE Transactions on Industrial Electronics,2009,56(11):4510-4519.
    [126]于玮,徐德鸿.基于虚拟阻抗的不间断电源并联系统均流控制.中国电机工程学报,2009,29(24):32-39.
    [127]阚志忠,张纯江,薛海芬,等.微电网中三相逆变器无互连线并联新型下垂控制策略.中国电机工程学报,2011,31(33):68-74.
    [128]姚玮,陈敏,陈晶晶,等.一种用于无互联线逆变器并联的多环控制方法.电 工技术学报,2008,23(1):84-88.
    [129]吕志鹏,罗安.不同容量微源逆变器并联功率鲁棒控制.中国电机工程学报,2012,32(12):42-49.
    [130]张宇,段善旭,康勇,等.逆变器并联系统中谐波环流抑制的研究.中国电机工程学报,2006,26(12):67-72.
    [131]高范强,王平,李耀华,等.基于时变相量小信号模型的逆变器并联控制系统分析与设计略.中国电机工程学报,2011,31(33):75-84.
    [132]陆晓楠,孙凯,黄立培.微电网系统中并联LCL滤波器谐振特性.清华大学学报(自然科学版),2012,52(1):1571-1577.
    [133]Wu T F, Wu Y E, Hsieh H M, et al. Current weighting distribution control strategy for multi-inverter systems to achieve current sharing. IEEE Transactions on Power Electronics,2007,22(1):160-168.
    [134]J. Agorreta, M. Borrega, J. Lopez, et al. Modeling and control of N paralleled grid-connected inverters with LCL filters coupled due to grid impedance in PV plants. IEEE Transactions on Industrial Electronics,2011,26(3):780-780.
    [135]He W., Li Y. W., D. Bosnjak, et al. Investigation and active damping of multiple resonances in a parallel-inverter-based Microgrid. IEEE Transactions on Power Electronics,2013,28(1):234-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700