用户名: 密码: 验证码:
孤岛模式下微网的性能优化控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:微网是由分布式电源、负荷、储能、监控和保护装置共同组成的小型发配电系统,它具有并网和孤岛两种运行模式,可提高负荷供电可靠性。微网中的分布式电源通常采用电力电子装置接入电网,电力电子装置惯性小且过载能力差,增加了微网系统的控制难度;而电力电子装置的灵活、可控特性则为微网系统电能质量改善提供了便利条件。基于电力电子装置的运行特性,本文对微网在孤岛模式下的稳定性提高和电能质量改善展开研究,主要工作如下:
     (1)围绕孤岛模式微网的小信号稳定性分析展开研究。基于李雅普诺夫第一法思想,对微网系统小信号模型计算及稳定性判定方法进行了描述。根据微源的控制特性,建立了单台下垂控制支撑微源(Droop-cntrol surpporting micro source, DSMS)状态方程,并对其小信号模型进行了计算。从多DSMS、供电微源(Feeding micro source, FMS)组网系统的拓扑结构出发,以特定系统为例,阐述了多DSMS、FMS组网系统的小信号模型计算方法。计算了负荷阻抗、下垂增益变化时特定多DSMS、FMS组网系统的特征值,确定了影响系统稳定性的关键参数,并采用时域仿真对关键参数计算结果的正确性进行了验证。
     (2)围绕虚拟阻抗对DSMS控制性能的影响展开研究。从等效电路出发,分析不同线路阻抗对DSMS输出功率解耦控制性能的影响,确定了导致DSMS输出功率耦合的原因。给出基于虚拟阻抗实现DSMS功率解耦的控制方法,通过对DSMS实际输出功率的计算,阐述了虚拟阻抗实现DSMS输出功率解耦控制的机理,明确了不同功率耦合程度下虚拟阻抗选取的原则。根据虚拟阻抗的实现方法和线性化模型,分析了虚拟阻抗控制对DSMS输出电压和稳定性的影响。
     (3)围绕多DSMS、FMS组网系统的电能质量改善策略展开研究。基于FMS系统的等效电路计算,确定了影响FMS系统谐振频率等效阻抗的关键参数,并对FMS系统的有源阻尼实现方法进行了讨论。从DSMS的谐波等效电路出发,推导了DSMS系统输出电压的谐波分量表示,提出了降低DSMS输出电压谐波分量的控制方法。对DSMS与公共耦合点(Point of common coupling, PCC)电压的基波负序矢量关系进行了分析,确定了导致PCC与DSMS的输出电压基波负序分量差异的原因,提出了基于二次控制降低PCC不平衡电压的控制策略,并分析了二次控制延时对系统稳定性的影响。
     (4)围绕含多DSMS微网系统的负荷合理分担问题展开研究。给出了集中式负荷工况下的多DSMS微网系统等效电路,对线性不平衡负荷、非线性负荷工况下DSMS的负荷分担原理进行了分析,确定了线路阻抗对DSMS负荷分担性能的影响。对基于虚拟负序导纳实现负荷合理分担的控制原理进行了分析,提出了采用虚拟阻抗实现多DSMS系统负荷分担性能改善的控制策略。从DSMS基波负序、谐波分量等效电路出发,对DSMS输出电压的基波负序、谐波分量表达式进行了推导,分析了DSMS负荷分担性能改善控制策略对输出电压基波负序、谐波分量的影响。
ABSTRACT:Microgrid is a small electric power system with distributed generations, load, energy storage, monitoring and protecting devices. It can operate in both grid-connected and islanded mode, which can enhance the reliability of electrical energy supply. Distributed genetations are always connected to grid through power electronic devices. The power electronic devieces have bad overload ability and small inertia character, which pose difficulty to the control of microgrid. The flexible and controllable charcter of power electronics devices provide convenience to micro-grid power quality improving. Based on the characteristics of power electronic devices, this thesis concentrates on the stability enhancement and power quality improvement of microgrid islanded mode. The main jobs of the thesis are as the following.
     Firstly, small signal stability analysis of islanding mode microgrid is investigated. The small signal modeling and stability judging method is discribed based on Lyapunov first method. State equation of single droop-control supporting micro source (DSMS) is derived from its control character, and the small signal model is also caculated. The small signal modeling method of microgrid with multiple DSMS and feeding micro source (FMS) is proposed based on the particular system example. The droop parameters and load changing eigenvalue are calculated. Key factors related to the example system stability are given, and the theoretical results are verified by time domain simulations.
     Secondly, the effect of virtual impedance on DSMS control performance has been discussed. The analysis of relationship between different line impedance and DSMS power decoupling performance is carried out. Key parameters caused DSMS power coupling are determined. Virtual impedance method for power decoupling-is proposed. DSMS output power is calculated, and the mechanism of power decoupling is also described. Virtual impedance selection principle based on different power coupling level is determined. Based on virtual impedance implementation method and linearization model, the effect of virtual impedance on DSMS output voltage and stability is analyzed.
     Thirdly, the power quality improvement control strategy of multiple DSMS and FMS networking system are investigated. The equivalent circuit of FMS system is calculated, and key parameters that influence the FMS system resonance pointequivalent impedance are determined. The achievement method of active damping control of FMS system is given. The expression of harmonic output voltage in the DSMS system is calculated, and the influence of DSMS output impedance to harmonic output voltage is confirmed. Then harmonic reduction control method of DSMS output voltage is presented. The fundamental negative sequence of output voltage relationship between DSMS and point of common coupling (PCC) is calculated, and the fundamental negative sequence of output voltage difference between-DSMS and PCC is investigated. Based on the secondary control, the control strategy of unbalanced voltage reduction on PCC is proposed, and the influence of secondary control delay on system stability is analyzed.
     Fourthly, the load sharingcontrol strategy of multiple DSMS microgrid system is investigated. The equivalent circuit of multiple DSMS microgrid system with centralized load is calculated, and the load sharing principles of DSMS with linear unbalance load and nonlinear load are analyzed. Then the effect on line impedance to the load sharing performance of DSMS is clarified. The principle on the control of virtual negative sequence admittance to achieve reasonable load sharing is analyzed, and then control strategy to improve load sharing performance of multiple DSMS microgrid system is presented. The expressions of fundamental negative sequence and harmonic output voltage are calculated, and the influence of DSMS load sharing control strategy on fundamental negative sequence and harmonic output voltage is also analyzed.
引文
[1]BP公司.BP2030世界能源展望[EB/OL]. http://www.bp.com/liveassets/bp_internet/china/ bpchina_chinese/STAGING/local_assets/downloads_pdfs/b/BP_2012_2030_energy_outlo ok_booklet_cn.pdf.
    [2]2012《世界能源展望》分析全球能源版图新趋势[J].中国经贸, 2012(23):65.
    [3]全球可再生能源发电趋势[J].中国经济和信息化,2012(14):12-13.
    [4]马特·史密斯,张瑜.解读《2012年世界能源展望》的十大预言[J].低碳世界,2012(12):27-29.
    [5]李蓓,李兴源.分布式发电及其对配电网的影响[J].国际电力,2005,9(3):45-49.
    [6]钱俊,刘敏.分布式发电技术研究综述[J].现代电子技术,2013(13):167-170.
    [7]侯健敏,周德群.分布式能源研究综述[J].沈阳工程学院学报(自然科学版),2008,4(4):289-293.
    [8]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(20):1-4,31.
    [9]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述[J].电网技术,2008,32(15):71-76.
    [10]余昆,曹一家,倪以信,等.分布式发电技术及其并网运行研究综述[J].河海大学学报(自然科学版),2009,37(6):741-748.
    [11]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75,88.
    [12]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [13]崔金兰,刘天琪.分布式发电技术及其并网问题研究综述[J].现代电力,2007,24(3):53-57.
    [14]IEEE Standard for Interconnecting Distributed Generation Interface to the CERTS Microgrid[J]. IEEE Std 1547-2003,2003:1.
    [15]Update of the Status of IEEE 1547.8, Expanding on IEEE Standard 1547[J]. IEEE Std 1547.8-2012,2011:1-3.
    [16]IEEE Application Guide for IEEE Std 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems[J]. IEEE Std 1547.2-2008,2009:1-207.
    [17]IEEE Guide for Design, Operation,and Integration of Distributed ResourceIsland Systems with Electric Power Systems[J]. IEEE Std 1547.4-2011,2011:1-54.
    [18]IEEE Guide for Monitoring, Information Exchange, and Control of Distributed Resources Interconnected with Electric Power Systems[J]. IEEE Std 1547.1-2007,2007:1-158.
    [19]IEEE Recommended Practice for Interconnecting Distributed Resources with Electric Power Systems Distribution Secondary Networks[J]. IEEE Std 1547.6-2011,2011:1-38.
    [20]IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems[J]. IEEE Std 1547.1-2005,2005:1.
    [21]Zobel R A. The European Union Fifth Framework Program:Management of Engineering and Technology,1999. Technology and Innovation Management. PICMET'99. Portland International Conference on, Portland, OR,1999[C].1999_x000a_1999.411-415.
    [22]Jimenez M S. Keynote address:Research and Development Activities in the European Union:Fifth and Sixth Framework:Secrets of Innovation Success-International Experience and UK Opportunities,2005. The IEE Seminar on (Ref. No.2005/11087), 2005[C].2005_x000a_14 July 2005.1,1,1-9.
    [23]Gothard A. Working for the govenment plan-As the EU's Seventh Framework Programme grinds into action, we look at what it means and the key projects that will involve developments in the electronics and embedded systems environment[J]. Electronics Systems and Software,2007,5(1):38-44.
    [24]汪岗,王琦,刘小勇.中国可再生能源发展现状分析[J].北方环境,2011,23(5):9.
    [25]国家发展改革委员会.可再生能源中长期发展规[M].2007.
    [26]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14,23.
    [27]Naka S, Genji T, Fukuyama Y. Practical Equipment Models for Fast Distribution Power Flow Considering Interconnection of Distributed Generators:Power Engineering Society Summer Meeting,2001, Vancouver, BC,2001 [C].2001_x000a_2001.1007-1012.
    [28]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算[J].电力系统自动化,2006,30(1):35-40.
    [29]王希舟,陈鑫,罗龙,等.分布式发电与配电网保护协调性研究[J].继电器,2006,34(3):15-19.
    [30]Girgis A, Brahma S. Effect of Distributed Generation on Protective Device Coordination in Distribution System:Power Engineering,2001. LESCOPE'01.2001 Large Engineering Systems Conference on, Halifax, NS,2001 [C].2001_x000a_2001.115-119.
    [31]周耀烈,李仁飞,苏永智.分布式发电机组并网10 kV开关站的保护新逻辑[J].高电压技术,2006,32(6):105-107.
    [32]王超,何阳,夏翔,等.分布式电源准入容量对电力系统的影响分析[J].华东电力,2006,34(4):1-4.
    [33]Kim T E, Kim J E. A Method for Determining the Introduction Limit of Distributed Generation System in Distribution System:Power Engineering Society Summer Meeting, 2001, Vancouver, BC,2001 [C].2001_x000a_2001.456-461.
    [34]Costa P M, Matos M A. Loss allocation in distribution networks with embedded generation[J]. Power Systems, IEEE Transactions on,2004,19(1):384-389.
    [35]吴汕,梅天华,龚建荣,等.分布式发电引起的电压波动和闪变[J].能源工程,2006(4):54-58.
    [36]罗安伍,黄瑞先.分布式发电并网不利影响及解决方案[J].上海电气技术,2011,04(1):17-20.
    [37]罗安伍,黄瑞先.分布式发电并网不利影响及接口谐波污染解决方案[J].广西电业,2011(3):84-85,88.
    [38]江南,龚建荣,甘德强.考虑谐波影响的分布式电源准入功率计算[J].电力系统自动化,2007,31(3):19-23.
    [39]国海,苏建徽,张国荣.微电网技术研究现状[J].四川电力技术,2009,32(2):1-6.
    [40]Lasseter R H. Smart Distribution:Coupled Microgrids[J]. P Ieee,2011,99(6):1074-1082.
    [41]肖朝霞.微网控制及运行特性分析[学位论文].天津大学电力系统及其自动化,2008.
    [42]李富生.微电网技术及工程应用[M].中国电力出版社,2012.
    [43]吴疆.美国智能电网发展近况[J].中国电业(技术版),2010(1):32-36.
    [44]Stevens J. Development of Sources and a Testbed for CERTS Microgrid Testing:Power Engineering Society General Meeting,2004. IEEE, Denver, CO, 2004[C].2004_x000a_10-10 June 2004.2032-2033.
    [45]Stevens J, Vollkommer H, Klapp D. CERTS Microgrid System Tests:Power Engineering Society General Meeting,2007. IEEE, Tampa, FL,2007[C].2007_x000a_24-28 June 2007. 1-4.
    [46]百度文库.国内外微网示范工程[EB/OL].http://wenku.baidu.com/view/53e43761783e0 912a2162ad7.html.
    [47]鲁宗相,蒋锦峰.解读美国’'Grid"2030"电网远景设想[J].中国电力企业管理,2004(5):38-41.
    [48]白明月,刘甲男,张雪萍,等.欧盟智能电网发展及启示[J].中国电力,2012,45(1):6-9.
    [49]陈恩黔,楼书氢,陈奔.国外智能电网的研究概况及其在我国的发展前景[J].中国电力教育,2011(18):90-91.
    [50]宋菁,唐静,肖峰.国内外智能电网的发展现状与分析[J].电工电气,2010(3):1-4.
    [51]中山元,顾立强.日本智能电网的动向[J].中国电力,2011,44(1):41-44.
    [52]黄伟,孙昶辉,吴子平,等.含分布式发电系统的微网技术研究综述[J].电网技术,2009(09):14-18.
    [53]赵波,张雪松,李鹏,等.储能系统在东福山岛独立型微电网中的优化设计和应用[J].电力系统自动化,2013,37(1):161-167.
    [54]中国电力报.国家863项目南麂岛微网示范工程介绍[EB/OL]. http://www.escn.com.cn /2012/0827/570142.html.
    [55]中国能源报.吐鲁番建成国内最大新能源示范区[EB/OL]. http://www.chinaequip.gov. cn/2012-11/21/c131989652.htm.
    [56]海南电网公司.南方电网将建三沙智能微电网[EB/OL]. http://www.china-nengyuan.co m/news/37712.html.
    [57]Lasseter R H. Certs Microgrid:System of Systems Engineering,2007. SoSE'07. IEEE International Conference on, San Antonio, TX,2007[C].2007_x000a_16-18 April 2007. 1-5.
    [58]Hadjsaid N, Le-Thanh L, Caire R, et al. Integrated ICT Framework for Distribution Network-with Decentralized Energy Resources:Prototype, Design and Development: Power and Energy Society General Meeting,2010 IEEE, Minneapolis, MN, 2010[C].2010_x000a_25-29 July 2010.1-4.
    [59]Holtz J, Werner K H. Multi-inverter UPS System with Redundant Load Sharing Control[J]. Industrial Electronics, IEEE Transactions on,1990,37(6):506-513.
    [60]Van der Broeck H, Boeke U. A Simple Method for Parallel Operation of Inverters: Telecommunications Energy Conference,1998. INTELEC. Twentieth International, San Francisco, CA,1998[C].1998_x000a_1998.143-150.
    [61]Lee C S, Kim S, Kim C B, et al. Parallel UPS with a Instantaneous Current Sharing Control:Industrial Electronics Society,1998. IECON'98. Proceedings of the 24th Annual Conference of the IEEE, Aachen,1998[C].1998_x000a_31 Aug-4 Sep 1998.568-573.
    [62]Yunqing P, Guibin J, Xu Y, et al. Auto-master-slave Control Technique of Parallel Inverters in Distributed AC Power Systems and UPS:Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004[C].2004_x000a_20-25 June 2004.2050-2053.
    [63]Woo-Cheol L, Taeck-Ki L, Sang-Hoon L, et al. A Master and Slave Control Strategy for Parallel Operation of Three-phase UPS Systems with Different Ratings:Applied Power Electronics Conference and Exposition,2004. APEC'04. Nineteenth Annual IEEE, 2004[C].2004_x000a_2004.456-462.
    [64]Jiann-Fuh C, Ching-Lung C. Combination Voltage-controlled and Current-controlled PWM Inverters for UPS Parallel Operation[J]. Power Electronics, IEEE Transactions on, 1995,10(5):547-558.
    [65]Rocabert J, Luna A, Blaabjerg F, et al. Control of Power Converters in AC Microgrids[J]. Power Electronics, IEEE Transactions on,2012,27(11):4734-4749.
    [66]杨向真.微网逆变器及其协调控制策略研究[学位论文].合肥工业大学电力电子与电力传动,2011.
    [67]Bialasiewicz J T. Renewable Energy Systems With Photovoltaic Power Generators: Operation and Modeling[J]. Industrial Electronics, IEEE Transactions on, 2008,55(7):2752-2758.
    [68]Zeineldin H H, E1-Saadany E F, Salama M M A. Distributed Generation Micro-Grid Operation:Control and Protection:Power Systems Conference:Advanced Metering, Protection, Control, Communication, and Distributed Resources,2006. PS'06, Clemson, SC,2006[C].2006_x000a_14-17 March 2006.105-111.
    [69]Driesen J, Visscher K. Virtual synchronous generators:Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE, Pittsburgh, PA,2008[C].2008_x000a_20-24 July 2008.1-3.
    [70]Van T V, Visscher K, Diaz J, et al. Virtual Synchronous Generator:An Element of Future Grids:Innovative Smart Grid Technologies Conference Europe (ISGT Europe),2010 IEEE PES, Gothenburg,2010[C].2010_x000a_11-13 Oct.2010.1-7.
    [71]Guerrero J M, Vasquez J C, Matas J, et al. Control Strategy for Flexible Microgrid Based on Parallel Line-Interactive UPS Systems[J]. Industrial Electronics, IEEE Transactions on, 2009,56(3):726-736.
    [72]Josep M G, Vasquez J C, Savaghebi M, et al. Hierarchical Control of Power Plants with Microgrid Operation:IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ,2010[C].2010_x000a_7-10 Nov.2010.3006-3011.
    [73]Wandhare R G, Thale S, Agarwal V. Reconfigurable Hierarchical Control of a Microgrid Developed with PV, Wind, Micro-hydro, Fuel cell and Ultra-capacitor:Applied Power Electronics Conference and Exposition (APEC),2013 Twenty-Eighth Annual IEEE, Long Beach, CA,2013[C].2013_x000a_17-21 March 2013.2799-2806.
    [74]Chun-Xia D, Bin L. Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid[J]. Smart Grid, IEEE Transactions on,2013,4(2):771-778.
    [75]Rocabert J, Luna A, Blaabjerg F, et al. Control of Power Converters in AC Microgrids[J]. Power Electronics, IEEE Transactions on,2012,27(11):4734-4749.
    [76]Laaksonen H, Saari P, Komulainen R. Voltage and Frequency Control of Inverter Based Weak LV Network Microgrid:Future Power Systems,2005 International Conference on, Amsterdam,2005[C].2005_x000a_18-18 Nov.2005.6.
    [77]Mohamed Y A R I, Zeineldin H H, Salama M M A, et al. Seamless Formation and Robust Control of Distributed Generation Microgrids via Direct Voltage Control and Optimized Dynamic Power Sharing[J]. Power Electronics, IEEE Transactions on, 2012,27(3):1283-1294.
    [78]Fei W, Duarte J L, Hendrix M A M. Grid-Interfacing Converter Systems With Enhanced Voltage Quality for Microgrid Application—Concept and Implementation [J]. Power Electronics, IEEE Transactions on,2011,26(12):3501-3513.
    [79]Peng F Z, Yun W L, Tolbert L M. Control and Protection of Power Electronics Interfaced Distributed Generation Systems in a Customer-driven Microgrid:Power & Energy Society General Meeting,2009. PES'09. IEEE, Calgary, AB,2009[C].2009_x000a_26-30 July 2009.1-8.
    [80]Fang G, Iravani M R. A Control Strategy for a Distributed Generation Unit in Grid-Connected and Autonomous Modes of Operation[J]. Power Delivery, IEEE Transactions on,2008,23(2):850-859.
    [81]张兴,朱德斌,徐海珍.分布式发电中的虚拟同步发电机技术[J].电源学报,2012(3):1-6,12.
    [82]Kundur P. Power System Stability and Control[M]. McGraw-Hill Inc.,1994.
    [83]Guerrero J M, Matas J, Luis G D V, et al. Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output Impedance[J]. Industrial Electronics, IEEE Transactions on,2007,54(2):994-1004.
    [84]Iyer S V, Belur M N, Chandorkar M C A Generalized Computational Method to Determine Stability of a Multi-inverter Microgrid[J]. Power Electronics, IEEE Transactions on,2010,25(9):2420-2432.
    [85]Coelho E A A, Cortizo P C, Garcia P F D. Small-signal Stability for Parallel-connected Inverters in Stand-alone AC Supply Systems[J]. Industry Applications, IEEE Transactions on,2002,38(2):533-542.
    [86]张建华,苏玲,刘若溪,等.逆变型分布式电源微网并网小信号稳定性分析[J].电力系统自动化,2011,35(6):76-80,102.
    [87]张建华,苏玲,刘若溪,等.逆变型分布式电源微网小信号稳定性动态建模分析[J].电力系统自动化,2010,34(22):97-102.
    [88]苏玲.微网控制及小信号稳定性分析与能量管理策略[学位论文].华北电力大学(北京)华北电力大学电气工程;电力系统及其自动化,2011.
    [89]Barklund E, Pogaku N, Prodanovic M, et al. Energy Management in Autonomous Microgrid Using Stability-Constrained Droop Control of Inverters[J]. Power Electronics, IEEE Transactions on,2008,23(5):2346-2352.
    [90]郑竞宏,李兴旺,王燕廷,等.微电网切换至孤岛运行时的小信号稳定性分析[J].电力系统自动化,2012(15):25-32.
    [91]Guerrero J M, Garcia De Vicuna L, Matas J, et al. Output Impedance Design of Parallel-Connected UPS Inverters With Wireless Load-Sharing Control[J]. Industrial Electronics, IEEE Transactions on,2005,52(4):1126-1135.
    [92]程军照,李澍森,吴在军,等.微电网下垂控制中虚拟电抗的功率解耦机理分析[J].电力系统自动化,2012(07):27-32.
    [93]Guerrero J M, Berbel N, Matas J, et al. Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output Impedance:Power Electronics and Applications,2005 European Conference on, Dresden,2005[C].2005_x000a_0-0 0. 10.
    [94]周贤正,荣飞,吕志鹏,等.低压微电网采用坐标旋转的虚拟功率V/f下垂控制策略[J].电力系统自动化,2012(02):47-51.
    [95]Vasquez J C, Guerrero J M, Luna A, et al. Adaptive Droop Control Applied to Voltage-Source Inverters Operating in Grid-Connected and Islanded Modes[J]. Industrial Electronics, IEEE Transactions on,2009,56(10):4088-4096.
    [96]Yan L, Yan L. Decoupled Power Control for an Inverter Based Low Voltage Microgrid in Autonomous Operation:Power Electronics and Motion Control Conference,2009. IPEMC '09. IEEE 6th International, Wuhan,2009[C].2009_x000a_17-20 May 2009.2490-2496.
    [97]Yan L, Yun W L. Virtual Frequency-voltage Frame Control of Inverter Based Low Voltage Microgrid:Electrical Power & Energy Conference (EPEC),2009 IEEE, Montreal, QC,2009[C].2009_x000a_22-23 Oct.2009.1-6.
    [98]Guerrero J M, Berbel N, Matas J, et al. Droop Control Method with Virtual Output Impedance for Parallel Operation of Uninterruptible Power Supply Systems in a Microgrid: Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE, Anaheim, CA, USA,2007[C].2007_x000a_Feb.25 2007-March 12007.1126-1132.
    [99]Jinwei H, Yun W L. Analysis, Design, and Implementation of Virtual Impedance for Power Electronics Interfaced Distributed Generation[J]. Industry Applications, IEEE Transactions on,2011,47(6):2525-2538.
    [100]Jinwei H, Yun W L. Analysis and Design of Interfacing Inverter Output Virtual Impedance in a Low Voltage Microgrid:Energy Conversion Congress and Exposition (ECCE),2010 IEEE, Atlanta, GA,2010[C].2010_x000a_12-16 Sept.2010.2857-2864.
    [101]Guerrero J M, Berbel N, Matas J, et al. Droop Control Method with Virtual Output Impedance for Parallel Operation of Uninterruptible Power Supply Systems in a Microgrid: Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE, Anaheim, CA, USA,2007[C].2007_x000a_Feb.25 2007-March 12007.1126-1132.
    [102]Yu Z, Mi Y, Fangrui L, et al. Instantaneous Current-Sharing Control Strategy for Parallel Operation of UPS Modules Using Virtual Impedance[J]. Power Electronics, IEEE Transactions on,2013,28(1):432-440.
    [103]Jaehong K, Guerrero J M, Rodriguez P, et al. Mode Adaptive Droop Control With Virtual Output Impedances for an Inverter-Based Flexible AC Microgrid[J]. Power Electronics, IEEE Transactions on,2011,26(3):689-701.
    [104]Wiseman J C, Bin W. Active Damping Control of a High-power PWM Current-source Rectifier for Line-current THD Reduction[J]. Industrial Electronics, IEEE Transactions on, 2005,52(3):758-764.
    [105]Bierhoff M H, Fuchs F W. Active Damping for Three-Phase PWM Rectifiers With High-Order Line-Side Filters[J]. Industrial Electronics, IEEE Transactions on, 2009,56(2):371-379.
    [106]Corradini L, Mattavelli P, Corradin M, et al. Analysis of Parallel Operation of Uninterruptible Power Supplies Loaded Through Long Wiring Cables[J]. Power Electronics, IEEE Transactions on,2010,25(4):1046-1054.
    [107]Jinwei H, Yun W L, Bosnjak D, et al. Investigation and Active Damping of Multiple Resonances in a Parallel-Inverter-Based Microgrid[J]. Power Electronics, IEEE Transactions on,2013,28(1):234-246.
    [108]Fei L, Yan Z, Shanxu D, et al. Parameter Design of a Two-Current-Loop Controller Used in a Grid-Connected Inverter System With LCL Filter[J]. Industrial Electronics, IEEE Transactions on,2009,56(11):4483-4491.
    [109]Liserre M, Teodorescu R, Blaabjerg F. Stability of Photovoltaic and Wind Turbine Grid-connected Inverters for a Large Set of Grid Impedance Values[J]. Power Electronics, IEEE Transactions on,2006,21(1):263-272.
    [110]Tzung-Lin L, Jian-Cheng L, Po-Tai C. A Discrete Frequency Tuning Active Filter for Power System Harmonics:Power Electronics Specialists Conference,2008. PESC 2008. IEEE, Rhodes,2008[C].2008_x000a_15-19 June 2008.202-208.
    [111]Tzung-Lin L, Po-Tai C, Akagi H, et al. A Dynamic Tuning Method for Distributed Active Filter Systems[J]. Industry Applications, IEEE Transactions on,2008,44(2):612-623.
    [112]Yunwei L, Vilathgamuwa D M, Poh C L. Microgrid Power Quality Enhancement Using a Three-phase Four-wire Grid-interfacing Compensator[J]. Industry Applications, IEEE Transactions on,2005,41(6):1707-1719.
    [113]Fujita H, Akagi H. Voltage-Regulation Performance of a Shunt Active Filter Intended for Installation on a Power Distribution System[J]. Power Electronics, IEEE Transactions on, 2007,22(3):1046-1053.
    [114]Jinwei H, Yun W L, Munir M S. A Flexible Harmonic Control Approach Through Voltage-Controlled DG-Grid Interfacing Converters[J]. Industrial Electronics, IEEE Transactions on,2012,59(1):444-455.
    [115]Hamzeh M, Karimi H, Mokhtari H. Harmonic and Negative-Sequence Current Control in an Islanded Multi-Bus MV Microgrid[J]. Smart Grid, IEEE Transactions on, 2014,5(1):167-176.
    [116]Po-Tai C, Chien-An C, Tzung-Lin L, et al. A Cooperative Imbalance Compensation Method for Distributed-Generation Interface Converters[J]. Industry Applications, IEEE Transactions on,2009,45(2):805-815.
    [117]Xiongfei W, Blaabjerg F, Zhe C. An Improved Design of Virtual Output Impedance Loop for Droop-controlled Parallel Three-phase Voltage Source Inverters:Energy Conversion Congress and Exposition (ECCE),2012 IEEE, Raleigh, NC,2012[C].2012_x000a_15-20 Sept.2012.2466-2473.
    [118]Hamzeh M, Karimi H, Mokhtari H. A New Control Strategy for a Multi-Bus MV Microgrid Under Unbalanced Conditions[J]. Power Systems, IEEE Transactions on, 2012,27(4):2225-2232.
    [119]Jinwei H, Yun W L, Guerrero J M, et al. An Islanding Microgrid Power Sharing Approach Using Enhanced Virtual Impedance Control Scheme[J]. Power Electronics, IEEE Transactions on,2013,28(11):5272-5282.
    [120]陶晓峰.分布式互补能源微网系统的控制策略研究[学位论文].合肥工业大学电力系统及其自动化,2010.
    [121]朱兰,严正,杨秀,等.风光储微网系统蓄电池容量优化配置方法研究[J].电网技术,2012,36(12):26-31.
    [122]臧璇.风光混合微网系统的运行控制研究[学位论文].山东大学电力系统及其自动化,2012.
    [123]赵冬梅,张楠,刘燕华,等.基于储能的微网并网和孤岛运行模式平滑切换综合控制 策略[J].电网技术,2013,37(2):301-306.
    [124]李聪.基于下垂控制的微电网运行仿真及小信号稳定性分析[学位论文].西南交通大学电力系统及其自动化,2013.
    [125]王永刚.基于下垂控制的微网频率稳定性分析[学位论文].华北电力大学(北京)华北电力大学电气工程;电力系统及其自动化,2012.
    [126]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [127]王宏华.现代控制理论[M].北京:电子工业出版社,2013.
    [128]郭亮,王俐.现代控制理论基础[M].北京:北京航空航天大学出版社,2013.
    [129]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [130]Pogaku N, Prodanovic M, Green T C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid[J]. Power Electronics, IEEE Transactions on, 2007,22(2):613-625.
    [131]马添翼,金新民,黄杏.含多变流器的微电网建模与稳定性分析[J].电力系统自动化,2013,37(6):12-17.
    [132]韩培洁,张惠娟,杜强.微电网主/从控制策略的分析研究[J].低压电器,2012(14):22-26.
    [133]马晓娟.风/光/蓄多能互补微电网系统能量优化研究[学位论文].广西大学控制理论与控制工程,2013.
    [134]李莎.风光互补独立发电系统多目标优化设计[学位论文].华北电力大学(保定)华北电力大学机械工程;机械制造及其自动化,2012.
    [135]张兴,张崇巍.PWM整流器及其控制[M.北京:机械工业出版社,2012.
    [136]周密.南方电网低频振荡仿真研究[学位论文].华北电力大学(北京)华北电力大学电力系统及其自动化,2008.
    [137]白寅凯,燕飞峰,朱珺敏,等.一种改进型低压微网的下垂控制策略研究[J].陕西电力,2013,41(7):34-39.
    [138]吴云亚,阚加荣,谢少军.适用于低压微电网的逆变器控制策略设计[J].电力系统自动化,2012,36(6):39-44.
    [139]周贤正,荣飞,吕志鹏,等.低压微电网采用坐标旋转的虚拟功率V/f下垂控制策略[J].电力系统自动化,2012,36(2):47-51,63.
    [140]鞠洪新.分布式微网电力系统中多逆变电源的并网控制研究[学位论文].合肥工业大学电力电子与电力传动,2006.
    [141]鲍薇,胡学浩,李光辉,等.基于同步电压源的微电网分层控制策略设计[J].电力系统自动化,2013(23):20-26.
    [142]Guerrero J M, Garcia De Vicuna L, Matas J, et al. A Wireless Controller to Enhance Dynamic Performance of Parallel Inverters in Distributed Generation Systems[J]. Power Electronics, IEEE Transactions on,2004,19(5):1205-1213.
    [143]Engler A, Soultanis N. Droop Control in LV-grids:Future Power Systems,2005 International Conference on, Amsterdam,2005[C].2005_x000a_18-18 Nov.2005.6.
    [144]许守平,侯朝勇,王坤洋,等.分层控制在微网中的应用研究[J].电网与清洁能源,2013,29(6):39-45.
    [145]丁明,马凯,毕锐.基于多代理系统的多微网能量协调控制[J].电力系统保护与控制,2013(24):1-8.
    [146]Guerrero J M, Vasquez J C, Matas J, et al. Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization[J]. Industrial Electronics, IEEE Transactions on,2011,58(1):158-172.
    [147]仇志凌,杨恩星,孔洁,等.基于LCL滤波器的并联有源电力滤波器电流闭环控制方法[J].中国电机工程学报,2009(18):15-20.
    [148]许津铭,谢少军,肖华锋.LCL滤波器有源阻尼控制机制研究[J].中国电机工程学报,2012(09):27-33.
    [149]Xiongfei W, Blaabjerg F, Zhe C. Autonomous Control of Inverter-Interfaced Distributed Generation Units for Harmonic Current Filtering and Resonance Damping in an Islanded Microgrid[J]. Industry Applications, IEEE Transactions on,2014,50(1):452-461.
    [150]Jinwei H, Yun W L, Munir M S. A Flexible Harmonic Control Approach Through Voltage-Controlled DG–Grid Interfacing Converters[J]. Industrial Electronics, IEEE Transactions on,2012,59(1):444-455.
    [151]Micallef A, Apap M, Spiteri-Staines C, et al. Selective Virtual Capacitive Impedance Loop for Harmonic Voltage Compensation in Islanded MicroGrids:Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE, Vienna, 2013[C].2013_x000a_10-13 Nov.2013.7968-7973.
    [152]张涛.微型电网并网控制策略和稳定性分析[学位论文].华中科技大学电力系统及其自动化,2008.
    [153]黄杏,金新民,童亦斌,等.具有快速并网功能的微网系统控制策略[J].北京交通大学学报,2012,36(5):7-13.
    [154]Xiongfei W, Blaabjerg F, Zhe C. An Improved Design of Virtual Output Impedance Loop for Droop-controlled Parallel Three-phase Voltage Source Inverters:Energy Conversion Congress and Exposition (ECCE),2012 IEEE, Raleigh, NC,2012[C].2012_x000a_15-20 Sept.2012.2466-2473.
    [155]Savaghebi M, Jalilian A, Vasquez J C, et al. Secondary Control Scheme for Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid[J]. Smart Grid, IEEE Transactions on,2012,3(2):797-807.
    [156]Savaghebi M, Guerrero J M, Jalilian A, et al. Hierarchical Control Scheme for Voltage Unbalance Compensation in Islanded Microgrids:IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, VIC,2011 [C].2011_x000a_7-10 Nov. 2011.3158-3163.
    [157]Jinwei H, Yun W L. Generalized Closed-Loop Control Schemes with Embedded Virtual Impedances for Voltage Source Converters with LC or LCL Filters[J]. Power Electronics, IEEE Transactions on,2012,27(4):1850-1861.
    [158]张禄,金新民,唐芬,等.电网电压对称跌落下的双馈感应发电机PI-R控制及改进[J].中国电机工程学报,2013,33(3):106-116,插13.
    [159]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究[J].中国电机工程学报,2007,27(16):60-64.
    [160]王中,孙元章,李国杰,等.双馈风力发电机定子电流谐波分析[J].电力自动化设备,2010,30(6):1-5.
    [161]徐海亮,胡家兵,贺益康.电网谐波条件下双馈感应风力发电机的建模与控制[J].电力系统自动化,2011,35(11):20-26,81.
    [162]李葛亮,谢桦,赵新,等.基于降阶谐振调节器的正负序分量检测方法[J].电力系统保护与控制,2013(14):41-47.
    [163]赵新,金新民,周飞,等.基于比例积分-降阶谐振调节器的并网逆变器不平衡控制[J].中国电机工程学报,2013(19):84-92.
    [164]姚玮,陈敏,牟善科,等.基于改进下垂法的微电网逆变器并联控制技术[J].电力系统自动化,2009,33(6):77-80,94.
    [165]Savaghebi M, Jalilian A, Vasquez J C, et al. Autonomous Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid[J]. Industrial Electronics, IEEE Transactions on,2013,60(4):1390-1402.
    [166]金城.基于下垂法控制的无线并联逆变器系统由独立到并网模式切换策略的研究[学位论文].浙江大学电力电子与电力传动,2013.
    [167]廖华.基于无互连线下垂控制逆变器组网的自治微电网运行特性的研究[学位论文].中国科学院电工研究所电力电子与电力传动,2008.
    [168]杨俊虎.基于逆变器下垂控制的微电网运行特性及其控制系统研究[学位论文].太原理工大学电力系统及其自动化,2012.
    [169]Xiongfei W, Guerrero J M, Blaabjerg F, et al. Secondary Voltage Control for Harmonics Suppression in Islanded Microgrids:Power and Energy Society General Meeting,2011 IEEE, San Diego, CA,2011 [C].2011 24-29 July 2011.1-8.
    [170]关雅娟,邬伟扬,郭小强.微电网中三相逆变器孤岛运行控制技术[J].中国电机工程学报,2011,31(33):52-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700