用户名: 密码: 验证码:
双馈风力发电系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,作为新能源发电技术之一的风力发电技术在世界各国得到了大力发展。风力发电系统根据发电机运行特点大体可以分为恒速恒频系统和变速恒频系统,其中变速恒频双馈发电机(Doubly Fed Induction Generator, DFIG)且有变流器容量小、变速恒频发电、灵活的转子交流励磁和良好的功率调节能力等特性,是目前风电场采用的主要机型之一。
     双馈风力发电系统通常采用双PWM背靠背变流器为转子绕组提供交流励磁,机侧变流器可以调节发电机发出的有功和无功功率;网侧变流器可以调节整个双馈风力发电系统的功率因数,理论上可以得到任意可调的功率因数。因此,双馈风力发电系统具有灵活的有功和无功功率调节能力,如果利用此能力参与电网频率和电压的调节将为电网提供新的调节手段,业界也在这个方面开展了大量的研究工作。
     由于双馈风力发电系统的多变量、时变和强耦合性,使其运行控制较为复杂,而双馈风力发电系统优良的控制性能取决于双PWM变流器的控制,其控制策略是核心问题,其中双PWM变流器在功率极限下如何通过协调控制参与电网电压调节、如何通过变流器控制提高机组故障穿越能力以及双馈型风电场参与电网电压无功调节的控制策略等问题仍有待进一步深入研究。
     本文以提高双馈风力发电系统参与电网调节的能力为目标,基于双馈风力发电系统数学模型和控制策略等研究成果,针对双PWM变流器协调控制、通过双PWM变流器控制实现故障穿越和双馈型风电场参与电网电压无功调节控制等问题展开研究工作。通过理论分析,提出了电网正常工况下双PWM变流器多目标协调控制策略、电网故障情况下DFIG故障穿越控制策略和双馈型风电场分层分段电压协调控制策略,在MATLAB/Simulink平台上搭建了仿真模型,仿真结果表明本文提出的双PWM变流器多目标协调控制策略,能够实现单机正常工况、单机故障工况和风电场中DFIG机群在功率极限情况下,参与电网电压无功调节,具有良好的动态响应特性和调节效果,提高了双馈风力发电系统参与电网电压无功调节的能力,其主要工作如下:
     1.在详细分析双馈电机工作原理、数学模型和等效电路的基础上,对双馈电机的功率特性和功率极限进行了深入研究,为研究如何利用双PWM变流器进行双馈电机的矢量控制提供了坚实的理论基础。
     2.针对决定双馈风力发电系统运行性能的关键环节—双PWM变流器进行了深入的理论分析,分析并推导了电压源型双PWM变流器在三相静止和两相同步旋转坐标系下的数学模型,对其稳态特性以及双闭环控制策略进行了研究,基于内模控制提出了双PWM变流器多目标协调控制策略。该策略在双闭环控制的基础上,根据恒电压、恒功率因数和系统损耗最小等不同控制目标对双变流器进行协调控制,通过合理配置机侧和网侧变流器控制指令,能够满足多控制目标需要,提升了双PWM变流器的控制性能,有利于充分利用双变流器的容量参与电网电压无功调节,提高了双馈风力发电系统的效率和参与系统调节的能力,具有一定的理论价值和实际意义。
     3.针对电网故障下DFIG故障穿越控制策略进行了深入的理论分析,研究了电网对称和不对称故障情况下双馈电机的运行特性。基于传统电流内环控制,提出了一种对称结构双电流环故障穿越控制策略。该策略在原有电压电流环的基础上,通过引入对称结构的正序和负序双电流控制环,可以有效抑制电网不对称故障情况下功率的2倍频波动,提高了DFIG故障穿越能力,保证了系统运行的安全性,具有一定的理论意义和实用价值。
     4.目前双馈型风电场风电机组普遍采用恒功率因数控制方式,没有充分利用该机型的无功调节能力参与风电场电压无功控制。针对这一问题,提出了一种分层分段的风电场电压无功协调控制策略。该策略根据系统层次将无功功率容量分配分为电网分配层、风电场分配层和风电机群分配层等三层;同时根据风电场内无功补偿设备的响应速度和容量极限,在风电场内对无功功率控制进行分段控制,分为风电机群控制段、动态无功补偿装置控制段和固定电容器等补偿设备控制段等三段进行无功补偿控制。以充分发挥双馈机组的功率调节极限为优化控制目标,通过对各分配层和各段设备进行无功优化分配与控制,实现双馈风力发电机组在功率极限下,充分参与风电场的无功功率调节,提高了双馈型风电场动态无功功率调节特性,为风电场参与电网电压和无功功率调节提供了新的手段,具有一定的理论和实际意义。
     5.基于MATLAB/Simulink平台搭建了双馈风力发电系统和双馈型风电场仿真模型,通过仿真验证了本文所提控制策略的可行性和有效性;在双馈风力发电系统物理实验平台上进行双馈风力发电机组功率特性实验。
In recent years, as one of the renewable energy, wind power generation technology has been developed rapidly all over the world. There are different types of generators used in wind power generation system, and doubly-fed induction generator (DFIG) is one of the major generators which is used most widely.
     With the development of DFIG wind power generation, research of optimal control strategy, fault ride-through control strategy and wind farm level unit optimization that participate in power grid schedule are new focuses in wind power research.
     In view of the PWM converter coordination control of DFIG wind power generation system, this paper gives a multi-objective adaptive coordination control strategy for PWM converter starting from the aspects of the grid voltage, reactive power demand and system loss, which can provide adaptive control for one-unit system and satisfy multiple targets. In the meantime, this strategy can also be used in wind farm control system to realize wind farm participating in active and reactive power adjustment of the grid.
     In view of grid fault, this paper studys on the fault ride-through of DFIG, presenting a strategy, which can effectively reduce overflow problem of rotor side converter which is caused by power grid fault, achieve its fault crossing and improve power quality which enables DFIGs participate in grid power quality adjustment.
     In view of how the DFIG wind farm takes part in grid active power and voltage adjustment, this paper presents a voltage coordinated control strategy, giving reactive power optimal distribution method in wind farm control level. The strategy uses grid dispatching command, reactive power demand and the running state of each turbine as the objective function model, and distrbute reactive power command of each turbine in a better way, realizing the reactive power optimization in system level.
     This paper studys on problems which including double PWM converters optimized coordination control, fault ride-through control and reactive power optimization control. The main contents are as follows:
     1. Detailed analysis of DFIG operation principle are conduct simplified mathematical model, Thevenin's equivalent circuit. And power characteristics, power limits and classic double closed-loop control strategy are studied which are the theoretical basis and simulation foundation of optimizing control strategy of DFIG research.
     2. The theoretical and mathematical model of double PWM converters which is the key in the process of operating performance of wind power system are analyzed. Mathematical model of PWM converter based on voltage source in different coordinate system is derived and the steady state characteristics and double closed-loop control strategy are studied. A coordination control strategy of dual PWM converters based on internal model control is presented which has good anti-interference performance and robustness. The strategy is on the basis of the double closed loop control, using feed-forward internal model correction link and synchronous rotating coordinate system under the current PI regulator, making both rotor side and grid side converters to take part in DFIG excitation control. It can enable the PWM converter perform better, using the converter capacity limit to the maximum, besides, it can improve the anti-interference ability, dynamic response and efficiency of wind power system.
     3. According theoretical analysis of fault ride-through strategy when grid failure happens is done, involving DFIG operation features of grid symmetrical and asymmetrical fault cases. Based on positive sequence and negative sequence current inner loop structure, a fault ride-through control strategy applied to power grid asymmetric fault is raised. It can inhibition active and reactive power fluctuations caused by asymmetry power grid failure, increase system security and realize the system fault crossing. Computer simulation is done to validate the effectiveness of the proposed control strategy.
     4. At present, wind farm generally adopt constant power factor control mode, that does not make full use of reactive power regulation ability of DFIG to participate in the wind farm voltage control. To solve this problem, a piecewise layered wind farm voltage coordination control strategy is proposed, which send reactive command to each DFIG to adjust the reactive power in wind farm via reactive power optimization algorithm in wind farm control level. According to the simulation results of wind farm model, the effectiveness of the new wind piecewise layered voltage coordination control strategy is verified.
     5. Detailed simulation model of wind power system consisting of DFIGs is built in the MATLAB/Simulink platform, through which the simulation effectiveness of the control strategy proposed is verified. Meanwhile, some physics experiment of the power characticts of DFIG wind power generation system is done. All the simulation results show that the proposed control strategy is effective.
引文
[1]罗如意,林晔,钱野.世界风电产业发展综述[J].可再生能源,2010,28(02):14-17
    [2]齐放,刘亚非,梁亮,等.美国分布式风力发电政策研究及启示[J].能源技术经济,2012,24(2):5-9
    [3]罗承先.世界风力发电现状与前景预测[J].中外能源,2012,17(3):24-28
    [4]金圣子,王琳,朱连成,等.国内外风力发电发展与展望[J].辽宁科技大学学报,2013,36(2):156-158
    [5]谭忠富,鞠立伟.中国风电发展综述:历史、现状、趋势及政策[J].华北电力大学学报(社会科学版),2013,(02):1-7
    [6]周宏林.大容量双馈式风力发电系统并网关键问题研究[D].清华大学,2011
    [7]李俊峰,等.2013中国风电发展报告[M].2013
    [8]贺益康,胡家兵.双馈异步风力发电机并网运行中的几个热点问题[J].中国电机工程学报,2012,32(27):1-15
    [9]贾俊川.双馈风力发电系统中双变流器优化联合控制[D].华北电力大学(北京),2011
    [10]陈坚.交流电机数学模型及调速系统[M].国防工业出版社,1989
    [11]解仑,杜沧,董冀媛,等.大容量异步电动机双馈调速系统[M].机械工业出版社,2009
    [12]李晶.变速恒频双馈风电机组动态模型及并网控制策略的研究[D].华北电力大学(河北),2005
    [13]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江大学,2005
    [14]郭家虎.变速恒频双馈风力发电系统控制技术的研究[D].上海大学,2008
    [15]战亮宇,金新民,张禄.双馈电机复功率特性研究及四维分析[J].电工技术学报,2012,27(1):130-135
    [16]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D].华中科技大学,2005
    [17]杨淑英.双馈型风力发电变流器及其控制[D].合肥工业大学,2007
    [18]ABO-KHALIL A G. Synchronization of DFIG output voltage to utility grid in wind power system[J]. Renewable Energy,2012,44:193-198
    [19]刘其辉,谢孟丽.双馈式变速恒频风力发电机的空载及负载并网策略[J].电工技术学报,2012,27(10):60-67
    [20]李岩松,郭世繁,任国威,等.双馈式风力发电系统的机电暂态建模与运行分析[J].电力系统保护与控制,2013,41(13):104-109
    [21]DAVID N, ALIPRANTIS D C. DFIG with grid-connected rotor for wind energy conversion system[A]. Proceedings of the Electric Machines & Drives Conference (IEMDC),2013[C]. Chicago, IL,12-15 May 2013:125-130
    [22]SUJOD M Z, ERLICH I. Reactive power capability of DFIG based wind turbine around synchronous operating point with two-level and three-level NPC converter[A]. Proceedings of the PowerTech (POWERTECH) 2013[C]. Grenoble, F,16-20 June 2013:1-6
    [23]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报,2006,26(22):134-139
    [24]郭晓明.电网异常条件下双馈异步风力发电机的直接功率控制[D].浙江大学,2008
    [25]VERIJ KAZEMI M, MORADI M, VERIJ KAZEMI R. Minimization of powers ripple of direct power controlled DFIG by fuzzy controller and improved discrete space vector modulation[J]. Electric Power Systems Research,2012,89:23-30
    [26]马宏伟,许烈,李永东.基于直接虚功率控制的双馈风电系统并网方法[J].中国电机工程学报,2013,33(03):99-105
    [27]孙士涛.变速恒频双馈风力发电系统预测功率控制研究[D].浙江大学,2013
    [28]刘其辉,王志明.双馈式变速恒频风力发电机的无功功率机制及特性研究[J].中国电机工程学报,2011,31(03):82-89
    [29]王慧敏.双馈风力发电机积分滑模励磁控制与混合粒子群优化设计[D].天津大学,2010
    [30]PANDE VN, MATE UM, KURODE S. Discrete sliding mode control strategy for direct real and reactive power regulation of wind driven DFIG[J]. Electric Power Systems Research,2013,100:73-81
    [31]李生民,何欢欢,张玉坤,等.基于滑模变结构的双馈风力发电机直接功率控制策略研究[J].电网技术,2013,37(07):2006-2010
    [32]BENBOUZID M, BELTRAN B, MANGEL H, et al. A high-order sliding mode observer for sensorless control of DFIG-based wind turbines[A]. Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, F,2012[C]. Montreal, QC,25-28 Oct.2012:4288-4292
    [33]MARQUES G D, SOUS A D M. New sensorless rotor position estimator of a DFIG based on torque calculations-Stability study[J]. IEEE Transactions on Energy Conversion,2012,27(1):196-203
    [34]王君瑞,钟彦儒,宋卫章.基于无源性与自适应降阶观测器的双馈风力发电机控制[J].中国电机工程学报,2011,31(33):159-168
    [35]BARROS L S, MOTA W S, SILVEIRA L G, et al. DFIG rotor side control through gain-scheduling designed by genetic algorithm[A]. Proceedings of the Transmission and Distribution:Latin America Conference and Exposition (T&D-LA),2012 Sixth IEEE/PES,2012[C]. Montevideo,3-5 Sept.2012:1-6
    [36]DARVISHI-NIAFENDERI S, ALINEJAD-BEROMI Y. Improvement of DFIG inertia response by using additional controlling parameters[A]. Proceedings of the Electrical Power Distribution Networks (EPDC),2012 Proceedings of 17th Conference,2012[C]. Tehran, Iran,2-3 May 2012:1-4
    [37]王萌.电网故障下双馈风力发电系统功率变换器运行控制[D].天津大学,2012
    [38]LI S, HASKEW T A, WILLIAMS K A, et al. Control of DFIG wind turbine with direct-current vector control configuration[J]. IEEE Transactions on Sustainable Energy,2012,3(1):1-11
    [39]陈波,吴政球.基于约束因子限幅控制的双馈感应发电机有功功率平滑控制[J].中国电机工程学报,2011,31(27):130-137
    [40]REZAEI E, TABESH A, EBRAHIMI M. Dynamic Model and Control of DFIG Wind Energy Systems Based on Power Transfer Matrix[J]. IEEE Transactions on Power Delivery,2012,27(3):1485-1493
    [41]BOURDOULIS M K, ALEXANDRIDIS A T. A new controller design and analysis of DFIG wind turbine systems for MPP operation[A]. Proceedings of the EUROCON,2013[C]. Zagreb,1-4 July 2013:1116-1123
    [42]SUJOD M Z, ERLICH I, ENGELHARDT S. Improving the Reactive Power Capability of the DFIG-Based Wind Turbine During Operation Around the Synchronous Speed[J]. IEEE Transactions on Energy Conversion,2013,28(3): 736-745
    [43]BOUTOUBAT M, MOKRANI L, MACHMOUM M. Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement[J]. Renewable Energy,2013,50:378-386
    [44]KESRAOUI M, CHAIB A, MEZIANE A, et al. Using a DFIG based wind turbine for grid current harmonics filtering[J]. Energy Conversion and Management,2013
    [45]TANG Y, JU P, HE H, et al. Optimized Control of DFIG-Based Wind Generation Using Sensitivity Analysis and Particle Swarm Optimization[J]. IEEE Transactions on Smart Grid,2013,4(01):509-520
    [46]徐海亮,章玮,贺益康,等.双馈型风电机组低电压穿越技术要点及展望[J].电力系统自动化,2013,37(20):8-15
    [47]QIAO W, VENAYAGAMOORTHY G K, HARLEY R G. Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators[J]. IEEE Transactions on Industry Applications,2009, 45(1):98-107
    [48]徐殿国,王伟,陈宁.基于撬棒保护的双馈电机风电场低电压穿越动态特性分析[J].中国电机工程学报,2010,30(22):29-36
    [49]赵阳.风力发电系统用双馈感应发电机矢量控制技术研究[D].华中科技大学,2008
    [50]陈明亮,肖飞,刘勇,等.一种正负序分离锁相环及其在并网型风力发电系统中的应用[J].电工技术学报,2013,28(08):181-186
    [51]郑雪梅,李琳,徐殿国.双馈风力发电系统低电压过渡的高阶滑模控制仿真研究[J].中国电机工程学报,2009,29(S1):178-183
    [52]BENBOUZID M, BELTRAN B, EZZAT M, et al. DFIG Driven Wind Turbine Grid Fault-Tolerance Using High-Order Sliding Mode Control[J]. International Review on Modelling and Simulations,2013,6(1):29-32
    [53]张学广.变速恒频双馈风电机组并网控制策略研究[D].哈尔滨工业大学,2010
    [54]郭家虎,张鲁华,蔡旭.双馈风力发电系统在电网三相短路故障下的响应与保护[J].电力系统保护与控制,2010,38(06):40-44
    [55]胡家兵.双馈异步风力发电机系统电网故障穿越(不间断)运行研究[D].浙江大学,2009
    [56]SALLES M, GRILO A. A study on the rotor side control of DFIG-based wind turbine during voltage sags without crowbar system[A]. Proceedings of the Renewable Energy Research and Applications (ICRERA),2012[C]. Nagasaki, 11-14 Nov.2012:1-6
    [57]邹和平.变速恒频双馈风力发电系统故障穿越技术研究[D].大连理工大学,2013
    [58]LUNA ALLOZA A, ROL N BLANCO A, MEDEIROS G, et al. Control strategies for DFIG wind turbines under grid fault conditions[A]. Industrial Electronics,2009. IECON'09.35th Annual Conference of IEEE 2009[C]. Porto,3-5 Nov.2009:3886-3891
    [59]XU H, HU J, HE Y. Operation of Wind-Turbine-Driven DFIG Systems Under Distorted Grid Voltage Conditions:Analysis and Experimental Validations[J]. IEEE Transactions on Power Electronics,2012,27(5):2354-2366
    [60]YANG L, XU Z, OSTERGAARD J, et al. Advanced control strategy of DFIG wind turbines for power system fault ride through[J]. IEEE Transactions on Power Systems,2012,27(2):713-722
    [61]熊小伏,欧阳金鑫,文安.电网故障时双馈风电机组定子电压特性及影响分析[J].电力系统自动化,2012,36(14):143-149
    [62]熊小伏,欧阳金鑫.电网短路时双馈感应发电机转子电流的分析与计算[J].中国电机工程学报,2012,32(28):114-121
    [63]谢震,张兴,杨淑英,等.基于虚拟阻抗的双馈风力发电机高电压穿越控制策略[J].中国电机工程学报,2012,32(27):16-24
    [64]徐海亮,章玮,陈建生,等.考虑动态无功支持的双馈风电机组高电压穿越控制策略[J].中国电机工程学报,2013,33(36):112-119
    [65]LIU C, XU D, ZHU N, et al. DC-Voltage Fluctuation Elimination through DC-Capacitor Current Control for DFIG Converters under Unbalanced Grid Voltage Conditions[J]. IEEE Transactions on Power Electronics,2013,28(7): 3206-3218
    [66]MARTINEZ M, TAPIA G, SUSPERREGUI A, et al. Sliding-Mode Control for DFIG Rotor-and Grid-Side Converters Under Unbalanced and Harmonically Distorted Grid Voltage[J]. IEEE Transactions on Energy Conversion,2012, 27(2):328-339
    [67]李辉,付博,杨超,等.双馈风电机组低电压穿越的无功电流分配及控制策略改进[J].中国电机工程学报,2012,32(22):24-31
    [68]LIANG J, HOWARD D F, RESTREPO J A, et al. Feed-Forward Transient Compensation Control for DFIG Wind Turbines during both Balanced and Unbalanced Grid Disturbances[A]. Energy Conversion Congress and Exposition (ECCE),2011[C]. Phoenix, AZ,17-22 Sept.2011:2389-2396
    [69]谢震,张兴,杨淑英,等.电网电压不对称骤升下双馈风力发电机改进控制策略[J].中国电机工程学报,2013,33(15):109-118
    [70]张禄,金新民,唐芬,等.电网电压对称跌落下的双馈感应发电机PI-R控制及改进[J].中国电机工程学报,2013,33(03):106-116
    [71]LIN L, ZHAO H, LAN T, et al. Transient stability mechanism of DFIG wind farm and grid-connected power system[A]. Proceedings of the PowerTech (POWERTECH),2013[C]. Grenoble,16-20 June 2013:1-9
    [72]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9
    [73]CHOWDHURY M, SHEN W, HIJAZIN I, et al. Impact of DFIG wind turbines on transient stability of power systems-A review[A]. Proceedings of the Industrial Electronics and Applications (ICIEA),2013 8th IEEE Conference on IEEE,2013[C]. Melbourne, VIC,19-21 June 2013:73-78
    [74]GANTI V C, SINGH B, AGGARWAL S K, et al. DFIG-based wind power conversion with grid power leveling for reduced gusts[J]. IEEE Transactions on Sustainable Energy,2012,3(1):12-20
    [75]HUANG H, CHUNG C. Coordinated damping control design for DFIG-based wind generation considering power output variation[J]. IEEE Transactions on Power Systems,2012,27(4):1916-1925
    [76]HANSEN A D, S RENSEN P, IOV F, et al. Centralised power control of wind farm with doubly fed induction generators[J]. Renewable Energy,2006,31(7): 935-951
    [77]夏哲辉.电网侧换流器无功功率控制改善双馈风电机组稳定性的研究[J].电力学报,2013,(06):454-458
    [78]RODRIGUEZ-AMENEDO J L, ARNALTE S, BURGOS J C. Automatic generation control of a wind farm with variable speed wind turbines[J]. IEEE Transactions on Energy Conversion,2002,17(2):279-284
    [79]MUYEEN S, TAKAHASHI R, MURATA T, et al. A variable speed wind turbine control strategy to meet wind farm grid code requirements[J]. IEEE Transactions on Power Systems,2010,25(1):331-340
    [80]黄崇鑫,张凯锋,戴先中,等.考虑DFIG机组容量限制的风电场功率分配方法[J].电力系统保护与控制,2010,38(21):202-227
    [81]GJENGEDAL T. System Control of Large Scale Wind Power by use of Automatic Generation Control[A]. Quality and Security of Electric Power Delivery Systems CIGRE/PES 2003[C]. Symposium,8-10 Oct.2003:15-21
    [82]BIHUI L, HONG S, YONG T, et al. Study on the frequency control method and AGC model of wind power integration based on the full dynamic process simulation program[A]. Proceedings of the Advanced Power System Automation and Protection (APAP),2011[C]. Beijing, China,16-20 Oct.2011: 246-251
    [83]陈盈今.基于PSCAD的风电场建模与功率调控研究[D].华北电力大学,2011
    [84]乔颖,鲁宗相,徐飞.双馈风电场自动电压协调控制策略[J].电力系统自动化,2010,34(05):96-101
    [85]唐凡.改善双馈风电场并网电压稳定性的研究[D].华北电力大学,2012
    [86]杨桦.并网型风电场的自动电压控制研究[D].华北电力大学,2011
    [87]乔颖,陈惠粉,鲁宗相,等.双馈风电场自动电压控制系统设计及应用[J].电力系统自动化,2013,37(05):15-22
    [88]王磊,贾宏杰.无功协调控制策略对风电场并网系统小扰动稳定性的影响[J].电力自动化设备,2012,32(11):28-33
    [89]王成福,梁军,张利,等.基于静止同步补偿器的风电场无功电压控制策略[J].中国电机工程学报,2010,30(25):23-28
    [90]赵璐璐.大型风电场并网暂态稳定性研究[D].北京交通大学,2010
    [91]MARTINEZ J, KJAER P C. Fast voltage control in wind power plants[[A]. Proceedings of the Power and Energy Society General Meeting,2011[C]. San Diego, CA,24-29 July 2011:1-7
    [92]MARTINEZ J, KJ R P C, RODRIGUEZ P, et al. Design and analysis of a slope voltage control for a DFIG wind power plant[J]. IEEE Transactions on Energy Conversion,2012,27(1):11-20
    [93]杨硕,王伟胜,刘纯,等.双馈风电场无功电压协调控制策略[J].电力系统自动化,2013,37(12):1-6
    [94]栗然,唐凡,刘英培,等.双馈风电场新型无功补偿与电压控制方案[J].中国电机工程学报,2012,(19):16-23
    [95]陈惠粉,张毅威,闵勇,等.集群双馈风电场的分次调压控制[J].电力系统自动化,2013,37(04):7-13
    [96]薛尚青,蔡金锭.基于执行依赖启发式动态规划的风电场电压协调控制[J].电力自动化设备,2013,33(1):110-113
    [97]邵志敏,欧阳红林,王杰,等.混合风电场的无功功率协调控制策略与仿 真[J].电力系统及其自动化学报,2012,24(6):62-66
    [98]汤奕,王琦,陈宁,等.采用功率预测信息的风电场有功优化控制方法[J].中国电机工程学报,2012,32(34):1-8
    [99]毕大强,杨歆玉,吴正平.基于风速预测与储能的可调度风电场并网功率控制[J].电工电能新技术,2013,32(01):1-4
    [100]陈惠粉,乔颖,闵勇,等.风电场动静态无功补偿协调控制策略[J].电网技术,2013,37(01):248-254
    [101]葛江北,周明,李庚银.大型风电场建模综述[J].电力系统保护与控制,2013,41(17):146-153
    [102]王杰.双馈异步发电机风电场等值建模研究[D].华北电力大学,2011
    [103]齐雯.大型风电场等值建模及其并网稳定性研究[D].北京交通大学,2013
    [104]CHOWDHURY M, SHEN W, HOSSEINZADEH N, et al. A novel aggregated DFIG wind farm model using mechanical torque compensating factor[J]. Energy Conversion and Management,2013,67:265-274
    [105]ZHANGJIE C, XIAORU W, JIN T. Control strategy of large-scale DFIG-based wind farm for power grid frequency regulation[A]. Proceedings of the Control Conference (CCC),2012[C]. Hefei China,25-27 July 2012: 6835-6840
    [106]FARIED S O, UNAL I, RAI D, et al. Utilizing DFIG-Based Wind Farms for Damping Subsynchronous Resonance in Nearby Turbine-Generators[J]. IEEE Transactions on Power Systems,2013,28(1):452-459
    [107]CHAUDHURI N R, CHAUDHURI B. Considerations Toward Coordinated Control of DFIG-Based Wind Farms[J]. IEEE Transactions on Power Delivery,2013,28(3):1263-1270
    [108]杨黎晖,马西奎.双馈风电机组对电力系统低频振荡特性的影响[J].中国电机工程学报,2011,31(10):19-25
    [109]何成明,王洪涛,孙华东,等.变速风电机组调频特性分析及风电场时序协同控制策略[J].电力系统自动化,2013,37(9):1-6
    [110]KRISHNAMURTHY V, KUMAR C R. A Novel Two Layer Constant Power Control Of 15 DFIG Wind Turbines With Supercapacitor Energy Storage[J]. 2013,2(6):68-76
    [111]贾书杰.大规模风电场群对区域电网电压稳定性的研究分析[D].沈阳工业大学,2013
    [112]林俐,谢永俊,朱晨宸,等.基于优先顺序法的风电场限出力有功控制策 略[J].电网技术,2013,37(04):960-966
    [113]徐玉琴,王娜.基于聚类分析的双馈机组风电场动态等值模型的研究[J].华北电力大学学报(自然科学版),2013,40(03):1-5
    [114]张保会,李光辉,王进,等.风电接入对继电保护的影响(二)——双馈式风电场电磁暂态等值建模研究[J].电力自动化设备,2013,33(02):1-7
    [115]郑重,杨耕,耿华.配置STATCOM的DFIG风电场在不对称电网故障下的控制策略[J].中国电机工程学报,2013,33(019):27-38
    [116]秦涛,吕跃刚,徐大平.采用双馈机组的风电场无功功率控制技术[J].电网技术,2009,(02):105-110
    [117]郑征.双PWM变频器及其协调控制技术研究[D].中国矿业大学(北京),2011
    [118]张兴,张崇巍.PWM整流器及其控制[M].机械工业出版社,2012
    [119]胡家兵,贺益康,王宏胜.不平衡电网电压下双馈感应发电机网侧和转子侧变换器的协同控制[J].中国电机工程学报,2010,30(09):97-104
    [120]关宏亮,赵海翔,迟永宁,等.电力系统对并网风电机组承受低电压能力的要求[J].电网技术,2007,31(07):78-82
    [121]付超.风电并网的无功优化控制及其数模混合仿真研究[D].华北电力大学,2012
    [122]陈宁,何维国,钱敏慧,等.风电场无功电压控制系统设计和应用[J].电力系统自动化,2011,35(23):32-36
    [123]迟永宁.大型风电场接入电网的稳定性问题研究[D].中国电力科学研究院,2006
    [124]张学广,刘义成,海樱,等.改进的配电网双馈风电场电压控制策略[J].中国电机工程学报,2010,30(7):29-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700