用户名: 密码: 验证码:
基于瞬变流动分析的给水管网事件模型基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现阶段,给水管网运行状态的分析方法主要是以EPANET软件模型为代表的管网延时分析模型,分析的水力时间尺度一般为小时,所分析的状态为该时段的特征状态,并非实时状态,只是统计意义上的“期望”状态,不能满足管网机械设备控制动作及管网节点用水量变化的实时表达,不能更“真实”的描述管网状态变化。管网的状态变化本质上是组成管网的各个管网物理构件的状态变化及其对管网其它构件状态的影响,若能够知道管网构件状态的变化过程以及构件状态变化对管网状态的影响,就能够建立管网的在线模型,能够描述管网状态的实时变化过程。管网构件状态的变化过程一般是应用SCADA系统及相关算法对构件状态进行估计。对于构件状态变化的描述及其对管网状态的影响,本文引入一个新概念:事件模型加以描述和表达。
     给水管网的事件模型抽象、封装了管网构件状态变化触发的管网瞬变流动分析逻辑,本论文基于给水管网事件模型的分析主要作了以下各项创新性工作:
     (1)架构了给水管网框架模型系统。基于面向对象的分析与设计原理,分析了管网模型设计的要求以及将来模型应用的需要。基于模型设计的要求以及软件工程学的方法论,构建了给水管网基础模型框架。并对管网的主要构成构件进行具体分析,给出了管网及管网构件的模型具体表述及类型表达,它是管网事件模型的表达基础及重要组成部份。
     (2)设计了给水管网模型系统的数据库表结构。主要包括:构件静态数据表,动态数据表,模型选项配置表,流体特性表,单位表等。
     (3)给水管网系统用水量分析。用水量的准确估算是给水管网模型运行的重要条件,也是给水管网事件分析模型得以建立并运行的必要条件。本文对用水量的时序特征,空间分布及运行时管网节点用水量的计算都进行了分析。
     (4)推导了瞬变流动的动力方程与连续性方程,应用特征线法,将运动方程与连续性方程两个偏微分方程转化为在两条特征线上的常微分方程,通过对常微分方程积分的方法来求解流体的流量与水头等运动参量的时序变化;推导了管网中各类边界条件的处理方法(包括管线与连接点、水泵、阀门、水库、水箱等构件的连接),对在管网瞬变流动计算中的管系分段与网格剖分问题的多种方法作了探讨(包括刚化法、波速调整法、内插法、重分阻尼系数法等),最后对瞬变流动管壁阻力模型的发展做了回顾。
     (5)提出了管网的事件及事件分析模型的概念,讲述了事件原型的结构及构成对象,对于多事件的模拟应采用事件池的结构来解决,同时对于事件的触发机制及事件类型进行了分析,引进控制理论相关知识来表征流体瞬变的特性(如:延迟时间、上升时间、峰值时间、最大超调量、调节时间或过渡时间、振荡次数等)。
     (6)对管网构件的状态变化对管网的状态影响进行了分析,并对示例管网进行了案例分析,主要有:水泵停车影响分析,水泵启动影响分析,水泵调速影响分析,用水点异常突发用水影响分析,阀门的开启、关闭影响分析等。
At this phase, the primary method of water distribution system analysis is extended period analysis such as Epanet software model. The time scale of this method is general hours, and the state of pipelines analyzed is characteristic status of that period time, not real-time status, it is only "expectations" state, and can not satisfy requirements of the analysis for network mechanical equipment control movements and junction water demand variation. Changes in the status of the network are essentially according to variation of the state of network components. If variation process of components states and its impacts on network state are known, the real-time model of pipelines can be built to describe real-time variation of pipelines status. Variation of component status is commonly detected by using SCADA system and estimated by some algorithms. The new conception: event-driven model is introduced to describe variation process of components’states and its' impacts on network states.
     The event-driven model for water distribution system abstracts and encapsulates logics of analysis of transient flow induced by components’status variations. This paper completes several innovative works listed below based on event-derived model analysis for water distribution system.
     (1) The framework for water distribution system model is constructed based on object-oriented analysis and design principle and also based on requirement of model design and software engineering methodology.
     The most category components of the network are in detailed analyzed and related classes are designed, these are basic and important part for constructing event-driven model.
     (2) The database tables are designed for water distribution model system, it mostly include:static data tables of model elements,dynamic data tables of model elements,data tables of physical units, analysis options and fluid characteristics, etc.
     (3) Water consumptions and demand categories are analyzed for water distribution system. It is important to accurately estimate water demand and it is the basic prerequisite to construct the events-driven model. Water demands temporal and spatial distributions are analyzed, and the related methods are presented of junction demand computation.
     (4) Continuity equation and motion equation are deduced. using characteristic method, the two partial differential equations can be converted to two ordinary differential equations along two characteristic lines, and these two ordinary differential equations can be integrated along characteristic lines to get time series for fluid flow rate and head .The methods for treatment of different boundary conditions are given (including pipe connection with junction, pump, valve, reservoir, tank etc.). Methods of sectioning for pipelines are discussed (including rigid method, wave velocity adjustment, interpolation method, etc). Finally, history of research of wall shear stress models is briefly reviewed.
     (5) The conceptions of event and event-driven model are presented, events prototype and structure are given. Multi-event model can be simulated using event pool structure, the mechanism for firing events and event types are analyzed. Related conceptions in modern control theory are induced to reflect fluid transient flow characteristics (delay time, rise-time, peak value time, maximum amplitude value, transition time, surge time etc.)
     (6) The impacts are analyzed on pipelines system of events triggered by variation of component status. Several cases listed for demonstration pipelines system are studied: pump shut off analysis, pump restart up analysis, pump speed adjustment analysis, junction abnormal demand analysis, and valve open (close) analysis, etc.
引文
1李德元,徐国荣等.二维非定常流体力学数值方法.北京,科学出版社,1987
    2罗志昌.流体网络理论,北京,机械工业出版社, 1988
    3 Thomas M. Walski, Donald V. Chase, Dragan A. Savic, Walter M. Grayman, Stephen Beckwith, Edmundo Koelle. Advanced Water Distribution Modeling and Management, Haestad Press ,2001.
    4 David Stephenson. Pipeflow Analysis, Elsevier Science Publishers B.V.,1984.
    5 Tullis J.Paul. Hydraulics of pipeline---Pumps, valves, cavitation, transients John Wiley&Sons, 1989.
    6赵洪宾.给水管网系统理论与分析,北京,中国建筑工业出版社, 2003.
    7 Clark, R. M., and Grayman, W. M.. Modeling Water Quality in Distribution Systems. AWWA, Denver, Colorado,1998.
    8 Boulos, P F., Altman, T., Jarrige, P A., and Collevati, F. Discrete Simulation Approach for Network Water Quality Models. Journal of Water Resources Planning and Management, ASCE, 1995, 121(1), 49-52.
    9 EPANET Methodology, Water Supply &Water Resources Division of the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory, 2000.
    10 E.B.怀利, V.L.斯特里特.瞬变流.清华大学流体传动与控制教研组译.北京,水利水电出版社, 1983.
    11 Wylie, E. B., and Streeter, V. L.. Fluid Transients in Systems. Prentice-Hall, Englewood Cliffs, New Jersey. 1993
    12 Mukand Singh Babel ,Marsha Hosner,Petr Ingerduld .Water Distribution modeling: A collection of case studies, DHI, 2005.
    13 MIKE NET User Guide, DHI Water and Environment. horsholm, Denmark, 2001.
    14 Cesario, A. L. Modeling, Analysis, and Design of Water Distribution Systems. American Water Works Association, Denver, Colorado, 1995.
    15 Todini, E. & Pilati, S. A gradient method for the analysis of pipe networks. International Conference on Computer Applications for Water Supply and Distribution, Leicester Polytechnic, UK, September 8-10,1987.
    16王日爽.泛函分析与最优化理论.北京,北京航空航天大学出版社, 2003
    17徐利治等.现代数学手册.武汉,华中科技大学出版社, 1999
    18 Ramon Perez & Joseba Quevedo. Optimisation methods for the calibration of water network systems ,The international conference on computing and control for the water industry,London,UK, 15-17Sep,2003.
    19 Anderson, J. L., Lowry, M. V., and Thomte, J. C. Hydraulic and Water Quality Modeling of Distribution Systems: What are the Trends in the US and Canada. AWWA Annual Conference, Washington, DC ,2001.
    20 ESRI. Dictionary of GIS Terminology. ESRI Press, Redlands, California,2001.
    21孟振虎等.给水管网水力瞬变分析.江苏石油化工学院学报, 2000.03.
    22樊红刚等.虚拟阻抗法在水电工程仿真自动建模中的应用.清华大学学报, 2001.10.
    23孙为民,邢晓凯.多节点环网系统的瞬变过程模拟.设计与研究, 2003.04
    24 Elansary, A. S., Silva, W., and Chaudhry, M. H. Numerical and Experimental Investigation of Transient Pipe Flow.. Journal of Hydraulic Research, 1994(32), 689.
    25 Basha, H. A., and Kassab, B. G. A Perturbation Solution to the Transient Pipe Flow Problem. Journal of Hydraulic Research, 1996,(34), 633.
    26 Wood, D.J. Computer Analysis of Flow in Pipe Networks. Department of Civil Engineering, University of Kentucky, Lexington, KY. 1980
    27 Clark, R.M., W.M. Grayman, R.M. Males, and J.A. Coyle. Predicting Water Quality in Distribution Systems. Proceedings, AWWA Distribution System Symposium, Minneapolis, MN. 1986
    28 Grayman, W.M., R.M. Clark, and R.M. Males. Modeling Distribution System Water Quality Dynamic Approach. Journal of Water Resources Planning and Management, ASCE, 114(3). 1988.
    29 Rossman, L.A., and P.F. Boulos. Numerical Methods for Modeling Water Quality in Distribution Systems: A Comparison. Journal Water Resources Planning and Management, ASCE, 122(2):137-146. 1996.
    30 Rossman, L.A., R.M. Clark, and W.M. Grayman. Modeling Chlorine Residuals in Drinking Water Distribution Systems. Journal Environmental Engineering, 120(4):803-820. 1994.
    31 Rossman, L.A. EPANET Version 2 Users Manual, Drinking Water Research Division, EPA, Cincinnati, OH. 2000.
    32 Males, R.M., R.M. Clark, P.J. Wehrman, and W.E. Gates. Algorithm for Mixing Problems in Water Systems, Journal Hydraulic Engineering, ASCE, 111(2). 1985.
    33 Males, R.M., W.M. Grayman, R.M. Clark. Modeling Water Quality in Distribution Systems. Journal Water Resources Planning and Management, ASCE, 114(2). 1988.
    34 Liou, C.P., and J.R. Kroon. Propagation and Distribution of Waterborne Substances in Networks. Proceedings, AWWA Distribution System Symposium, Minneapolis, MN. 1986.
    35 Hart, F.L., J.L. Meader, and S.N. Chiang. CLNET A Simulation Model for Tracing Chlorine Residuals in a Potable Water Distribution Network. Proceedings, AWWA Distribution SystemSymposium, Minneapolis, MN. 1986.
    36 Powell, J., J. Clement, M. Brandt, R. Casey, D. Holt, W. Grayman, and M. LeChevallier. Predictive Models for Water Quality in Distribution Systems. AwwaRF, Denver, CO. 2004.
    37 US. EPA. Water distribution system analysis: field studies, modeling and management. EPA/600/R-06/028. Dec,2005.
    38 Vose, D. Risk Analysis: A Quantitative Guide. John Wiley & Sons. Chichester, UK. 2000.
    39 Rahal, C.M., M.J.H. Sterling, and B. Coulbeck. Parameter Tuning for Simulation Methods of WaterDistribution Networks. Proceedings, Institute of Civil Engineers, Part 269, 751. 1980.
    40 Schaake, J., and D. Lai. Linear Programming and Dynamic Programming Applications to Water Distribution Network Design - Report 116. Department of Civil Engineering, MIT, Cambridge, MA.1969.
    41 Chase, D.V., D. Guastella, K.L Lai, and L.E. Ormsbee. Energy Management for Large Scale Water Supply Systems. AWWA Computer Conference, Los Angeles, CA. 1994.
    42 Uber, J., F. Shang, M. Polycarpou, and Z.Wang. Feedback Control of Booster Chlorination Systems. AwwaRF, Denver, CO. 2003.
    43 Jentgen, L., S. Conrad, R. Riddle, E. Von Sacken, K.Stone, W.M. Grayman, and S. Ranade. Implementing a Prototype Energy and Water Quality Management System. AwwaRF, Denver, CO. 2003.
    44陈跃春.城市配水系统的微机优化调度.中国给水排水, 1986,2(3):12~15
    45王训俭,张宏伟,赵新华.城市配水系统宏观模型的研究.中国给水排水, 1988(4):33~36
    46姜乃昌,韩德宏.给水泵站的优化调度一变速调节.中国给水排水, 1986, 2(1):18~21
    47姜乃昌,韩德宏.配水管网的解析宏观模型.中国给水排水, 1990,6(1):2~8
    48赵新华.城市配水系统优化运行的研究.中国给水排水, 1992,8(3):18~22
    49郑爽英.沈阳市供水系统优化调度宏观数学模型研究.哈尔滨建筑大学硕士学位论文. 1993:67~69
    50孙文深.大庆市配水系统实用优化调度.哈尔滨建筑大学硕士学位论文, 1993:23~28
    51吴学伟.配水系统状态估计及多目标直接优化调度研究.哈尔滨建筑大学博士学位论文, 1996:78~89
    52郭晓晨;周玉文;基于精细积分法的城市配水系统动态建模.给水排水, 2007,1:98-102
    53周玉文,何敏,方琦.基于GIS的给水管网动态水力计算模型的建立与应用.给水排水, 2006(8):96-99
    54段广仁.线性系统理论.哈尔滨,哈尔滨工业大学出版社, 1998
    55 Fontenot, Eric; Ingeduld, Petr; Wood, David. Real Time Analysis of Water Supply and Water Distribution Systems.ASCE.World Water and Environmental Resources Congress 2003, Philadelphia, PA, United States, 2003: 443-452
    56 Schlegel, Julie A. Automated distribution system monitoring supports water quality, streamlines system management, and fortifies security. American Water Works Association.January 2004(1):44-46
    57 Isovitsch, Shannon L.; VanBriesen, Jeanne M. Sensor placement and optimization criteria dependencies in a water distribution system. Journal of Water Resources Planning and Management 2008 v134(2):186-196
    58 Rao, Z.F.; Wicks, J.; West, S. Optimising water supply and distribution operations Proceedings of the Institution of Civil Engineers: Water Management. June 2007:95-101
    59刘兴坡.城市污水管网建模的理论研究,博士学位论文.北京,北京工业大学,2004:22-34
    60刘德有等.有压管道系统瞬变流计算的时间步长取值方法研究.河海大学常州分校学报, 2002,7
    61 Vardy, A. E, and Hwang, K. L, A Characteristic Model of Transient Friction in Pipes, J. Hydraul. Res. 1991, 29(5): 669–685.
    62 Ghidaoui, M. S., and Mansour, S., , Efficient Treatment of the Vardy-Brown Unsteady Shear in Pipe Transients, J. Hydraul. Eng. 2002, 28(1): 102–112.
    63 Pezzinga, G., Quasi-2D Model for Unsteady Flow in PipeNetworks, J. Hydraul. Eng. 1999,125(7): 676–685.
    64 Brunone, B. and Golia, U. M., Some Considerations on Velocity Profiles in Unsteady Pipe Flows, Proc. Int. Conf. on Enthropy and Energy Dissipation in Water Resources, Maratea, Italy, 1991: 481–487.
    65 Brunone, B., Golia, U. M., and Greco, M., Some Remarks on the Momentum Equation for Fast Transients. Proc. Int. Conf.on Hydr. Transients With Water Column Separation, IAHR, Valencia, Spain, 1991: 201–209.
    66 Brunone, B., Golia, U. M., and Greco, M., Modelling of Fast Transients by Numerical Methods. Proc. Int. Conf. on Hydr Transients With Water Column Separation, IAHR, Valencia, Spain, 1991: 273–280.
    67 Axworthy, D. H., Ghidaoui, M. S., and McInnis, D. A., Extended Thermodynamics Derivation of Energy Dissipation in Unsteady Pipe Flow. J. Hydraul. Eng. 2000,126(4): 276–287.
    68 Bergant, A., Simpson, A. R., and Vitkovsky, J., Developments in Unsteady Pipe Flow Friction Modelling. J. Hydraul. Res. 2001, 39(3): 249–257.
    69 Vardy, A. E. and Brown, J, M.. On Turbulent, Unsteady, Smooth-Pipe Friction, Pressure Surges and Fluid Transient. BHR Group, London, 1996,: 289–311.
    70 Vitkovsky, J. P., Lambert, M. F., Simpson, A. R., and Bergant, A.. Advances in Unsteady Friction Modelling in Transient Pipe Flow. 8th Int. Conf. on Pressure Surges, The Hague, TheNetherlands. 2000.
    71 Pezzinga, G. Evaluation of Unsteady Flow Resistances by Quasi-2d or 1d Models. J. Hydraul. Eng. 2000,126(10): 778–785.
    72 Bergant, A., Simpson, A. R., and Vitkovsky, J. Developments in Unsteady Pipe Flow Friction Modelling. J. Hydraul. Res. 2001,39(3): 249–257.
    73 Zielke, W. Frequency-Dependent Friction in Transient Pipe Flow. ASME J. Basic Eng. 1968,90(1): 109–115.
    74 Vardy, A. E., Hwang, K. L., and Brown, J. M. B. AWeighting Model of Transient Turbulent Pipe Friction. J. Hydraul. Res. 1993, 31: 533–548.
    75 Vardy, A. E., and Brown, J. M. B. Transient, Turbulent, Smooth Pipe Friction. J. Hydraul. Res. 1995,33: 435–456.
    76 http://www.epa.gov/nrmrl/wswrd/epanet.html
    77 ZhaoHui Tang, Jamie MacLennan.数据挖掘原理与应用--SQL Server 2005数据库,邝祝芳,焦贤龙,高升译.北京,清华大学出版社, 2007,1
    78袁一星.城市给水管网工况模拟技术及其应用的研究,博士学位论文.北京,北京工业大学, 2005: 30-35
    79 Mogan, W. D.,Smolen, J. C.,Climatic indicators in the estimation of municipal water demand[J] Water resources Bulletin.1976,12(3): 511-518.
    80 Yamauchi, H., Huang, W., Alternative models for estimating the time series components of water consumption data[J]. Water resources Bulletin. 1977,13(3):599-610.
    81 Hansen R.D. and Narayanan R., A monthly time series model of municipal water demand[J].Water resources Bulletin.1981,17(4):578-585.
    82 Moss S. M,On line optimal control of a water supply system. Phd thesis, Cambridge, Univ.Cambridge, England.1978.
    83 Gray D. F., Use of consumption predictors. Tech. Rep.4178. Engrg. Depart., Cambridge,Univ., Cambridge, England. 1978
    84 Maidment D. R., Parzen S. P., Time patterns of water use in six Texas cities[J]. Journals of Water Resources Planning and Management, ASCE.1984,110(1): 90-106
    85 Maidment D. R., Miaou S. P et al, Transfer function models for daily urban water use[J].Water Resources Research. 1985,21(4): 425-432.
    86 Hartley J. A.,Powell R. S.,The development of a combined demand prediction system[J).Civil Engineering Systems. 1991,8(4):231-236.
    87吕谋,赵洪宾,李红卫等.城市日用水量预测的组合动态建模方法.给水排水, 1997, 23(11): 25-27.
    88刘洪波,张宏伟.人工神经网络法预测时用水量.中国给水排水, 2002(18):39-41.
    89俞亭超,张土乔.峰值识别的SVM模型及在时用水量预测中的应用[J].系统工程理论与实践. 2005, 25(1): 134-139
    90 Quevedo J, Cembrano Cx, Time series modelling of water demand: a study on short-term and long-term predictions[M].Computer Application in Water Supply,Volume 1:System Analysis and Simulation, Edit by Coulbeck and Orr, Research Study Press Ltd,1987.
    91 Homwongs C,Sastri T,etal.Adaptive forecasting of hourly municipal water consumption[J]. Journals of Water Resources Planning and Management,ASCE.1994,120(6):888-905.
    92 Zhou S L,McMahon T A,Walton A,etal.Forecasting daily urban water demand:A case of study of Melbourne.Journal of Hydrology. 2000,236(3):153-164.
    93 Viswanathan M.N., Effect of restrictions on water consumption levels in Newcastle[R].Hunter District Water Board.Australia.1985.
    94阎立华,吕科峰.城市日用水量预测的神经网络方法[J].沈阳建筑工程学院学报(自然科学版), 2004, 20(2): 136-138.
    95 Nahm,E.H. Woo, K.B.,Prediction of the amount of water supplied in wide-area waterworks[J].Proceedings of the 24th Annual Conference of the IEEE.1998,vol. l:265-268.
    96王俊岭,孙怀军.城市给水系统时用水量的几种联合预测方法.北京建筑工程学院学报. 2003, 19(1): 40-43.
    97周建华.大规模城市给水管网系统优化运行模型研究[D].哈尔滨建筑大学博士学位论文, 2003.
    98袁一星,高金良,苑茂荣.给水管网节点流量计算方法的研究.哈尔滨建筑大学学报, 1999,32(1): 67-71
    99陶建科.建立给水管网动态模型中的水量分析方法.给水排水, 1998, 24(1): 26-30
    100陈念贻.模式识别优化技术及其应用.北京:中国石化出版社, 1997: 47-49.
    101白乃彬.计算机与环境科学.中国环境科学出版社, 2001: 22-34
    102 Brainard, B. (1994). Using Electronic Rate of Flow Recorders. Proceedings of the AWWA Distribution System Symposium, American Water Works Association, Omaha, Nebraska.
    103 Rhoades, S. D. (1995). Hourly Monitoring of Single-Family Residential Areas. Journal of the American Water Works Association, 87(8), 43.
    104 DeOreo, W. B., Heaney, J. P., and Mayer, P. W. (1996). Flow Trace Analysis to Assess Water Use. Journal of the American Water Works Association, 88(1), 79.
    105吴秀芹. ArcGIS 9地理信息系统应用与实践.北京:清华大学出版社, 2007.
    106刘光,刘小东.地理信息系统二次开发实例教程—VB.NET和MapObjects实现.清华大学出版社, 2004.
    107薛安,倪晋仁,马蔼乃.模型与GIS集成理论初步研究.应用基础与工程科学学报, 2002, 10(2):134-142.
    108 http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Solving_spatial_problems.
    109北京市城市规划设计研究院等.城市供水、中水、污水、雨水规划指标研究. 2003
    110严煦世,刘遂庆.给水排水管网系统.北京:中国建筑工业出版社, 2002: 66-76
    111严煦世,范瑾初.给水工程.第四版.中国建筑工业出版社, 1999:29-36
    112沈致和,倪景贤,胡令伯.沿线流量分配的强度系数法.中国给水排水, 1996,12(2):42.
    113肖庭延,于慎根,王彦飞.反问题的数值解法.北京:科学出版社, 2003.
    114金忠青,周志芳.工程水力学反问题.南京:河海大学出版社, 1997..
    115钱伟长.奇异摄动理论及其在力学中的应用.北京,科学出版社,1981
    116袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社, 1997.
    117 Davidson, J.W.; Bouchart, F.J.-C. Adjusting nodal demands in SCADA constrained real-time water distribution network models.Journal of Hydraulic Engineering.2006, January:102-110
    118吉乔伟.时用水量预测及供水管网节点流量反分析研究.浙江大学硕士学位论文. 2007
    119陈宇辉.给水管网动态模型维护与校验方法研究.同济大学博士学位论文. 2006
    120周玉文,何敏,方琦.基于GIS的给水管网动态水力计算模型的建立与应用.给水排水, 2006(8): 96-100.
    121 Zhou Yuwen,Xie Shanbin,Wang Mingming. An Object-Oriented Framework Design for Water Distribution Network Modeling, Beijing: PROCEEDINGS OF 2006 BEIJING INTERNATIONAL ENVIRONMENTAL TECHNOLOGY CONFERENCE, 2006: 507-512
    122 Grady Booch, Object-Oriented Analysis and Design with Applications,2nd edition, Addison Wesley Longman,inc,1994.
    123 Erich Gamma等著(李英军译).设计模式:可复用面向对象软件的基础,北京,机械工业出版社, 2005.
    124 http://www.cetus-links.org/oo_uml.html.
    125 Jeffrey Richter. Microsoft .NET框架程序设计,李建忠译,北京:清华大学出版社, 2003(11): 365-392

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700