用户名: 密码: 验证码:
大型发变组复杂异常工况下主保护新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型发变组的安全可靠运行对保障电力系统安全稳定具有重大作用,但其运行工况较为复杂,从而给发变组主保护带来了较大影响,因此不断提高发变组主保护性能及研究新保护原理具有重要意义。本文主要围绕大型发变组复杂异常工况及相关保护问题展开研究,内容包括发变组复杂和应涌流机理及特征,复杂和应涌流导致的差动保护误动原因与对策,基于瞬时功率原理的新型发电机主保护,抽水蓄能同步电机弱功角稳定性及新型低功率保护等。
     针对复杂和应涌流导致差动保护误动问题,构建了复杂和应涌流研究模型,利用LAPLACE变换获得了变压器磁链和电流的解析表达式。通过推导分析和数字仿真研究指出,在系统电源、发电机电源和负荷电流的共同作用下,复杂和应涌流呈现出指数函数与双曲函数联合特征,变压器副方其它形式的电源均对复杂和应涌流有影响。揭示了复杂和应涌流中二次谐波变化特征,分析了复杂和应涌流中非周期分量对电流互感器的影响,为后文研究新保护技术提供了理论基础。
     结合复杂和应涌流机理特征和电流互感器暂态饱和特点分析了复杂和应涌流导致变压器差动保护误动的原因,并进行了相应的数字仿真。通过仿真研究指出了复杂和应涌流暂态过程中保护侧差流,制动电流和二次谐波含量变化特征,提出了基于差流和二次谐波二维特征的变比率制动变压器差动保护。该保护不受复杂和应涌流影响,动作灵敏可靠,有效解决了常规差动保护在复杂和应涌流暂态过程中的误动问题。
     通过数字仿真和现场录波数据分析指出了在复杂和应涌流暂态过程中发电机差动保护原因,结合二次谐波制动和比率制动提出了一种加强制动型发电机差动保护。该保护通过加强制动功能来防止复杂和应涌流或外部故障导致保护出现误动行为,同时采用基于差流和制动电流计算公式的制动开放判据来避免发电机内部相间故障下保护出现拒动。各项试验数据和结果均证明了加强制动型发电机差动保护具有很高的灵敏性和可靠性,已经在工程现场获得成功应用。
     数字化电站技术的发展将使电压量能可靠用于主保护,因此基于电流电压量的功率保护技术因其简单可靠的特点将得到大力发展应用。论文基于两相(α,β)坐标系统对发电机内外部故障时其输出的瞬时功率进行了研究,提出了瞬时功率不对称度定义,并以瞬时功率不对称度为主判据,结合不平衡功率的相位特征提出了一种新型发电机不对称故障保护。动模试验结果表明,该保护具有很高的灵敏性和可靠性,且该保护接线简单,易与其它类型保护集成互补使用。
     对抽水蓄能电站保护进行了整定计算,为解决抽水蓄能同步电机处于抽水工况下电机低功率保护易出现误动问题,论文研究了同步电机处于抽水工况下功率振荡特点,分析了常规低功率保护容易出现误动的原因。通过数字仿真和现场数据分析,提出了一种新型多段式低功率保护。该保护的各段低功率定值与延时定值相匹配,能适应电机功率振荡不同阶段的特点,具有较高的可靠性。
     论文最后对全文研究成果进行了总结,并指出了下一步研究方向。
It is very important that the large generator-transformer unit is in safe and reliable running conditions for the electric power safety and reliability. The running conditions of the generator-transformer unit usually are complex, and the running conditions'conversion of the pumped-storage hydro-plant is in high frequency especially. It has a strong impact on the performance of the primary protections of the generator-transformer unit. Therefore it is of great significance to improve the performance of the main protection and research the new protection theory continuously. This paper focused on the complex and abnormal running conditions of the large generator-transformer unit and its protection problems. It contained the complex sympathetic inrush theory and characteristics, the differential protection mal-operation reasons caused by the complex sympathetic inrush and its countermeasures, the novel primary protection of generator based on the instantaneous power theory, the weak power-angle stability of the pumped-storage synchronous machine and the novel low power protection.
     This paper constructed the study model of the complex sympathetic inrush in order to solve the differential protection mal-operation problem caused by the complex sympathetic inrush. The analytic expressions of the flux linkage and current of the transformer were obtained by the LAPLACE-transform and were analyzed in detail. By the theory derivation and the digital simulation, it was pointed out that there were the joint characteristics of both the exponential function and the hyperbolic function under the system power, generator power and load current. Other powers in the transformer secondary windings had influence on the complex sympathetic inrush. Meanwhile the paper revealed the characteristics of the second harmonic current. All the research results provided the theory basis for the novel protection technology study.
     Based on the theory and characteristics of the complex sympathetic inrush, this paper analyzed the reasons of the transformer differential protection mal-operation caused by the complex sympathetic inrush. The joint digital simulation model of the generator-transformer unit was established. By the simulation study, the characteristics of the differential current, the restraint current and the second harmonic current in the protection were presented. A novel transformer differential protection with the variation ration restraint was proposed. It was unacted on the complex sympathetic inrush and the sensitivity and reliability were good. The mal-operation problem of the classic differential protection was solved by the novel protection effectively.
     By the digital simulation and the field record data analysis, the mal-operation reason of generator differential protection was concluded. A novel generator differential protection with the enhance restraint function was proposed based on both the second harmonic restraint and the ration restraint function. The mal-operation behavior of the differential protection during the complex sympathetic was blocked by the enhanced restraint function. Meanwhile a special opening criterion concluded from the calculation formula of the differential and restraint current was applied to avoid the refusing action of the protection in the condition of the phase to phase fault. The sensitivity and reliability of the differential protection with the enhanced restraint function were proved by all the test data and results, and the novel generator differential protection with the enhance restraint function had been put into use in the field.
     With the development of digital power substation technology, the voltage quantity could be used in the primary protection, and the power protection would be applied widely for its simple and reliable features. This paper studied the output instantaneous power of generator when an inner or extent fault took place in generator in the (α,β) coordinate system. The instantaneous power asymmetry degree was defined. A novel generator asymmetry fault protection was proposed, which criterion was made up of the instantaneous power asymmetry degree and its phase characteristic. The sensitivity and reliability of the novel generator asymmetry fault protection was high through the dynamic simulation test. Meanwhile the novel protection connection was simple, and it could be used complementarily with other protections.
     In order to solve the low power protection mal-operation problem of the pumped-storage synchronous machine when it was in the pumping condition, this paper studied the power swing characteristic and analyzed the mal-operation reasons of the low power protection. A novel multi-zone low power protection was proposed through the digital simulation and the field data analysis. The setting values of the multi-zone low power protection were matching with its delay values, which could adapt to the different stages of power oscillation.
     All research results were summarized finally and the direction of further research were pointed out.
引文
[1]李建基.我国超高压电网建设与开关设备简述[J].电气技术,2008,23(4):75-79.
    [2]印永华.特高压大电网发展规划研究[J].电网与清洁能源,2009,25(10):1-3.
    [3]赵庆波,张正陵,白建华.能源资源格局与“一特三大”电力发展战略[J].能源基地建设,2007,40(12):1-5.
    [4]袁季修.电力系统安全稳定控制[J].北京:中国电力出版社,1996.
    [5]沈晓凡,舒治淮,刘宇等.2007年国家电网公司继电保护装置运行情况[J].电网技术,2008,32(16):5-8.
    [6]王志鸿,郑玉平,贺家李.通过计算谐波比确定母线保护中电流互感器的饱和[J].电力系统及其自动化学报,2000,12(5):19-24.
    [7]李丽,都宏基等.计算谐波比确定母线保护中电流互感器的饱和[J].电力自动化设备,2003,23(7):69-72.
    [8]项巍,吕航等.母线保护中电流互感器的深度饱和辅助判据[J].电力自动化设备,2005,25(9):39-42.
    [9]张新刚,王泽忠.采用电压波形特征的电流互感器饱和检测方法[J].电网技术2005,29(14):59-64.
    [10]沈全荣,严伟,梁乾兵等.异步法电流互感器饱和判别新原理及其应用[J].电力系统自动化,2005,29(16):84-86.
    [11]李岩,陈德树,张哲等.鉴别TA饱和的改进时差法研究[J].继电器,2001,29(11)1-4.
    [12]Li Gtri-cun, Liu Wan-shun, Jia Qing-quan et al. A new method of detecting current transducer saturation based on wavelet transform [J]. IEEE Power Engineering Society Summer Meeting,2001 (1):617-621.
    [13]林湘宁,刘沛,高艳.基于数学形态学的电流互感器饱和识别判据[J].中国电机工程学报,2005,25(5):44-47.
    [14]Kasztenny, B.; Finney, D.. Generator protection and CT saturation problems and solutions [J]. IEEE Transactions on Industry Applications,2005,41 (6):1452-1457.
    [15]程利军,龙翔,杨奇逊.基于采样值的CT饱和检测方案的研究[J].继电器,2000,28(8):19-21.
    [16]杨恢宏,谢百煌,毕大强.基于虚拟制动电流采样点差动的CT饱和识别方法[J].继电器,2006,34(13):50-53.
    [17]赵永彬,陆于平.基于虚拟阻抗模型的电流互感器饱和判据[J].电力自动化设备,2007,27(9):43-47.
    [18]Cesareo Fernandez. An impedance-based CT saturation detection algorithm for bus-bar differential protection [J]. IEEE Transactions on Power Delivery,2001,16 (4):468-472.
    [19]Nicholas Villamagna, Peter A. Crossley. A CT saturation detection algorithm using symmetrical components for current differential protection [J]. IEEE Transactions on Power Delivery,2006,21 (1):38-45.
    [20]Jiuping Pan, Khoi Vu, Yi Hu. An efficient compensation algorithm for current transformer saturation effects [J]. IEEE Transactions on Power Delivery,2004,19 (4):1623-1628.
    [21]Andrzej Wiszniewski, Waldemar Rebizant, Ludwig Schiel. Correction of current transformer transient performance [J]. IEEE Transactions on Power Delivery,2008, 23 (2):624-632.
    [22]Y. C Kang, J. K. Park, S. H. Kang. An algorithm for compensating secondary currents of current transformers [J]. IEEE Transactions on Power Delivery,1997,12 (1):116-124.
    [23]H. Khorashadi-Zadeh, M. Sanaye-Pasand. Correction of saturated current transformers secondary current using ANNs [J]. IEEE Transactions on Power Delivery,2006,21(1):73-79.
    [24]姚晴林.微机型发电机相位比较式纵差动保护[J].继电器,1990,18(2):31-35.
    [25]尹项根,陈德树,张哲等.故障分量差动保护[J].电力系统自动化,1999,23(11):13-17.
    [26]李晓华,张哲,尹项根等.故障分量比率差动保护整定值的选取[J].电网技术,2001,25(4):47-50.
    [27]尹项根,邰能灵,杨书富.标积制动量的应用与分析[J].中国电机工程学报,2000,20(1):86-88.
    [28]陈德树.采样值电流差动微机保护的一些问题[J].电力自动化设备,1996,16(4):13-16.
    [29]陈德树,尹相根,张哲.再谈采样值差动保护的一些问题[J].电力自动化设备,2000,20(4):1-4.
    [30]袁荣湘,陈德树,马天皓等.基于故障分量的采样值差动保护的研究[J].继电器,2000,28(3):9-14.
    [31]姚寿松,杨钺,谢小平等.汽轮发电机横差保护不平衡电流测试及动作电流的讨论[J].继电器,1985,5(2):21-25.
    [32]诸嘉慧,袁新枚,邱阿瑞等.大型水轮发电机转子偏心对单元件横差保护影响的分析[J].电力系统自动化,2005,29(11):45-48.
    [33]伍叶凯,邹东霞.一种高灵敏度的发电机横差保护方案[J].电网技术,1999,21(1):35-37.
    [34]刘金明,黄青刚.龙羊峡水电站1号发电机组高灵敏度单元件横差保护动作分析[J].水电自动化与大坝监测,2003,27(5):37-39.
    [35]尹项根.同步发电机定子绕组故障瞬变过程数字仿真及其微机继电保护新原理的研究:[博士学位论文].武汉:华中理工大学,1989.
    [36]R.J.Marttila, Design principle of a new generator stator ground relay for 100% coverage of the stator winding [J]. IEEE Trans. On PWRD,1986,1(4):41-49.
    [37]J. W. Pope, A Comparison of 100% stator ground fault protection schemes for generator stator windings [J]. IEEE Trans. On PAS,13 (4):832-840.
    [38]Shi Shiwen, Sun Binhua. Analysis of ground protection of unit connected generator using third harmonics [C]. The 4th Internal Conference on Development in Power System Protection,1989, Edinburgh,254-258.
    [39]L.Pazmandi. Stator earth leakage protection for large generator [J]. GIGRE Proceeding,1972,2:1198-1207.
    [40]Power System Relaying Committee. Performace of generator protection during major system disturbances [J]. IEEE Transactions on Power Delivery,2004,19 (4):1650 -1662.
    [41]Yin, X.G, Malik, O.P, Hope, G.S, Chen, D.S. Adaptive ground fault protection schemes for turbo-generator based on third harmonic voltages [J]. IEEE Transactions on Power Delivery,1990,5 (2):595-603.
    [42]Nengling Tai, XiangGen Yin, DeShu Chen. Analysis of stator ground protection schemes for hydro-generator of three-gorge power plant based on zero sequence voltages [C]. IEEE Power Engineering Society Winter Meeting,2000,3:1888-1893.
    [43]Eithel-Fritz Knutter, Karl Nimes. New stator earth-fault for high voltage machines [J]. Siemens-Review,1973,4:112-122.
    [44]Su Q., Chang C, Tychsen R.C. Travelling wave propagation of partial discharges along generator stator windings [C]. Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials,1997,5:1132-1135.
    [45]M. Ilar, Zidar, M. Fiorentzis. Innovations in generator protection [J]. B.B. Review, 1978,6:217-221.
    [46]Su, Q. Analysis of partial discharge pulse propagation along generator stator windings [C]. IEEE Power Engineering Society Winter Meeting,2000,1:269-272.
    [47]NengLing Tai, XiangGen Yin, Zhe Zhang, DeShu Chen, Research of sub-harmonic injection schemes for hydro-generator stator ground protection [J]. IEEE Power Engineering Society Winter Meeting,2000,3:1928-1932.
    [48]张学深,杨智德,金全仁.故障分量负序方向保护研究[J].继电器,2000,28(7):59-61.
    [49]唐绪峰,代凤鸣.故障分量负序方向保护算法的改进[J].继电器,2002,30(1):64-65.
    [50]柳焕章.发电机故障分量负序方向保护的新判据[J].继电器,2000,28(7):20-21.
    [51]Legowski, S.F., Sadrul Ula, A.H.M., Trzynadlowski, A.M. Instantaneous power as a medium for the signature analysis of induction motors [J]. IEEE Transactions on Industry Applications,1996,32 (4):904-909.
    [52]Usta, O., Bayrak, M., Redfern, M.A. A new digital relay for generator protection against asymmetrical faults [J]. IEEE Transactions on Power Delivery,2002,17 (1) 54-59.
    [53]Sedraoui, Khaled, Fnaiech, Farhat, Al-Haddad, Kamal. Application of the instantaneous power with the symmetrical components theory to Control unbalanced and non-Sinusoidal three phase power system[C]. IEEE Power Engineering Society General Meeting,2007,5:1127-1132.
    [54]Benini, L., Omerbegovic, E., Macii, A. et al. Energy-aware design techniques for differential power analysis protection[C]. Proceedings:Design Automation Conference,2003,7:129-135.
    [55]Khan, M.A.S.K., Ozgonenel,O., Rahman, A. Diagnosis and protection of stator faults in synchronous generators using wavelet transform[C]. IEEE International Electric. Machines & Drives Conference,2007,3:137-142.
    [56]Dong, X.Z., Shi, S.X., W. Kong, et al. Adaptive directional relay and direction comparison protection based on instantaneous power for UHV transmission lines[C]. IET 9th International Conference on Developments in Power System Protection,2008, 2:256-261.
    [57]张军,万秋兰,徐贤.抽水蓄能机组在水泵运行时机组的功率振荡问题及仿真分析[J].电力自动化设备,2005,25(10):93-95.
    [58]徐贤,袁宇波等.抽水蓄能机组在水泵运行时功率振荡问题的试验研究[J].江苏电机工程,2005,24(5):9-11.
    [59]刘增煌.抽水蓄能动态稳定性能及电力系统稳定器的应用[J].中国电机工程学报,1995,15(2):137-143.
    [60]Byerly R T, Kimbark E W. Stability of large electric system [M]. IEEE Press,1974.
    [61]刘宪林,柳焯,娄和恭.考虑阻尼绕组作用的单机无穷大系统线性化模型[J].中国电机工程学报,2000,20(10):41-45.
    [62]卫志农,陈剑光等.水机电系统相互作用研究[J].电力系统自动化,2000,14(12):26-29.
    [63]E,De Jaeger N, Janssens,B.Malfliet. Hydro-turbine model for system dynamic studies [J]. IEEE Transactions on Power Studies,1946,9 (4):1709-1715.
    [64]Bertola G. Brown. Transformer magnetizing inrush currents and influence on system operation [J]. Boveri Review,1945,32 (10):132-141.
    [65]Dittruh. G. Deutsche. Wave shape of the magnetizing current of transformers and its harmonic analysis [J]. Electro technic,1953,7 (5):91-107.
    [66]Hayward C.D. Prolonged inrush current with parallel transformers affect differential relaying [J]. AIEE Transactions,1941,60 (17):1125-1135.
    [67]C.D. Hayward. Harmonic-current-restraint relays for transformer differential protection [J]. AIEE Transactions,1941,60 (17):1195-1206.
    [68]R.L. Sharp, W.E. Glass Burn. A transformer differential relay with second-harmonic restraint [J]. AIEE Transactions,1958,77 (12):1317-1326.
    [69]王祖光,任杰,仇新宏等.变压器谐波闭锁差动保护新判据[J].电力系统自动化,2006,30(14):50-54.
    [70]Pei Liu et al. Improved operation of differential protection of power transformers for internal faults [J]. IEEE Trans. PWRD,1992,7 (4):123-128.
    [71]J.S.Thorp. Microprocessor based three phase transformer differential relay [J]. IEEE Trans. PAS,1982,101(2).
    [72]陈德树,尹项根,张哲等.虚拟三次谐波制动式变压器差动保护[J].中国电机工程学报,2001,21(8):19-23.
    [73]朱亚明,郑玉平,叶锋等.间断角大批量的变压器差动保护的性能特点及微机实现[J].电力系统自动化,1996,20(11):36-40.
    [74]徐习东,何奔腾.变压器差动保护中CT饱和后间断角的测量[J].电力系统自动化,1998,22(5):22-25.
    [75]徐习东,吴俊.基于最小二乘法的间断角测量[J].继电器,2004,32(7):24-27.
    [76]孙志杰,陈云仑.波形对称原理的变压器差动保护[J].电力系统自动化,1996,20(4):42-46.
    [77]焦邵华,刘万顺.区分变压器励磁涌流和内部短路的积分型波形对称原理[J].中国电机工程学报,1999,19(8):137-142.
    [78]何奔腾,徐习东.波形比较法变压器差动保护原理[J].中国电机工程学报,1998,18(6):395-398.
    [79]李贵存,刘万顺,刘建飞等.用波形拟合法识别变压器励磁涌流和短路电流的新原理[J].电力系统自动化,2001,25(14):15-18.
    [80]李贵存,刘万顺,腾林等.基于波形相关性分析的变压器励磁涌流识别新算法[J].电力系统自动化,2001,25(17):25-28.
    [81]Bronzeadohs, Yacaminir. Phenomenon of sympathetic interaction between transformers caused by inrush transients [J]. IEE Proceedings-Science, Measurement and Technology,1995,142 (4):323-329.
    [82]Bronzeadohs, Broganpb, Yacaminir. Harmonic analysis of transient currents during sympathetic interaction [J]. IEEE Trans in Power Systems,1996,11 (4):2051-2056.
    [83]Saied M M. A study on the inrush current phenomena in transformer substations [C]. Proceedings of Industry Applications Conference & Thirty-sixth IAS Annual Meeting, Chicago, USA,2001:1180-1187.
    [84]王怀智,孙显初,常林.和应涌流对变压器差动保护影响的试验研究[J].继电器,2001,29(7):52-54.
    [85]李德佳.微机型变压器差动保护误动作原因分析与对策[J].继电器,2004,32(5):56-59.
    [86]上官帖,谌争鸣,郭军燕.和应涌流对变压器差动保护的影响及对策[J].华中电力,2004,17(5):50-52.
    [87]张雪松,何奔腾,张建松.变压器和应涌流的产生机理及其影响因素研究[J].电力系统自动化,2005,29(6):15-19.
    [88]袁宇波,李德佳,陆于平等.变压器和应涌流的物理机理及其对差动保护的影响[J].电力系统自动化,2005,29(6):9-14.
    [89]毕大强,王祥衍,李德佳等.变压器和应涌流的理论探讨[J].电力系统自动化,2005,29(6):1-8.
    [90]余高旺,毕大强,王志广等.变压器和应涌流现象及实例分析[J].电力系统自动化,2005,29(6):20-23.
    [91]张雪松,何奔腾.变压器和应涌流对继电保护影响的分析[J].中国电机工程学报,2006,26(14):12-17.
    [92]束洪春,贺勋,李立新.变压器和应涌流分析[J].电力自动化设备,2006,26(10):7-12.
    [93]谷君,郑涛,肖仕武等.基于时差法的Y/△接线变压器和应涌流鉴别新方法[J].中国电机工程学报,2007,27(13):6-11.
    [94]Dejun Shao, Xianggen Yin, Zhe Zhang. Deshu Chen, Research on Sympathetic Interaction between Transformers [C]. The 42th International Universities Power Engineering Conference,2007, England,273-276.
    [95]毕大强,孙叶,李德佳等.和应涌流导致差动保护误动原因分析[J].电力系统自动化,2007,31(22):36-40.
    [96]郑涛,赵萍.和应涌流对差动保护的影响因素分析及防范措施[J].电力系统自动化,2009,33(3):74-77.
    [97]李斌,马超等.内桥接线主接线变压器差动保护误动原因分析[J].电力系统自动化,2009,33(1):99-102.
    [98]Phdake A G, Thorp J S. A New Computer-based Flux-restrained Current-differential Relay for Power Transformer Protection [J]. IEEE Trans on Power Apparatus and Systems,1983,102 (11):3624-3629.
    [99]J.Heydeman. Flux Based Current Differential Protection for Power Transformer [C]. 5th International Conf on Development in Power System Protection,1993,2: 127-133.
    [100]金明,刘远龙.利用磁饱和特性的变压器励磁涌流鉴别方案[J].继电器,1997,25(3):15-18.
    [101]T.S. Sidhu, M.S. Sachdev. Design, implementation and testing of a micro-processor based high speed relay for detecting transformer winding faults [J]. IEEE Trans.PWRD,1992,7 (1):153-158.
    [102]T.S. Sidhu.On line identification of magnetizing inrush and internal faults in three phase transformer [J]. IEEE Trans. PWRD,1992,7 (4):218-225.
    [103]王增平,徐岩,王雪等.基于变压器模型的新型变压器保护原理的研究[J].中国电机工程学报,2003,23(12):54-58.
    [104]韩正庆,高仕斌,李群湛.基于变压器模型的新型变压器保护原理和判据[J].电网技术,2005,29(5):67-71.
    [105]郝治国,张保会,褚云龙.基于等值回路平衡方程的变压器保护原理[J].中国电机 工程学报,2006,26(10):67-72
    [106]Yabe K. Power differential method for discrimination between fault and magnetizing inrush current in transformer [J]. IEEE Trans on Power Delivery,1997,12 (3): 1109-1118.
    [107]孙鸣,梁俊滔,冯小英.基于功率差动原理的变压器保护实现方法的分析[J].继电器,2001,29(12):13-15.
    [108]郑涛,刘万顺,吴青华等.基于瞬时功率的变压器励磁涌流和内部故障电流识别新方法[J].电力系统自动化,2003,27(23):51-55.
    [109]李永丽,梅云,刘长胜等.一种基于序功率方向的变压器保护方案[J].电力系统自动化,2002,26(4):28-31.
    [110]Keizo Inagaki, Masaru Higaki, Yoshiaki Matsui, et al. Digital protection method for power transformers based on an equivalent circuit composed of inverse inductance[J]. IEEE Trans on Power Delivery,1988,3 (4):1501-1510.
    [111]Sidhu T S. A power transformer protection technique with stability during current transformer saturation and ratio-mismatch conditions [J]. IEEE Trans on Power Delivery,1999,14 (3):798-804.
    [112]宗洪良,金华烽,朱振飞,张绍纯.基于励磁阻抗变化的变压器励磁涌流判别方法[J].中国电机工程学报,2001,21(7):91-94.
    [113]葛宝明,苏鹏声,王祥珩等.基于瞬时励磁电感频率特性判别变压器励磁涌流[J].电力系统自动化,2002,26(17):35-40.
    [114]毕大强,王祥珩,梁武星等.基于不同区域平均等效瞬时电感比值的励磁涌流鉴别方法[J].电力系统自动化,2005,29(17):49-55.
    [115]毕大强,王祥珩,王剑等.基于非饱和区等效瞬时电感的变压器励磁涌流鉴别方法[J].电力系统自动化设备,2005,25(10):1-6.
    [116]葛宝明,于学海,王祥琦等.基于等效瞬时电感判别变压器励磁涌流的新算法[J].电力系统自动化,2004,28(7):44-48.
    [117]郑涛,刘万顺,庄恒建等.用归一化等效瞬时电感分布特性识别励磁涌流的新算法[J].中国电机工程学报,2005,25(23):47-53.
    [118]朱洪波,王玉和,杨艳.小波变换在发电机失磁保护中的应用研究[J].高压电器,2003,39(5):55-56.
    [119]林涛,陈德树,尹项根.小波分析在大型同步发电机微机继电保护中的应用研究[J].中国电机工程学报,1999,19(8):60-65.
    [120]邰能灵,尹项根.正交小波在发电机定子单相接地保护中的应用[J].电力系统自动化,2001,1(10):34-37.
    [121]P. L. Mao, R.K. Aggarwal. A wavelet transform based decision making logic method for discrimination between internal faults and inrush currents-in power transformers [J]. International Journal of Electrical Power and Energy Systems,2000,22 (6) 389-395.
    [122]林湘宁,刘沛,程时杰.基于小波包变换的变压器励磁涌流识别新方法[J].中国电机工程学报,1999,19(8):14-19.
    [123]焦邵华,刘万顺,刘建飞等.用小波理论区分变压器的励磁涌流与短路电流的新原理[J].中国电机工程学报,1999,19(7):1-5.
    [124]M. G. Morante, D. W. Nieolett. A wavelet-based differential transformer protection [J]. IEEE Transactions on Power Delivery,1999,14 (4):1351-1358.
    [125]Mao P L, Aggarwal R K. A wavelet transformer based decision making logic method for discrimination between internal faults and inrush currents in power transformers [J]. International Journal of Electrical Power and Energy Systems,2000,22(6): 389-395.
    [126]Gomez-Morante Moises, Nicoletti Denise W. A wavelet-based differential transformer protection [J]. IEEE Transaction on Power Delivery,1999,10(14): 1351-1356.
    [127]郑涛,刘万顺,刘建飞等.采用数学形态学防止变压器差动保护误动的新方法[J].中国电机工程学报,2005,25(20):6-11.
    [128]Sun P, Zhang J F, Zhang D J, et al. Morphology identification of transformer magnetizing inrush current [J]. IEEE Electronics Letters,2002,38 (9):437-438.
    [129]Wu Q H, Zhang J F, Zhang D J. Ultra-high-speed directional protection of transmission lines using mathematical morphology [J]. IEEE Transaction on Power Delivery,2003,18 (4):1134-1139.
    [130]Zhang D J, Li Q, Zhang J F, et al. Improving the accuracy of single-ended transient fault locations using mathematical morphology[C]. IEEE/CSEE International Conference on Power System Technology, Kunming, China,2002,2:788-792.
    [131]Jongepier A G, van der Sluis L. Adaptive distance protection of a double-circuit line using artificial neural networks [J]. IEEE Trans on Power Delivery,1997,17(1): 40-41.
    [132]Qi W, Swift G W, McLaren P G, et al. An artificial neural network application to distance protection [C]. ISAP International Conference:-Intelligent Systems Applications to Power Systems,1996,3:226-230.
    [133]Qi W, Swift G W, McLaren P G. Distance protection using an artificial neural network [C]. Sixth International Conference on Developments in Power System Protection,1997,5:286-290.
    [134]Venkatesan R, Balamurugan B. A real-time hardware fault detector using an artificial neural network for distance protection [J]. IEEE Transactions on Power Delivery, 2001,16(1):75-82.
    [135]Bo ZQ, Wang G S, Wang P Y, et al. Non-differential protection of generator using fuzzy neural network[C]. International Conference on Power System Technology, 1998,2:1072-1076.
    [136]Yang Jingchao, Yin Xiangen, Chen Deshu, et al. Internal fault simulation of multi-branch generator based on genetic algorithm [C]. International Conference on Power System Technology,2002,2:1183-1189.
    [137]Taalab A I, Darwish H A, Kawady T A. ANN-based novel fault detector for generator windings protection [J]. IEEE Transactions on Power Delivery,1999,14(3): 824-830.
    [138]M. R. Zaman, M. A. Rahan. Experimental testing of the artificial neural network based protection of power transformer [J]. IEEE Transactions on Power Delivery, 1998,13 (2):510-517.
    [139]L. G. Perez, A. J. Fleehsig, J. L. Meado, et al. Training an artificial neural network to discriminate between magnetizing inrush and internal faults [J]. IEEE Transactions on Power Delivery,1994,9 (1):434-441.
    [140]A. L. Orille Fenrandez, N. K. I. Ghonaim, J. A. Valeneia. A FIR-ANN as a differential relay for three phase power transformer protection [J]. IEEE Transactions on Power Delivery,2001,16 (2):215-218.
    [141]袁宇波,陆于平,唐国庆等.一种基于常规保护原理的ANN发电机差动保护研究[J].电力系统及其自动化学报,2002,14(1):15-19.
    [142]王增平,高中德,张举等.模糊理论在变压器保护中的应用[J].电力系统自动化,1998,22(2):13-16.
    [143]艾芊,陈陈,Aggarwal R.一种应用模糊神经网络对完全电机定子进行故障保护的新方法[J].中国电机工程学报, 2003,23(10):130-135.
    [144]王旭红.在线监测电机定子线圈匝间短路故障的新方法[J].高电压技术,2003,28(9):28-30.
    [145]汪鑫,李朝晖,王宏.水轮发电机状态监测与诊断系统的研究[J].大电机技术,2004,31(2):32-36.
    [146]王晓茹,钱清泉,伍思涛.基于神经网络的自适应距离保护研究[J].电力系统自动化,1998,22(2):27-30.
    [147]罗建,李亚军等.基于神经网络模型的母线保护[J].电力系统自动化,2002,26(11):41-44.
    [148]乐全明,顾永朋,吕飞鹏.基于GA的环网方向保护配合最小断点集的计算[J].继电器,2002,30(8):23-25.
    [149]段玉倩,贺家李.基于径向基函数网络的距离保护方案[J].电力系统自动化,2000,24(10):23-26.
    [150]雷宇,陈少华,桂存兵等.基于模糊神经网络的母线充电保护研究[J].现代电力,2007,24(1):21-24
    [151]段玉倩,贺家李,贺继红.基于人工神经网络方法的微机变压器保护[J].中国电机工程学报,1998,18(3):190-193.
    [152]毛鹏,张兆宁,林湘宁,孙雅明.基于小波神经网络的电力系统振荡和故障识别[J].电力系统自动化,2002,26(11):9-13
    [153]汪肠,尹项根,赵逸君等.基于遗传算法的区域电网智能保护[J].电力系统自动 化,2008,32(17):40-44.
    [154]刘力丰,刘青,李华等.杨奇逊继电保护智能设计的模糊参数决策机制[J].电力系统及其自动化学报,1998,31(4):22-25.
    [155]金卫军,孙雯,黄少锋.模式识别在发电机定子接地保护中的应用[J].继电器,2004,32(11):29-32
    [156]段玉倩,贺家李.神经网络式距离保护的混合训练算法[J].电力系统自动化,2000,24(10):19-22.
    [157]Ren-c Luo, Chih-chen Yih, Kuo-lan Su. Multi-sensor fusion and integration: approaches, applications, and future research directions [J]. IEEE Sensors Journal, 2002,2(2):107-118.
    [158]Bogdan Kasztenny. A Multi-criteria differential transformers relay based on fuzzy logic [J]. IEEE Transactions on Power Delivery,1995,10 (4):1786-1791.
    [159]邵德军.大型变压器暂态机理与保护新原理研究:[博士学位论文].武汉:华中科技大学,2009,50-68.
    [160]Anllakkage, U.D., McLaren, P.G, Dirks, E., et al. A current transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis [J]. IEEE Transactions on Power Delivery,2000,15 (1):57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700