用户名: 密码: 验证码:
中甸地区斑岩铜矿成矿模式与综合勘查评价技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中甸地区(27°41′~28°32′N,99°40′~100°15′E)位于西南三江中段义敦岛弧带南段,普朗大型斑岩铜矿的发现使该区备受关注,该区逐渐成为我国又一重要的铜多金属矿集区。该区海拔较高(2500-5000m)、地形切割强烈、相对高差大、植被茂密、年积雪时间长、交通不便,选择该区进行斑岩铜矿勘查评价研究具有一定的挑战性。本文选择普朗斑岩铜矿为典型矿床,结合成矿地质背景分析建立中甸地区斑岩铜矿成矿模式;以隐伏含矿斑岩体圈定和隐伏构造格架的识别为目标,开展位场多尺度分解和多方向多尺度边缘检测研究;进行了多学科综合分析,建立中甸地区斑岩铜矿多学科定位预测模型,圈定了找矿靶区,并对预测的结果进行野外检查验证,获得令人满意的结果,发现4处矿化新区。
     本论文取得如下几个方面的成果并有所创新:
     1)率先提出中甸岛弧发育在裂解的大陆边缘之上,卡尼期中甸岛弧陆壳相对较薄,陆壳混染较少,斑(玢)岩相对偏铁镁质,构造环境与岛弧环境相似,形成与“闪长岩模式”相似的普朗斑岩铜矿类型;诺利期中甸岛弧陆壳挤压增厚,陆壳混染增多,斑(玢)岩相对偏长英质,构造环境与陆缘弧相似,形成与“二长岩模式”相似的雪鸡坪斑岩铜矿类型。
     2)提出与前人不同的普朗斑岩铜矿蚀变分带模式,指出蚀变分带中典型的绢英岩化带(千枚岩化带)不发育,蚀变分带特征与“闪长岩模式”相近,为富金的斑岩铜矿。通过对比发现普朗斑岩铜矿蚀变矿化特征与雪鸡坪斑岩铜矿存在明显的差异,雪鸡坪斑岩铜矿的蚀变分带特征与典型的“二长岩模式”相似,认为普朗斑岩铜矿成矿环境偏基性。
     3)发现普朗斑岩铜矿的斑(玢)岩中存在大量的镁铁质岩浆包体,部分包体与寄主岩之间存在渐变的接触界线,包体中存在具暗色镶边的眼球状石英结构,说明存在岩浆混合作用,基性岩浆的注入是普朗斑岩铜矿重要的控矿因素,镁铁质岩浆包体是该区斑岩铜矿重要的找矿标志。
     4)提出甭哥岩体不是新生代的产物,确定甭哥正长岩为钾玄质岩石,存在碱性暗色矿物,具有岛弧型微量元素特征,源区深度较大,侵位于201Ma左右,略晚于中甸岛弧斑(玢)岩,形成于弧后扩张环境。
     5)通过实际应用发现解析信号法、欧拉反褶积方法、多尺度边缘检测方法在位场处理中对方向性信息不敏感,提出并实现了位场多方向多尺度边缘检测方法,从而得到不同深度异常源边界精确位置,在区域矿产资源预测评价的三维构造格架厘定中起了很大的推动作用。
     6)采用具有平移不变性的离散小波变换进行位场多尺度分解,从而实现叠加异常的多尺度分离,并建立起中甸地区不同尺度航磁异常与斑岩铜矿的关系。
     7)分析了SRTM数据的精度,采用SRTM数据进行了汇水盆地和水系的自动提取,基于汇水盆地采用模糊逻辑方法进行了重砂异常信息的综合。
     8)明确各学科在矿产资源评价中的功能与地位,进行多学科的关联分析,建立中甸地区斑岩铜矿多学科定位预测模型,进行了找矿靶区的圈定和野外检查,发现4处矿化新区。
Zhongdian (27°41′~28°32′N,99°40′~100°15′E) is one of the most important copper polymetallic metallogenic belt in China, which is located in the south Yidun island arc of middle part of Three Rivers area. It has won great attention for the discovery of Pulang porphyry copper deposit. In the area, attitude is high (2500-5000m);The period of snow coverage is long; Percentage of forest coverage is large; Steep terrain leads a very inconvenient traffic condition. So it is a great challenge to explore the porphyry copper deposit here. This study takes the Pulang porphyry copper deposit as the typic deposit, and establishes the porphry copper ore deposit model of Zhongdian, with the anylasis of geologic setting. To explore the concealed ore-bearing porphyry and identify the concealed structure framework, multiscale analysis and multidirectional and multiscale edge detection of potential field have been realized. Furthermore, correlation of multi-disciplinary was accomplished; multi-disciplinary location prediction model of porphyry copper deposit of Zhongdian was established; ore targets were delineated, and the result was verified by field work. As a statisfied result, four new mineralization area were found.
     Zhongdian arc forms at the splitted continental margin. During Carnian time, the continental crust in Zhongdian arc is thin, and arc magma was less contaminated; the porphyry is much femic; tectonic setting is similar to that of island arc; Pulang porphyry copper deposit corresponds to diorite-type porphyry copper model rather than classic type. During Norian time, the continental crust is compressed to thicken by low angle subduction of Ganzi-Litang ocean plate, and arc magma was more contaminated, and the porphyry is much felsic; tectonic setting is similar to that of continental arc; Xuejiping porphyry copper deposit corresponds to monzonite-type porphyry copper model.
     Different from established alteration zoning model of Pulang porphyry copper deposit, it is discovered that the typic phyllic zone (phyllite zone) is not obvious. The characteristic of alteration zoning is similar to diorite-type porphyry copper model, and the ore deposit is in rich of gold. By contrasting the alteration and mineralization characteristics of Pulang porphyry copper deposit with those of Xuejiping porphyry copper deposit, obvious differences are found that the characteristic of alteration zoning of Xuejiping porphyry copper deposit is similar to monzonite-type porphyry copper model, and the metallogenic environment of Pulang porphyry copper deposit is more basic.
     Plenty of mafic magmatic enclaves were found in the porphyry in Pulang porphyry copper deposit. Some enclaves are gradual to the host rocks, and there is quartz-mafic mineral ocellar texture in the enclaves, which show the evidence to the magma mixing. It has been proved that the injection of basic magma was the major control factor to porphyry copper deposit, and the occurrence of mafic magmatic enclaves can be an indicator for prospecting porphyry copper deposits in Zhongdian.
     The Bengge plutons was suggested not to be Cenozoic, and its syenite was determined to be shoshonite with some alkaline mafic minerals. The rock has the similar trace elements characters to arc magma with a deep source and emplaced around 201 Ma, a little later than the Zhongdian arc porphyry, suggesting it formed in the back-arc spreading setting.
     With the application of analytical signal, Euler deconvolution and multiscale edge detection to potential fields processing, it is found that the methods are unsensitive to the directional information. Multidirectional and multiscale edge detection method are suggested and realized. It is realism to get the precise edges of the anomaly sources at different depth, which takes effect to the 3D structure frame in regional prognosis of mineral resources.
     Using shift invariance discrete wavelet transform to multiscale analysis of potential fields, it is possible to more precise separation of the overlying anomaly at multiscale, and set up relationship between different scale aeromagnetic anomaly and porphyry copper deposits in Zhongdian.
     The accuracy of SRTM data is analyzed, and the catchment basin and stream system are automaticly extracted with SRTM data. Otherwise based on catchment basin, heavy placer anomaly is intergrated with fuzzy logic model in GIS.
     Ensure the fuction of each subject in mineral resources Prognosis. With the correlation analysis among subjects, multi-disciplinary location prediction model of porphyry copper deposite of Zhongdian is established. ore targets were delineated and and verified by field work. 4 new mineralization areas were foud.
引文
An P, Moon W M, and Rencz A. 1991. Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Canadian Journal of Exploration Geophysics, 27: 1-11.
    Barbarin B. 1988. Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint-Julien-la-Vetre Monzogranite(Nord-Forez, Massif Central, France). Can. J. Earth Sci., 25: 49~59.
    Barongo J.O.. 1985. Method for depth estimation on aeromagnetic vertical gradient anomalies. Geophysics, 50: 963-968.
    Bergantz G W and Dawes R. 1994. Aspects of magma generation and ascent in continental lithosphere. In: Ryan M P, ed. Magmatic System. SanDiego. Academic Press. 291-317.
    Blakely R.J., Simpson R.W. 1986. Approximating edges of source bodies from magnetic and gravity anomalies. Geophysics, 51: 1494- 1498.
    Bliss J D. 1992. Developments in mineral deposit modeling. U. S. Geological Survey Bulletin Bonham-Carter G F. 1994. Geographic information systems for geoscientists: modelling with GIS. NewYork :Pergamon Press. 398 p.
    Brasington J, Richards K. 1998. Interactions between model predictions, parameters and DTM scales for TOPMODEL. Computer&Geosciences, 24(4): 299-314.
    Brown W, Groves D, Gedeon T. 2003. Use of Fuzzy Membership Input Layers to Combine Subjective Geological Knowledge and Empirical Data in a Neural Network Method for Mineral-Potential Mapping. Natural Resources Research, 12(3): 183 - 200.
    Burnham C W. 1979. Magma and hydrothermal fluids. BARNES H L.Geochemistry of Hydrothermal Ore Deposits. 2nd. New York: Holt, Rinehart and Winston, 71~136.
    Canny F J. 1986. A computational approach to edge detection. IEEE Trans PAMI, 8(6):679~698
    Cantagrel J M, Didier J, Gourgaud A. 1984. Magma mixing: origin of intermediate rock and enclaves from volcanism to plutonism. Phys. Earth Planet. Inter., 35: 63~76
    Carranza E J, Hale M, and Mangaoang J C. 1999. Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research, 8(2): 165~173.
    Castro A, Moreno-Ventas I, J D de la Rosa. 1990. Microgranular enclaves as indicators of hybridization processes in granitoid rocks, Hercynian Belt, Span. Wally Pitcher Conference, University of Liverpool, January 1990. Geo. J., 25: 391~404.
    Castro A, Moreno-Ventas I, J D de la Rosa. 1991. H-type(hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Eathe Science Reviews, 31: 237~253.
    Coleman M, Hodges K. 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east2west extension. Nature, 374: 49-52.
    Cordell L., Grauch V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in San Juan basin, New Mexico, in Hinze, W.J., ed. Soc. Explor. Geophysics, Spec., The utility of regional gravity and magnetic anomaly maps, 181~197
    Costa-Cabral M C, Burges S J. 1994. Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research, 30(6):1681~1692.
    Cox D P and Singer D A . 1986. Mineral deposit models[C]. US Geological Survey Bulletin.
    Cox D P, and Singer D A. 1992. Distribution of gold in porphyry copper deposits: U.S. Geological Survey Bulletin 1877
    D. R. Cooke, P. Hollings, and J. L. Walshe. 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, August 1, 100(5): 801 - 818.
    D’Ercole C, Groves D I, and Knox-Robinson C M. 2000. Using fuzzy logic in a Geographic Information System environment to enhance conceptually based prospectivity analysis of Mississippi Valley-type mineralisation. Australian Jour. Earth Sciences, 47(5): 913–927.
    Dedant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature, 34: 662-665.
    Denker H. 2004. Evaluation of SRTM3 and GOTOP30 Terrain Data in Germany. Proceeding of GGSM 2004, IAG, Porto, Portugal
    Desmet P J J, Govers G. 1996. Comparison of routing algorithms for digital elevation models and their implication for predicting ephemeral gullies. International Journal of Geographical Information science, 10(10):311~331.
    Didier J, Barbarin B. 1991. Enclaves and Granite Petrology. Elsevier, Amsterdam, p. 625
    Du Andao, Wang Shuxian, Sun Dezhong, Zhao Dunminn, Liu Dunyi. 2001. Precise Re-Os dating of Molybdenite using Carius tube, NTIMS and ICPMS. Mineral Deposits at the 21st Century: 405-407.
    Evans O C, Hanson G N. 1993. Accessory-mineral fraction of rare earth element abundance in granitoid rocks. Chemical Geology, 110: 69-93.
    Fairfield J, Leymarie P. 1991. Drainage networks from grid elevation models. Water Resources Research, 27(5):709-717.
    Farr, T.G., M. Kobrick, 2000, Shuttle Radar Topography Mission produces a wealth of data, Amer. Geophys. Union Eos, v. 81, p. 583-585.
    Fedi M, Quarta T. 1998. Wavelet analysis for the regional-residual and local separation of potential field anomalies. Geophysical Prospecting, 46, 507–525
    Fedi M., Florio, G. 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys. Prospect., 49: 40-58.
    Fedi M., R. Primiceri, T. Quarta and A. V. Villani. 2004. Joint application of continuous and discrete wavelet transform on gravity data to identify shallow and deep sources. Geophys. J. Int. , 156: 7-21
    Fitton J G, Upton B G J. 1987. Alkaline Igneous Rocks. London: Blackell Scientific Publications. Foley S, Peccerillo A. 1992. and ultrapotassic magmas and their origin. Lithos, 28: 181-185. Freeman T G. 1991. Calculating catchment area with divergent flow based on a regular grid. Computer & Geosciences, 17(3): 413-422.
    Gerlach T M, Westrich H R, Symonds R B. 1996. Preeruption vapor in magma of the climactic Mount Pinatubo eruption: source of the giant stratospheric sulfur dioxide cloud. In: Newhall C G, Punongbayan R S(eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, 415~434
    Gow P., and Walshe J.L.. 2005. The role of preexisting geologic architecture in the formation of giant porphyry-related Cu ± Au deposits: Examples from New Guinea and Chile. Economic geology, v. 100, p. 819–833.
    Grant F S. 1985. Aeromagnetics, geology and ore environments, 1, Magnetite in igneous, sedimentary and metamorphic rocks: An overview, Geoexploration, 23, 303-333,
    Guilbert JM, Lowell JD. 1974. Variations in zoning patterns in porphyry ore deposits. Can Inst Mining Metallur Bull, 67: 99–109.
    Gutscher M A, Maury R, Eissen J P, et al. 2000. Can slab melting be caused by flat subduction? Geology, 28: 535-538
    Hanson J N. 1978.The application of trace-elements to the petrogenesis of igneouse rocks of granitic composition. Earth and Planetary Science Letters,38:26-43.
    Hattori K. 1993. High-sulfur magma, a product of fluid discharge from underlying mafic magma: evidence from Mount Pinatubo, Philippines. Geology, 21: 1083~1086.
    Hattori KH, Keith J D. 2001. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Mineralium Deposita, 36: 799-806
    Hattori K, Sato H. 1996. Magma evolution recorded in plagioclase zoning in 1991 Pinatubo eruption products. Am Mineral, 81: 982~994.
    Hedenquist J W, Arribas A J, Gonzalez U E. 2000. Exploration for epithermal gold deposits. Reviews in Economic Geology, 13: 245-277
    Hildreth W and Moorbath S. 1988. Crust contributions to arc magmatism in the Andes of central Chile. Contribution to Mineralogy Petrology, 98: 455-489.
    Hollister V.F.. 1975. An appraisal of the nature of some porphyry copper deposits. Miner. Sci. Eng., 7, p. 225-233
    Hollister V. F.. 1978. Geology of porphyry copper deposits of the Western Hemisphere. Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers. Inc., P219
    Honrby P., Boschetti F., Horowitz, F.G. 1999. Analysis of Potential field data in the wavelet domain. Geophys. J. Int., 137: 175-196.
    Hou Z Q, Mo X X, Qu X M, et al. 2004. Origin of adakitic rocks generated during the mid-Miocene east-west extension in south Tibet. Earth Planet Sci Lett, 220: 139-150
    Hou Zengqian, Ma Hongwen, Khin Zaw, Zhang Yuquan, Wang Mingjie. 2003. The Himalayan Yulong porphyry copper belt: produced by large-scale strike-slip faulting at Eastern Tibet. Economic Geology,98: 125-145.
    Hsu S., Coppens D., Shyu, C.. 1998. Depth to magnetic source using the generalized analytic signal, Geophysics, 63:1947-1957.
    Imai A, Listanco E L, Fujii T. 1993. Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mount Pinatubo, Philippines. Geology, 21: 699-702.
    Irvine T N and Baragar W R A. 1971. A guide to the chem.ical classification of the common volcanic rocks. Can. J. Earth Sci., 8: 523-548.
    Ishihara S. 1977. The magnetite-series and ilmentite-series granitic rocks. Mining Geology, 27: 293~305.
    Kauffman A, Gupta A. 1985. Introduction to Fuzzy Arithmetic: Theory and Applications[M]. New York: Van Nostrand Reinhold
    Kay R W J. 1978. Aleutian magnesium andesites: melts from subducted Pacific oceanic crust. Jour Volcan Geotherm Res, 4: 117-132
    Keleman B P. 1995, Genesis of high Mg#andesites and the continental crust. Contrib Mineral Petrol, 120: 1-19
    Kelly K D, Romberger S B, Beaty D W, Pointius J A, Snee L W, Stein H J, Thompson T B. 1998. Geochemical and geochronological constraints on the geneises of Au-Te deposits at Cripple Creek, Colorado, Econ Geol 93: 981~1012.
    Knox-Robinson C M and Wyborn L A. 1997. Towards a holistic exploration strategy: using Geographic Information Systems as a tool to enhance exploration. Australian Jour. Earth Sciences, 44(4): 453–463.
    Knox-Robinson C M. 2000. Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralization potential of the Kalgoorlie Terrane,Western Australia. Australian Jour. Earth Sciences, 47(5): 929-942.
    Krogh T E. 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochim. Cosmochim. Acta, 37:485-494.
    Laine A, Koren I, Yang W, Taylor. 1995. a steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography, in Szu H H(eds). wavelet applications Ⅱ,Proc. SPIE, Orlando, Fl, 2491: 736~749.
    Le Maitre R W, Bateman P, Dudek A, Keller J, Lameyre Le Bas M J, Sabine P A, Schmid R, Sorensen H, Streckeisen A, Wooley A R and Zanettin B. 1989. A Classification of igneous rocks and glossary of terms. Blackwell Scientific Publications, 1-253.
    Leat, P.T. and Larter, R.D. 2003. Intra-oceanic subduction systems: an introduction. In: Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes, R.D. Larter and P.T. Leat (eds). Special Publication of the Geological Society of London, 219, 1-17.
    Litvinovsky B A, Steele I M, Wickham S M. 2000. Silicic magma formation in overthickened crust: melting of charnockite and leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 41 (5): 717-737.
    Lowell J D, Guilbert J M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry copper deposit. Econ. Geol., 65: 373-405.
    Ludwig K. 1999. Isoplot/Ex, version 2.0: a geochronogical toolkit for Microsoft Excel. Geochronology Center, Berkeley
    Ludwig K R. 1994. Isoplot- A plotting and regression program for radiogenic-isotope data. US Geol. Survey, Open-file Report 91-445: 1-45.
    M J Le Bas, R W Le Maitre, A Streckeisen, B A Zanettin. 1986. A chemical classification of volcanic rocks based on the total alkaline-silica diagram, J. Petrol. 27: 745– 750.
    Mallat S. 1998. A Wavelet Tour of Signal Processing. Boston: Academic Mallat S., Hwang W.L. 1992. Singularity detection and processing with wavelets, IEEE Trans. On information Theory, 38: 617-643.
    Mallat S., Zhong S. 1992. Characterization of signals from multiscale edges, IEEE Trans. Patt. Anal. and Mach. Intell., 14: 710-732.
    Marr D., Hildreth E.. 1980. Theory of edge detection, Proc. Royal Soc. Lond., 207:187-217.
    Marson I., Klingele E.E.. 1993. Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics, 58: 1588-1595.
    Marti U. 2004. Comparison of SRTM Data with the National DTMs of Switzerland. Proceeding of GGSM 2004, IAG Porto, Portugal
    Masterman G., Berry R., Cooke, D.R., and Walshe, J.L.. 2005. Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. ECONOMIC GEOLOGY, v. 100, p. 835–862.
    McClay K., Skarmeta J., and Bertens, A.. 2002. Structural controls on porphyry copper deposits in northern Chile: New models and implications for Cu-Mo mineralization in subduction orogens [abs.]: Australian Institute of Geosciences Bulletin 36, p. 127.
    McDonough W F, Sun S. 1995. The composition of the earth. Chemical Geology, 120: 223-253.
    Meisels A, Raizman S, Karnieli A. 1995. Skeletonizing a DEM into a drainage network. Computer&Geosciences, 21(1):187-196.
    Molnar P and Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science , 189 (4201) : 419-426.
    Montel J M, Vielzeuf D. 1997. Partial melting of metagreywackes.Part Ⅱ.Compositions of minerals and melts. Contribution to Mineralogy and Petrology, 128: 176-196.
    Moon W M, Chung C F and An P. 1991. Representation and Integration of geological, geophysical and remote sensing data. Geoinformatics, 2 (2): 177-182.
    Moore, I. D. 1996. Hydrological Modeling and GIS. In M. F. Goodchild, L. T. Steyaert, B.O. Parks, C. Johnston, D. Maidment, M. Crane, and S. Glendinning (eds.) . GIS and Environmental Modeling: Progress and Research Issues. Fort Collin, CO:GIS World Books, pp. 143-148.
    Morley C K. 2002. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics , 347 (4) : 189-215.
    Muller D, Groves D I. 2000. Potassic igneouuss rocks and associated Gold-Copper Mineralization. 3rd ed. Berlin: Springer-Verlag, 1~252.
    Muller D, Rock N M S. Groves D I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic settings: A pilot study. Mineral Petrol, 46:259~289.
    Nabighian M.N.. 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation, Geophysics, 37: 57-117.
    Nabighian M.N.. 1974. Additional comments on the analytic signal of twodimensional magnetic bodies with polygonal cross-section. Geophysics, 39:85-92.
    Nabighian M.N.. 1984.Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert Transform: Fundamental relation, Geophysics, 49: 957-966.
    Nason G P, Silverman B W. 1995. The stationary wavelet transform and some statistical applications. In: Antoniadis A, Oppenheim G, ed. Wavelet and Statistics, Lecture Notes in Statistics. Springer-Verlag, 281-300
    Nelson D R , McCulloch M T , Sun S S. 1986. The origins of ultrapotassic rocks as inferred from Sr , Nd and Pb isotopes. Geochim Cosmochim Acta , 50 : 231~245.
    Nokleberg, W.J., 1997, Major mineral deposits, metallogenesis, and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera: Summary and list of Publications for a collaborative project by the Russian Academy of Sciences, ROSKOMNEDRA, the Alaska Division of Geological and Geophysical Surveys, the Geological Survey of Canada, and the U.S. Geological Survey: Administrative Report submitted to Chief Scientist, Western Minerals Team, May, 1997, 5 p.
    Nokleberg, W.J., Parfenov, L.M., Monger, J.W.H., Norton, I.O., Khanchuk, A.I., Stone, D.B., Scholl, D.W., and Fujita, K., 1998, Phanerozoic tectonic evolution of the Circum-North Pacific: U.S. Geological Survey Open-File Report 98-574, 125 p.
    O’Callaghan J F, Mark D M. 1984. The extraction of drainage networks from digital elevation data. Computer Vision Graphics, and Image Processing, 28:323-344.
    Oyarzun R, Marquez A, Lillo J, et al. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36: 794-798.
    Palivcova M, Waldhausrova J, Ledvinkova V. 1995. Ocelli in mafic rocks of granitic complexes. Krystalinikum 22: 149~186
    Pallister J S, Hoblitt R P, Reyes A G. 1992. A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356: 426~428.
    Peacock S M, Rusher T,Thompson A B. 1994,Partial melting of subducting oceanic crust.Earth Planet Sci Lett, 121: 224-227.
    Peccerillo R and Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58: 63-81.
    Perello J, Cox D,Garamjav D,et al. 2001. Oyu Tolgoi,Mongolia: Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket. Econ. Geol., 96: 1407-1428
    Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca batholith, Peru.Jour Petrol, 37: 1491-1521.
    Qu Xiaoming, Hou Zengqian and Li Youguo.2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt,southern Tibet plateau. Lithos,74: 131-148.
    Quinn P F, Beven K, Chevallier P, Planchon O. 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. In Beven, K.J. and Moore, I.D. eds, Terrain analysis and Distributed modelling in Hydeology, John Willy&Sons, Chichester, UK, 63-83.
    Rabus B, Eineder M, Roth A, Bamler R. 2003. The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry&Remote Sensing, 57: 241-262.
    Rapp R P, Watson E B. 1995. Dehydration melting of metabasalts at 8-32 kbar: Implications for continental growth and crust-mantle recycling.Jour. Petrol., 36: 891-931.
    Reid A J, Christopher J L W, David P,et al. 2005. Mesozoic cooling across the Yidun Arc,central-eastern Tibetan Plateau:a reconnaissance 40Ar/39Ar study. Tectonophysics, 398: 45-66
    Reid A J, Wilson CJL and Shun L. 2005. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc,eastern Tibetan Plateau.Journal of Structural Geology, 27:119-137.
    Reid, A.B., Allsop, J.M., Granser, H., Millett, A.J. & Somerton, I.W.. 1990. Magnetic Interpretation in three dimensions using Euler deconvolution, Geophysics, 55: 80-91.
    Richards J P. 1995. Alkalic-type epithermal gold deposits_a review. Mineralogical Association of Canada Short Course Series, 23: 367~400.
    Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu(Mo-Au) deposit formation. Econ. Geol., 98: 1515-1533.
    Richards J P. 2005. Cumulative factors in the generation of giant calc_alkaline porphyry Cu deposits. In: Porter T M,ed. Super porphyry copper & gold deposits. PGC Publishing. 1: 7-25.
    Rioul O, Vetterli M. 1991.Wavelets and signal processing, IEEE Signal Processing, Mag.
    Rodriguez, E., C.S. Morris, J.E. Belz, E.C. Chapin, J.M. Martin, W. Daffer, S. Hensley, 2005, An assessment of the SRTM topographic products, Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, California, 143 pp.
    Roger, F., Arnaud, N., Gilder, S., Tapponnier, P., Jolivet, M., Brunel, M., Malavieille, J., Xu, Z., 2003. Geochronological and geochemical constraints on Mesozoic suturing in East Central Tibet. Tectonics 22, 1037~1057.
    Rogers J J W & Greenberg J K. 1990. Late-orogenic, post-orogenic and anorogenic granites: distribution by major-element and trace-element chemistry and possible origins. J. Geol., 98(3): 291~309.
    Sajona F G,Maury R C. 1998. Association of adakite with goldand copper mineralization in the Philippines. Cr A cad Sci II A, 326: 27-34.
    Saunders A D, Tarney J. 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. In: Kokelaar B P, Howells M F(eds) Marginal Basin Geology. Geological Society, London, Special Publications, 16, 59-76.
    Sengor A M C. 1984. The Cimmeride Orogenic System and the Tectonics of Eurasia. Special Paper-Geological Society of America, 195: 1~82.
    Sengor A M C. Natal’in B. 1996. Paleotectonics of Asia: fragments of a synthesis, in: Yin A., Harrison M. (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 486–640.
    Shirey S.B., Walker R. J. 1995. Carius tube digestion for low-blank rhenium- osmium analysis, Anal. Chem., 67:2136-2141.
    Sillitoe, R.H.. 1998. Major regional factors favoring large size, high hypogene grade, elevated gold content and supergene oxidation and enrichment of porphyry copper deposits. in Porter, T.M., ed., Porphyry and hydrothermal copper and gold deposits: A Global Perspective, Perth, Conference Proceedings: Glenside, South Australia, Australian Mineral Foundation, p.21–34.
    Sillitoe R H.2000.Gold-rich porphyry deposits:descriptive and genetic models and their role in exploration and discovery.Reviews in Economic Geology,13:315~345Sillitoe, R.H.. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184-197.
    Simoncelli E P. Freeman W T, Adelson E H, and Heeger D J. 1992. Shiftable multiscale transforms. IEEE Trans Information Theory, 38(2):587~607.
    Singer D A, Berger V I, Menzie W D., and Berger B R. 2005. Porphyry Copper Deposit Density, Economic Geology, May 1, 100(3): 491 - 514.
    Skarmeta J., McClay K., and Bertens A.. 2003. Structural controls on porphyry copper deposits in northern Chile: New models and implications for Cu-Mo mineralization in subduction orogens [abs.]: Décimo Congreso Geologico Chileno, Concepción, Conference Proceedings: Departamento Ciencias de la Tierra, Universidad de Concepción, p. 109–110.
    Smoliar M.I., Walker R.J. and Morgan J.W. 1996. Re-Os ages of group IIA, IIIA, IVA and VIB iron meteorites. Science, 271: 1099-1102.
    Spector A, Grant F S. 1970. Statisticalmodels for interp reting aeromagnetic data. Geophysics. 33: 293.
    Stein H J , Sundblack K, Markey R J , et al. 1998. Re-Os ages for Archean molybdenite and pyrite, Kuttila , Finland and Proterozoic molybdenite , Kabeliai , Lithuania: testing the chronometer in a metamorphic and metasomatic setling. Mineralium Deposita , 33 : 329-343.
    Summerfield MA . 2000. Geomorphology and Global Tectonics. London: John Wiley&Sons, 1-367.
    Tarboton D G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 32(2):309-319.
    Thompson D.T., 1982. EULDPH: A new technique for making computer assisted depth estimates from magnetic data. Geophysics, 47: 31-37.
    Turner S , Hawkesworth C, Liu Jiaqi , et al. 1993. Timing of Tibet uplift constrained by analysis of volcanic rocks. Nature, 364 : 50-54.
    Uyeda S, Anamori H. 1979. Back-arc opening and the model of subduction. Jour Geophys Res, 84: 1040-1061.
    Venkataraman G, Madhavan B, Ratha B, Banglani S. 1997. Integration of geological and geophysical data for the identification of sulfide mineralised zones in Rajpura Dariba Belt, Rajasthan. Intern. Jour. Remote Sensing, 6: 1221-1232.
    Vernon R H. 1984. Microgranitoid enclaves in granites –globules of hybrid magma quenched in a plutonic environment. Nature, 309: 438~439.
    Vernon R H. 1991. Interpretation of microstructures of microgranitoid enclaves. In Didier J and Barbarin B(eds), Enclaves and Granite Petrology. Elsevier, Amsterdam, 277~291
    Wallace P, Carmicheal I S E. 1992. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta, 56: 1863-1874
    Wang Jianghai, Yin An, T. Mark Harrison, Marty Grove, Zhang Yuquan, Xie Guanghong. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth Planetary Science Letters, 188:123-133.
    Williams S A, FORRESTER J D. 1995. Characteristics of porphyry copper deposits.Arizona Geological Society Digest, 20: 21-34.
    Wilson J P, Gallant J C. ,2000. Terrain analysis: principles and applications. John Wiley&Sons, UK
    Wilson M. 1989. Igneous Petrogenesis. Unwin Hyman, London
    Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol, 20:325~343
    Xu J F, Shinjo R, Defant M J, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust. Geology, 30: 1111-1114.
    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Sciences 28, 211–280.
    Zadeh L H. 1965. Fuzzy sets. Information and Control, 8: 338~353.
    Zeng Pusheng,Hou Zengqian,Wang Haiping,Qu Wenjun,Meng Yifeng,Yang Zhusen, Li Wenchang. 2004. Re-Os Dating of the Pulang Porphyry Copper Deposit in Zhongdian, NW Yunnan, and Its Geological Significance,ACTA GEOLOGICA SINICA,78(2):604-609
    Zimmermann H J. 1985. Fuzzy set theory and its application. Boston: Kluwer-Nijhoff. 363
    陈旭,李佑国,黄瑞,费光春. 2005. 川西斑岩型铜矿找矿中地球化学异常的筛选与查证. 新疆地质,23(3):264~266.
    陈玉东. 2006. 二维连续复小波变换识别重力场源. 物探与化探,30(2):141~147.
    崔银亮, 陈贤胜, 张映旭, 和浪涛. 2002. 滇西新生代与富碱斑岩有关的金矿床成矿特征和成矿条件. 大地构造与成矿学, 26(4): 404-408.
    杜安道, 何红蓼, 殷宁万等. 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究. 地质学报, 68(4):339-347.
    杜安道, 赵敦敏, 王淑贤, 孙德忠, 刘敦一. 2001. Carius 管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄, 岩矿测试, 20(4) :247-252.
    范玉华; 李文昌. 2006. 云南普朗斑岩铜矿床地质特征.中国地质, 33(2):352-362.
    冯庆来, 张世涛, 葛孟春, 严城民, 余华, 段国玺, 包俊跃. 2002. 滇西北中甸地区哈工组放射虫及其构造古地理意义. 地质科学, 37(1): 70-78.
    高永丰,侯增谦,魏瑞华,等. 2003. 冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报, 19: 418-428
    葛良胜, 邹依林, 邢俊兵, 李振华, 郭晓东, 张学军. 2002. 滇西北地区富碱岩体(脉)地质学及岩石化学特征. 矿产与地质. 16(3): 147-153.
    葛良胜, 邹依林, 邢俊兵, 王治华, 郭晓东. 2004. 滇西北与喜马拉雅期富碱斑岩有关的金矿成矿系统. 黄金地质. 10(1): 39-47.
    侯增谦. 1991. 三江地区义敦岛弧构造-岩浆演化特征.见:青藏高原地质文集, 第 21 期. 北京:地质出版社,153~165.
    侯增谦, 杨岳清, 王海平, 曲晓明, 吕庆田, 黄典豪, 吴宣志, 余金杰, 唐绍华, 赵金花. 2003. 三江义敦岛弧碰撞造山过程与成矿系统. 北京: 地质出版社. 345 页.
    侯增谦, 侯立伟, 叶庆同, 等. 1995. 三江地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床. 北京:地震出版社
    侯增谦,杨岳清,王海平,等,2003a. 三江义敦岛弧碰撞造山过程与成矿系统. 北京:地质出版社.345
    侯增谦,吕庆田,王安建等,2003b.试论陆-陆碰撞与成矿作用—以青藏高原造山带为例.矿床地质,22: 319-334
    侯增谦,钟大赉,邓万明. 2004. 青藏高原东缘斑岩铜钼金成矿带的构造模式. 中国地质,31(31):1-14.
    侯遵泽,杨文采. 1997. 中国重力异常的小波变换与多尺度分析. 地球物理学报,40(1): 85~95.
    侯遵泽,杨文采,刘家琦. 1998. 中国大陆地壳密度差异多尺度反演. 地球物理学报, 41(5): 651~656.
    胡世华,侯立纬,尹显科,等. 1992. 川西义敦岛弧火山-沉积作用[M]. 北京:地质出版社
    胡中栋,余钦范,楼海. 1995. 三维解析信号法.物探化探计算技术. 17(3): 36-42.
    黄崇珂, 白冶, 朱裕生 等. 2001. 中国铜矿床(上册).北京:地质出版社, 371
    季建清, 钟大赉, 张连生. 2000. 滇西南新生代走滑断裂运动学、年代学及对青藏高原东南部块体运动的意义. 地质科学, 35(3) : 336-349.
    金志升, 黄智龙, 朱成明. 1997. 云南三江地区富碱侵入岩与煌斑岩的同源性. 矿物岩石地球化学通报. 16(4): 222-224.
    赖健清, 彭省临, 王核, 邵拥军. 1997. 云南中部富碱斑岩区域成矿条件. 有色金属矿产与勘查. 6(5): 257-262.
    李光军, 谭康华, 张世权, 黄定柱, 孟青. 2005. 普朗铜矿找矿标志及找矿模型. 云南地质. 24(2): 175~185.
    李金祥,秦克章,李光明. 2006. 富金斑岩型铜矿床的基本特征、成矿物质来源与成矿高氧化岩浆-流体演化. 岩石学报,22(3):678~688.
    李雷,马远. 1994. 滇西金矿初步研究. 有色金属矿产与勘查. 3(6): 328-334.
    李爽,姚静. 2005. 数字地形模型数据产品特点与评估分析. 地理科学进展,24(6 ): 99-108
    连长云,章革,元春华. 2005. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用. 矿床地质, 24(6): 621-637.
    梁锦文. 2001. 位场小波分析的物理解释. 地球物理学报. 44(6): 865~870.
    林清茶, 夏斌, 张玉泉. 2006. 云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石 SHRIMP U-Pb定年及其意义. 地质通报, 25: 133-137.
    陆松年, 李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石 U-Pb 法准确定年. 中国地质科学院院报, 22: 136-146.
    莫宣学,路凤香,沈上越,等. 1993. 三江特提斯火山作用与成矿. 北京:地质出版社
    莫宣学,罗照华,肖庆辉,喻学惠,刘成东,赵志丹,周肃. 2002. 花岗岩中岩浆混合作用的识别与研究方法,见:肖庆辉等著, 花岗岩研究思维与方法,北京:地质出版社,53~70
    曲晓明, 侯增谦, 唐绍华. 2003. 义敦岛弧带弧后区板内岩浆作用的时代及意义. 岩石矿物学杂志, 22(2): 131-137.
    眭素文,于长春,熊盛青,中高山区高精度航磁视磁化强度填图方法,地球物理学进展,19(2):357~362.
    孙华山, 赵鹏大, 张寿庭, 夏庆霖. 2004. 滇西北喜山期富碱斑岩区域矿产成矿多样性表现. 地质与勘探, 40(3): 15-19.
    孙珍, 钟志洪, 周蒂, 丘学林 吴世敏. 2003. 红河断裂带的新生代变形机制及莺歌海盆地的实验证据. 热带海洋学报,22 (2) :1-9.
    谭富文, 潘桂棠, 王剑. 2001. 滇西泥盆纪-三叠纪盆-山转换过程与特提斯构造演化.矿物岩石, 21(3):179-185.
    谭康华, 李光军, 黄定柱, 张世全. 2005. 普朗大型斑岩铜矿控矿条件. 杂志 24(2): 167-174.
    谭雪春,曾群望,苏文宁. 1985. 滇西东部斑岩与斑岩铜矿.云南省地质科学研究所(科研报告), p251
    王德滋. 1992. 微粒花岗岩包体的成因. 桂林冶金地质学院学报,(3):235~240.
    王海平,张彤. 2004. 人工神经网络方法及其在遥感地质找矿中的应用-以滇西红山子区为例. 矿床地质, 23(1) 125-130.
    王强,许继峰,赵振华,等. 2003. 强烈亏损重稀土的中酸性侵入岩(或埃达克质岩)与 Cu-Au 成矿作用. 地学前缘,10(4):561-572
    王世称,王宇天. 1989. 综合信息解译原理与矿产预测图编制方法. 长春:吉林大学出版社,
    王世称,陈永良,夏立显. 2000. 综合信息矿产资源预测理论与方法. 北京:科学出版社
    魏国,姜海,黄介生,赵微. 2006. GIS 环境下基于 DEM 的流域分析. 中国农村水利水电, 10: 12-16.
    温汉捷, 胡耀国, 俞广钧. 2000. 滇西-滇西北斑岩型金矿床成矿地质特征及控矿条件初步研究. 矿物岩石地球化学通报, 19(4): 266-267.
    温汉捷, 裘愉卓, 胡耀国, 俞广钧. 2003. 滇西—滇西北斑岩型金矿床成矿地质特征及控矿条件研究. 地质与勘探, 39(3): 14-19.
    武玉海, 葛良胜, 邢俊兵, 邹依林, 郭晓东, 李振华. 2004. 滇西北与新生代富碱斑岩体( 脉)有关的金矿床区域成矿模式. 地质找矿论丛. 19(3): 159-167.
    邢学文,胡光道,王正海,郝容. 2006. 模糊逻辑法在云南中甸地区铜矿潜力预测中的应用. 地质科技情报,25(6):53~58.
    徐兴旺,蔡新平,屈文俊,宋保昌,秦克章,张宝林. 2006. 滇西北红山晚白垩世花岗斑岩型 Cu-Mo 成矿系统及其大地构造学意义. 地质学报, 80(9): 1422-1433.
    杨文采,施志群,侯遵泽,程振炎. 2001. 离散小波变换与重力异常多重分解. 地球物理学报. 44(4):534~541.
    杨岳清, 侯增谦, 黄典豪, 曲晓明. 2002. 中甸弧碰撞造山作用和岩浆成矿系统. 地球学报, 23 (1): 17-24.
    云南省地质矿产局. 1990. 云南省区域地质志. 北京: 地质出版社.
    云南省地质矿产局.1996.云南省岩石地层. 武汉:中国地质大学出版社.
    曾普胜, 莫宣学, 喻学惠, 等. 1999a. 滇西北中甸地区中酸性斑岩及其含矿性初步研究[J]. 地球学报, 20 (增刊): 359-336.
    曾普胜, 莫宣学, 喻学惠. 2002. 滇西富碱斑岩带的 Nd、Sr、Pb 同位素特征及其挤压走滑背景. 岩石矿物学杂志, 21(3): 231-241.
    曾普胜, 杨伟光, 喻学惠. 1999b. 滇西富碱斑岩带及其与金矿化的关系. 地球学报, 20 (增刊) : 367-372.
    曾普胜,王海平,莫宣学,等. 2004. 中甸岛弧带构造格架及斑岩铜矿前景. 地球学报,25(5):535~540.
    曾普胜,李红,罗锡明,杨伟光. 2000. 滇西北中甸地区的铜金找矿远景.黄金地质,6(3):13-18.
    曾普胜,李文昌,王海平,李红. 2006. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征. 岩石学报, 22(4): 989-1000.
    曾普胜,莫宣学,喻学惠,侯增谦,徐启东,王海平,李红,杨朝志. 2003. 滇西北中甸斑岩及斑岩铜矿. 矿床地质, 22(4): 393-400.
    张炳熹. 1999. 浅谈矿床研究与勘查实践. 地学前缘,6(1):2-12.
    张兴春,王守旭,冷成彪,秦朝建,王外全,杨朝志. 2007. 云南中甸普朗斑岩铜矿地质地球化学研究,矿物岩石地球化学通报,26(增刊):353~355.
    张玉泉, 谢应雯, 涂光炽. 1997. 哀牢山-金沙江富碱侵入岩年代学和 Nd, Sr 同位素特征. 中国科学(D), 27(4): 289-293.
    赵鹏大,池顺都. 初论地质异常. 1991. 地球科学——中国地质大学学报, 16(3) : 241~248
    赵鹏大,孟宪国. 1993. 地质异常与矿产预测. 地球科学——中国地质大学学报, 18(1): 39~47
    赵鹏大,王京贵,饶明辉等. 1995. 中国地质异常. 地球科学——中国地质大学学报, 20(2): 117~127
    赵鹏大,池顺都,陈永清. 1996. 查明地质异常:成矿预测的基础. 高校地质学报, 2 (4) : 360~373
    周珣若. 1994. 花岗岩混合作用.地学前缘,1994,1(1~2):87~97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700