用户名: 密码: 验证码:
FcαR内吞及脱落机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两部分,第一部分研究了FcaR (CD89)的内吞机制,第二部分研究了FcaR的脱落机制。另外,2006年3月至2007年2月期间,本人参与了本课题组尹娜博士的研究课题,这部分研究内容和结果未纳入本论文,具体内容详见尹娜博士的博士论文以及发表文章。
     第一部分
     FcaR是IgA的Fc受体,在IgA介导的免疫反应中发挥着重要作用。研究发现,IgA以及IgA免疫复合物结合FcaR后,会被FcaR迅速内吞入细胞内。但是,FcaR介导IgA和IgA免疫复合物内吞的机制还不清楚。在本研究中,我们使用天然表达FcaR的U937细胞以及转染的CHO、COS-7和Hela细胞,系统性地研究了FcaR的内吞机制。通过使用能特异性抑制不同内吞途径的化学抑制剂、过表达Eps15负显性突变体以及运用RNA干扰技术抑制内源性笼型蛋白重链(CHC)的表达水平,我们证明了FcαR是通过笼型蛋白途径内吞的。内吞后FcaR进入Rab5以及Rab11阳性的内体中。但是,过表达Rab5的负显性突变体并不能抑制FcaR的内吞。同时,通过过表达Dynamin的负显性突变体,我们发现FcaR内吞依赖于Dynamin o我们还研究了FcαR的内吞基序,但意外地发现FcaR的内吞序列并不存在于FcαR的胞内区。综上所述,我们证明了FcaR内吞依赖于笼型蛋白和Dynamin,但不受Rab5调控,而且FcaR的内吞基序不在膜内区。
     第二部分
     FcaR在IgA介导的免疫反应中发挥着重要作用。研究发现,人血清和表达FcaR细胞的培养液上清中存在着可溶性的FcaR (sFcaR)。进一步研究证实,sFcaR是FcaR的膜外区被酶切后脱落产生的,即所谓的受体脱落。但是,FcaR脱落的具体机制目前还不清楚。因此,我们研究了FcaR的脱落机制并找到了酶切FcaR膜外区产生sFcaR的蛋白酶。在使用化学抑制剂进行的实验中,EDTA、EGTA和广谱金属蛋白酶抑制GM6001能显著抑制FcaR脱落,表明FcaR是被某一种或几种金属蛋白酶酶切的。在293T细胞中过表达ADAM (a disintegrin andmetalloproteinase)10和ADAM 17的负显性突变体能明显抑制FcaR脱落,表明FcaR脱落与这两种金属蛋白酶有关。最后,通过RNA干扰技术在天然表达FcaR的U937细胞中抑制内源性ADAM10和ADAM 17的表达水平,我们证明了ADAM 10和ADAM17都参与了FcaR脱落。该研究鉴定出了导致FcaR脱落的蛋白酶,阐明了sFcaR产生的分子机制,这有助于我们进一步研究sFcaR的生理和病理作用。
This thesis contains two parts. PartⅠis the investigation of endocytic mechanism of FcaR. PartⅡis the study on shedding mechanism of FcαR.
     PartⅠ
     FcaR, the Fc receptor for IgA, is essential for IgA mediated immune responses. Previous studies have shown that IgA and IgA immune complexes can be rapidly endocytosed by FcαR. However, the underlying mechanism remains unclear. Here, we investigated the endocytic pathway of FcαR in a monocytic cell line U937 cells that naturally expresses FcαR and in transfected CHO, COS-7 and Hela cells. By using selective chemical inhibitors of different endocytic pathways, overexpression of dominant negative mutants of Eps15 and knock-down of clathrin heavy chain via RNA interference, we demonstrated that endocytosis of FcαR was through a clathrin-mediated pathway. The endocytosed FcαR went into Rab5 and Rabll positive endosomes. However, endocytosis of FcαR could not be blocked by a dominant negative mutant of Rab5. We also demonstrated that endocytosis of FcαR was dynamin dependent by overexpression a dominant negative mutant of dynamin. The potential endocytic motif for FcαR was also examined. Unexpectedly, we found that the entire cytoplasmic domain of FcαR was not required for the endocytic process of FcαR. We conclude that endocytosis of FcαR is clathrin and dynamin-dependent but is not regulated by Rab5, and the endocytic motif is not in the cytoplasmic domain of FcαR.
     PartⅡ
     FcαR (CD89) plays important roles in IgA mediated immune responses. Soluble forms of FcaR (sFcαR) are found in human serum and culture supernatants of FcαR expressing cells, which have been suggested to be produced through a proteolytic process. However, little is known about the mechanism. involved in the proteolytic release of sFcαR. In this study, we investigated the shedding mechanism of FcαR and determined the nature of proteinase involved FcaR shedding. In chemical inhibitors assay, shedding of FcaR was dramatically inhibited by EDTA, EGTA and a broad spectrum metalloproteinase inhibitor GM6001, suggesting metalloproteinase was responsible for FcaR shedding. Overexpression of dominant negative mutants of ADAM (a disintegrin and metalloproteinase) 10 and ADAM 17 markedly inhibited production of sFcaR. Finally, knockdown of endogenous ADAM 10 and ADAM 17 both inhibited FcaR shedding, demonstrating that ADAM 10 and ADAM 17 were involved in the shedding of FcaR. The characterization of ADAM 10 and ADAM 17 as sFcaR-releasing enzymes provides a novel insight into the molecular mechanism of sFcaR production and may help further elucidation of the physiological and pathological role of sFcaR.
引文
1. Kerr,M.A.1990. The structure and function of human IgA. Biochem. J. 271,285-296.
    2. Jenny M Woof, Michael A Kerr. The function of immunoglobulin A in immunity. J Pathol.2006,208,270-282
    3. Arulanandam,B.P., R.H.Raeder, J.GNedrud, D.J.Bucher, J.Le, and D.W.Metzger. IgA immu-nodeficiency leads to inadequate Th cell priming and increased susceptibility to influenza virus infection. J Immunol.2001,166,226-231.
    4. Rifai,A., K.Fadden, S.L.Morrison, and K.R.Chintalacharuvu. The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes. J Exp Med.2000,191,2171-2182.
    5. Robinson,J.K., T.GBlanchard, A.D.Levine, S.N.Emancipator, M.E.Lamm. A mucosal IgA-mediated excretory immune system in vivo. J Immunol. 2001,166,3688-3692.
    6. Moura,I.C., M.Arcos-Fajardo, C.Sadaka, V.Leroy, M.Benhamou, J.Novak, F.Vrtovsnik, E.Haddad, K.R.Chintalacharuvu, and R.C.Monteiro. Glycosylation and size of IgAl are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am. Soc. Nephrol.2004,15,622-634.
    7. Sakamoto,N., K.Shibuya, Y.Shimizu, K.Yotsumoto, T.Miyabayashi, S.Sakano, T.Tsuji, E.Nakayama, H.Nakauchi, and A.Shibuya. A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues. Eur. J Immunol.2001,31,1310-16.
    8. Shibuya,A., N.Sakamoto, Y.Shimizu, K.Shibuya, M.Osawa, T.Hiroyama, H.J.Eyre, GR.Sutherland, Y.Endo, T.Fujita, T.Miyabayashi, S.Sakano, T.Tsuji, E.Nakayama, J.H.Phillips, L.L.Lanier, H.Nakauchi. Fc alpha/mu receptor mediates endocytosis of IgM-coated micr-obes. Nat Immunol.2000,1,441-446.
    9. Tetsuro Kitamura, Roberto P. Garofalo, Atsushi Kamijo, Dianne K. Hammond, Janet A. Oka, Carlton R. Caflisch, Mohan Shenoy, Antonella Casola, Paul H. Weige, Randall M. Goldblum. Human Intestinal Epithelial Cells Express a Novel Receptor for IgA1.The Jou-rnal of Immunology,2000,164,5029-5034.
    10. Tomana, M., J. Zikan., Z. Moldoveanu, J. Kulhavy, C. Bennett, J.Mestecky. Interactions of cell-surface galactosyltransferase with immunoglobulins. Mol. Immunol.1993.30,265.
    11. Diven, S. C., C. R. Caflisch, D. K. Hammond, P. H. Weigel, J. A. Okra, R. M. Goldblum. IgA induced activation of human mesangial cells:independentof FcaRl (CD89). Kid-ney Int.1998.54,837.
    12. Sancho, J., E. Gonzalez, J. Egido. The importance of the Fc receptors for IgA in the recognition of IgA by mouse liver cells:its comparison with carbohydrate and secretory component receptors. Immunology.1986,57,37.
    13. Mu, J. Z., M. Gordon, J. S. Shao, D. H. Alpers. Apical expression of functional asialog-lycoprotein receptor in the human intestinal cell line HT-29. Gastroenterology.1997,113,1501
    14. Abu-Ghazaleh, R. I., T. Fujisawa, J. Mestecky, R. A. Kyle, G. J. Gleich. IgA-induced eosinophil degranulation. J. Immunol.1989,142,2393.
    15. Lamkhioued, B., A. S. Gounni, V. Gruart, A. Pierce, A. Capron, M. Capron. Human eosinophils express a receptor for secretory component:role in secretory IgA-dependent activation. Eur. J. Immunol.1995,25,117.
    16. Monteiro, R. C., Cooper, M. D., Kubagawa, H. Molecular heterogeneity of Fc alpha receptors detected by receptor-specific monoclonal antibodies. J. Immunol. 1992,148,1764-1770.
    17. Geissmann, F., Launay, P., Pasquier, B., Lepelletier, Y., Leborgne, M., Lehuen, A., Brousse, N., Monteiro, R. C. A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J. Immunol.2001,166,346-352.
    18.Hamre, R., Farstad, I. N., Brandtzaeg, P., Morton, H. C. Expression and modulation of the human immunoglobulin A Fc receptor (CD89) and the FcR gamma chain on myeloid cells in blood and tissue. Scand. J. Immunol.2003,57, 506-516.
    19. van Egmond. M., van Garderen, E., van Spriel, A. B., Damen, C. A., van Amersfoort, E. S., van, Zandbergen, G., van Hattum, J., Kuiper, J., van de Winkel, J. G. FcalphaRI-positive liver Kupffer cells:reappraisal of the function of immunoglobulin A in immunity. Nat. Med.2000,6,680-685.
    20. De Wit,T.P., H.C.Morton, P.J.Capel, and J.G.van de Winkel. Structure of the gene for the human myeloid IgA Fc receptor (CD89). J Immunol.1995,155,1203-1209.
    21. De Wit,T.P., H.C.Morton, P.J.Capel, and J.G.van de Winkel. Structure of the gene for the human myeloid IgA Fc receptor (CD89). J Immunol.1995,155,1203-1209.
    22. Pleass, R. J., Andrews, P. D., Kerr, M. A., Woof, J. M. Alternative splicing of the human IgA Fc receptor CD89 in neutrophils and eosinophils. Biochem. J. 1996,318,771-777.
    23. Reterink, T. J., Verweij, C. L., van Es, L. A., Daha, M. R. Alternative splicing of IgA Fc receptor (CD89) transcripts. Gene.1996,175,279-280.
    24. van Dijk, T. B., Bracke, M., Caldenhoven, E., Raaijmakers, J. A., Lammers, J. W., Koenderman, L., de Groot, R. P. Cloning and characterization of Fc alpha Rb, a novel Fc alpha receptor (CD89) isoform expressed in eosinophils and neutrophils. Blood.1996.88,4229-4238.
    25. Morton, H. C., Schiel, A. E., Janssen, S. W., van de Winkel, J. G. Alternatively spliced forms of the human myeloid Fc alpha receptor (CD89) in neutrophils. Immunogenetics.1996,43,246-247.
    26. Patry, C., Sibille, Y., Lehuen, A., Monteiro, R. C. Identification of Fc alpha receptor (CD 89) isoforms generated by alternative splicing that are differentially expressed between blood monocytes and alveolar macrophages. J. Immunol.1996, 156,4442-4448.
    27. Togo, S., Shimokawa, T., Fukuchi, Y., Ra, C. Alternative splicing of myeloid IgA Fc receptor (Fc alpha R, CD89) transcripts in inflammatory responses. FEBS Lett. 2003,535,205-209.
    28. Monteiro,R.C. and J.Gvan de Winkel. IgA Fc receptors. Annu. Rev. Immunol. 2003,21,177-204.
    29. Herr,A.B., C.L.White, C. Milburn, C.Wu, and P.J.Bjorkman. Bivalent binding of IgAl to FcalphaRI suggests a mechanism for cytokine activation of IgA phagocytosis. J Mol. Biol.2003,327,645-657.
    30. Herr,A.B., C.L.White, C.Milburn, C.Wu, and P.J.Bjorkman. Bivalent binding of IgAl to FcalphaRI suggests a mechanism for cytokine activation of IgA phagocytosis. J Mol. Biol.2003,327,645-657.
    31. Morton,H.C., van den Herik-Oudijk IE, P.Vossebeld, A.Snijders, A.J.Verhoeven, P.J.Capel, and J.Gvan de Winkel. Functional association between the human myeloid immunoglobulin A Fc receptor (CD 89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. J Biol. Chem.1995. 270,29781-29787.
    32. Bracke,M., J.W.Lammers, P.J.Coffer, L.Koenderman.Cytokine-induced inside-out activation of FcalphaR (CD89) is mediated by a single serine residue (S263) in the intracellular domain of the receptor. Blood.2001,97,3478-3483.
    33. Honorio-Franca, A.C., P.Launay, M.M.Carneiro-Sampaio, R.C.Monteiro. Colostral neutrophils express Fc alpha receptors (CD89) lacking gamma chain association and mediate noninflammatory properties of secretory IgA. J. Leukoc. Biol.2001,69,289-296.
    34. Benoit Pasquier, Pierre Launay, Yutaka Kanamaru, Ivan C. Moura, Se'verine Pfirsch, Claude Ruffie', Dominique He'nin, Marc Benhamou, Marina Pretolani, Ulrich Blank, Renato C. Monteiro. Identification of FcαRI as an Inhibitory Receptor that Controls Inflammation:Dual Role of FcRγ ITAM. Immunity.2005,22,31-42.
    35. Stewart WW, Mazengera RL, Shen L, et al. Unaggregated serum IgA binds to neutrophil FcαR at physiological concentrations and is endocytosed but cross-linking is necessary to elicit a respiratory burst. J Leukoc Biol 1994; 56:481-487.
    36. Lang ML, Shen L, Wade WF. γ Chain Dependent Recruitment of Tyrosine Kinases to Membrane Rafts by the Human IgA Receptor FcαR. J Immunol 1999; 163:5391-5398.
    37. Lang ML, Chen YW, Shen L, et al. IgA Fc receptor (FcαR) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem J 2002; 364:517-525.
    38. Amigorena S, Salamero J, Davoust J, et al. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG. Nature 1992; 358:337-341.
    39. Launay P, Patry C, Lehuen A, et al. Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcR y association and protects against degradation of bound ligand. J Biol Chem 1999; 274:7216-7225.
    40. Shen L, van Egmond M, Siemasko K, et al. Presentation of ovalbumin internalized via the immunoglobulin-A Fc receptor is enhanced through Fc receptor y chain signaling. Blood 2001; 97:205-213.
    41. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422:37-44.
    42. Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis:new insights and common mechanisms. Traffic 2003; 4:724-738.
    43. Kirkham M, Parton RG. Clathrin-independent endocytosis:new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophy Acta 2005; 1746:349-363.
    44. Hill E, van Der Kaay J, Downes CP, et al. The role of dynamin and its binding partners in coated pit invagination and scission. J Cell Biol 2001; 152:309-323.
    45. Sever S, Damke H, Schmid SL. Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol 2000; 150:1137-1148.
    46. Damke H, Baba T, Warnock DE, et al. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 1994; 127:915-934.
    47. Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007; 8:603-612.
    48. Fattakhova G, Masilamani M, Borrego F, et al. The high-affinity immunoglobulin-E receptor (FcεRI) is endocytosed by an AP-2/clathrin-independent, dynamin-dependent mechanism. Traffic 2006; 7:673-685.
    49. Somsel Rodman J, Wandinger-Ness A. Rab GTPases coordinate endocytosis. J Cell Sci 2000; 113:183-92.
    50. Mohrmann K, van der Sluijs P. Regulation of membrane transport through the endocytic pathway by rab GTPases. Mol Membr Biol 1999; 16:81-87.
    51. Nielsen E, Severin F, Backer JM, et al. Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1999; 1:376-382.
    52. Simonsen A, Lippe R, Christoforidis S, Gaullier JM et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 1998; 394:494-498.
    53. Chen W, Feng Y, Chen D, et al. Rab 11 is required for trans-Golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell 1998; 9:3241-3257.
    54. Hamelin E, Theriault C, Laroche G, et al. The intracellular trafficking of the G protein-coupled receptor TPbeta depends on a direct interaction with Rab11. J Biol Chem 2005; 280:36195-36205.
    55. Moore RH, Millman EE, Alpizar-Foster E, et al. Rabll regulates the recycling and lysosome targeting of β2-adrenergic receptors. J Cell Sci 2004; 117:3107-3117.
    56. Feng Y, Press B, Wandinger-Ness A. Rab 7:an important regulator of late endocytic membrane traffic. J Cell Biol 1995; 131:1435-1452.
    57. Bucci C, Thomsen P, Nicoziani P, et al. Rab7:a key to lysosome biogenesis. Mol Biol Cell 2000; 11:467-480.
    58. Lombardi D, Soldati T, Riederer MA, et al. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J 1993; 12:677-682.
    59. Barbero P, Bittova L, Pfeffer SR. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002; 156:511-518.
    60. Seachrist JL, Ferguson SS. Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sci 2003; 74:225-235.
    61.Heuser JE, Anderson RG. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 1989; 108:389-400.
    62. Phonphok Y, Rosenthal KS. Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines. FEBS Lett 1991; 281:188-190.
    63. Altankov G, Grinnell F. Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading. J Cell Biol 1993; 120:1449-1459.
    64. Ros-Baro A, Lopez-Iglesias C, Peiro S, et al. Lipid rafts are required for GLUT4 internalization in adipose cells. Proc Natl Acad Sci U S A 2001; 98:12050-12055.
    65. Orlandi PA, Fishman PH. Filipin-dependent inhibition of cholera toxin:evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 1998; 141:905-915.
    66. Singh RD, Puri V, Valiyaveettil JT, et al. Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol Biol Cell 2003; 14:3254-3265.
    67. Minshall RD, Tiruppathi C, Vogel SM, et al. Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J Cell Biol 2000; 150:1057-1070.
    68. Sharma DK, Brown JC, Choudhury A, et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 2004; 15:3114-3122.
    69. Damm EM, Pelkmans L, Kartenbeck J, et al. Clathrin-and caveolin-1-independent endocytosis:entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 2005; 168:477-488.
    70. Benmerah A, Bayrou M, Cerf-Bensussan N, et al. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci 1999; 112:1303-1311.
    71. Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 2003; 72:395-447.
    72. Davis W, Harrison PT, Hutchinson MJ, et al. Two distinct regions of FcyRI initiate separate signaling pathways involved in endocytosis and Phagocytosis. EMBO J 1995; 14:432-441.
    73. Mero P, Zhang CY, Huang ZY, et al. Phosphorylation-independent ubiquitylation and endocytosis of FcyRIIA. J Biol Chem 2006; 281:33242-33249.
    74. Dinneen JL, Ceresa BP. Expression of dominant negative rab5 in HeLa cells regulates endocytic trafficking distal from the plasma membrane. Exp Cell Res. 2004Apr1;294(2):509-22.
    75. Seachrist JL, Laporte SA, Dale LB, et al. Rab5 association with the angiotensin II type 1A receptor promotes Rab5 GTP binding and vesicular fusion. J Biol Chem. 2002 Jan 4;277(1):679-85.
    76. Leser GP, Ector KJ, Ng DT, et al. The signal for clathrin-mediated endocytosis of the paramyxovirus S V5 HN protein resides at the transmembrane domain-ectodomain boundary region. Virology 1999; 262:79-92.
    77. Guo Y, Smith K, Lee J, et al. Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctrl copper transporter. J Biol Chem 2004; 279:17428-17433.
    78. Patry C, Sibille Y, Lehuen A, et al. Identification of Fcα receptor (CD89) isoforms generated by alternative splicing that are differentially expressed between blood monocytes and alveolar macrophages. J Immunol 1996; 156:4442-48.
    79. Zhang W, Bi B, Oldroyd RG, et al. Neutrophil lactoferrin release induced by IgA immune complexes differed from that induced cross-linking of fcalpha receptors (FcaR) with a monoclonal antibody, MIP8a. Clin Exp Immunol 2000; 121:106-111.
    80. Yin N, Peng M, Xing Y, et al. Intracellular pools of FcaR (CD89) in human neutrophils are localized in tertiary granules and secretory vesicles, and two FcaR isoforms are found in tertiary granules. J Leukoc Biol 2007; 82:551-558.
    81. Bruggemann M, Williams GT, Bindon CI, et al. Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med.1987 Nov 1;166(5):1351-61.
    82. Choudhury A, Dominguez M, Puri V, et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest 2002; 109:1541-1550.
    83. Enari M, Ohmori K, Kitabayashi I, et al. Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev 2006; 20:1087-1099.
    84. Conditional suppression of cellular genes:lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77(16):8957-61.
    1. Monteiro RC, Cooper MD, Kubagawa, H. Molecular heterogeneity of Fca receptors detected by receptor-specific monoclonal antibodies. J Immunol 1992; 148:1764-1770.
    2. Geissmann F, Launay P, Pasquier B, Lepelletier Y, Leborgne M, Lehuen A, Brousse N, Monteiro RC. A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J Immunol 2001; 166:346-352.
    3. Hamre R, Farstad IN, Brandtzaeg P, Morton HC. Expression and modulation of the human immunoglobulin A Fc receptor (CD 89) and the FcR a chain on myeloid cells in blood and tissue. Scand J Immunol 2003; 57:506-516.
    4. van Egmond M, van Garderen E, van Spriel AB et al. FcαRI-positive liver Kupffer cells:reappraisal of the function of immunoglobulin A in immunity. Nat Med 2000; 6:680-685.
    5. Monteiro RC, van de Winkel JG. IgA Fc receptors. Annu Rev Immunol 2003; 21:177-204.
    6. van Zandbergen G, Westerhuis R, Mohamad NK, van De Winkel JG, Daha MR, van Kooten C. Crosslinking of the human Fc receptor for IgA (FcαRI/CD89) triggers FcR y-chain-dependent shedding of soluble CD89. J Immunol 1999; 163:5806-12.
    7. van der Boog PJ, van Zandbergen G, de Fijter JW, Klar-Mohamad N, van Seggelen A, Brandtzaeg P, Daha MR, van Kooten C. FcαRI/CD89 circulates in human serum covalently linked to IgA in a polymeric state. J Immunol 2002; 168:1252-8.
    8. Launay P, Grossetete B, Arcos-Fajardo M et al. Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger's disease): Evidence for pathogenic soluble receptor-IgA complexes in patients and CD89 transgenic mice. JExp Med 2000; 191:1999-2009.
    9. Grossetete B, Launay P, Lehuen A, Jungers P, Bach JF, Monteiro RC. Down-regulation of Fcα receptors on blood cells of IgA nephropathy patients: Evidence for a negative regulatory role of serum IgA. Kidney Int 1998; 53:1321-35.
    10. Monteiro RC, Moura IC, Launay P, Tsuge T, Haddad E, Benhamou M, Cooper MD, Arcos-Fajardo M. Pathogenic significance of IgA receptor interactions in IgA nephropathy. Trends Mol Med 2002; 8:464-8.
    11. Kanamaru Y, Arcos-Fajardo M, Moura IC et al. Fca receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcRy adaptor. Eur J Immunol 2007; 37:1116-28.
    12. Schlondorff J, Blobel CP. Metalloprotease-disintegrins:modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci 1999; 112:3603-17.
    13. Mullberg J, Althoff K, Jostock T, Rose-John S. The importance of shedding of membrane proteins for cytokine biology. Eur Cytokine Netw 2000; 11:27-38.
    14. Herren B. ADAM-mediated shedding and adhesion:a vascular perspective. News Physiol Sci 2002; 17:73-6.
    15. Black RA. Tumor necrosis factor-alpha converting enzyme. Int J Biochem Cell Biol 2002; 34:1-5.
    16. Garton KJ, Gough PJ, Raines EW. Emerging roles for ectodomain shedding in the regulation of inflammatory responses. JLeukoc Biol 2006; 79:1105-16.
    17. Seals DF, Courtneidge SA. The ADAMs family of metalloproteases:multidomain proteins with multiple functions. Genes Dev 2003; 17:7-30.
    18. Black RA, Rauch CT, Kozlosky CJ et al. A metalloproteinase disintegrin that releases tumor-necrosis factor-alpha from cells. Nature 1997; 385:729-33.
    19. Moss ML, Jin SL, Milla ME et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 1997; 385:733-6.
    20. Nagano O, Murakami D, Hartmann D et al. Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+influx and PKC activation.J Cell Biol 2004; 165:893-902.
    21. Horiuchi K, Le Gall S, Schulte M et al. Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 2007; 18:176-88.
    22. Overall CM, Blobel CP. In search of partners:linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 2007; 8:245-57.
    23. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y. Secreted Klotho protein in sera and CSF:implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 2004; 565:143-7.
    24. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM 10 and ADAM17.Proc Natl Acad Sci USA 2007; 104:19796-801.
    25. Solomon KA, Pesti N, Wu G, Newton RC. Cutting edge:a dominant negative form of TNF-alpha converting enzyme inhibits proTNF and TNFRII secretion.J Immunol 1999; 163:4105-8.
    26. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90:271-80.
    27. Schafer B, Marg B, Gschwind A, Ullrich A. Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J Biol Chem 2004; 279:47929-38.
    28. Sahin U, Weskamp G, Kelly K et al. Distinct roles for ADAM 10 and ADAM 17 in ectodomain shedding of six EGFR ligands. J Cell Biol 2004; 164:769-79.
    29. Weskamp G, Ford JW, Sturgill J et al. AD AM10 is a principal'sheddase'of the low-affinity immunoglobulin E receptor CD23. Nat Immunol 2006; 7:1293-8.
    30. Zhang W, Bi B, Oldroyd RG, Lachmann PJ. Neutrophil lactoferrin release induced by IgA immune complexes differed from that induced cross-linking of fcalpha receptors (FcαR) with a monoclonal antibody, MIP8a. Clin Exp Immunol 2000; 121:106-11.
    31. Yin N, Peng M, Xing Y, Zhang W. Intracellular pools of FcαR (CD89) in human neutrophils are localized in tertiary granules and secretory vesicles, and two FcaR isoforms are found in tertiary granules. JLeukoc Biol 2007; 82:551-558.
    32. Lemieux GA, Blumenkron F, Yeung N et al. The low affinity IgE receptor (CD23) is cleaved by the metalloproteinase ADAM10. JBiol Chem 2007; 282:14836-44.
    33. Wiznerowicz M, Trono D. Conditional suppression of cellular genes:lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77:8957-61.
    34. Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P. ADAM 10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J 2005; 24:742-52.
    35. Maretzky T, Schulte M, Ludwig A et al. L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol 2005; 25:9040-53.
    1. Hulett MD, Hogarth PM:Molecular basis of Fc receptor function. Adv Immunol 1994,57:1-127.
    2. Ravetch JV, Bolland S:IgG Fc receptors. Annu Rev Immunol 2001,19:275-290.
    3. Daeron M:Fc Receptor Biology. Annu Rev Immunol 1997,15:203-234.
    4. Tamir I, Stolpa J, Helgason C, Nakamura K, Bruhns P, Daeron M, Cambier J:The RasGAP-binding protein p62dok is a mediator of inhibitory FcgammaRIIB signals in B cells. Immunity 2000,12:347-358.
    5. Bolland S, Ravetch JV:Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 2000,13:277-285.
    6. Carroll M:Innate immunity in the etiopathology of autoimmunity. Nat Immunol 2001,2:1089-1090.
    7. Barnes N, Gavin AL, Tan PS, Mottram P, Koentgen F, Hogarth PM: FcgammaRI-deficient mice show multiple alterations to inflammatory and immune responses. Immunity 2002,16:379-389.
    8. Ioan-Facsinay A, de Kimpe S, Hellwig S, van Lent P, Nabbe K, Blom A, Ae H, Sloetjes A, van de Putte LB, Hofhuis FM et al.:FcgammaRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 2002,16:391-402.
    9. Guermonprez P, Valladeau J, Zitvogel L, Thery C:Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002,20:621-667.
    10. Gavin AL, Barnes N, Dijstelbloem HM, Hogarth PM:Identification of the mouse IgG3 receptor:implications for antibody effector function at the interface between innate and adaptive immunity. J Immunol 1998,160:20-23.
    11. Ierino FL, Powell MS, McKenzie IF, Hogarth PM:Recombinant soluble human Fc gamma RII:production, characterization, and inhibition of the Arthus reaction. J Exp Med 1993,178:1617-1628.
    12. Sylvestre DL, Ravetch JV:A dominant role for mast cell Fc receptors in the Arthus reaction. Immunity 1996,5:387-390.
    13. Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV:Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. JExp Med 1999,189:179-185.
    14. Karlsson M, Getahun A, Heyman B:FcgammaRIIB in IgG-mediated suppression of antibody responses:different impact in vivo and in vitro. J Immunol 2001, 167:5558-5564.
    15. Samuelsson A, Towers TL, Ravetch JV:Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 2001,291:484-486.
    16. Yuasa T, Kubo S, Yoshino T, Ujike A, Matsumura K, Ono M, Ravetch JV, Takai T:Deletion of fcgamma receptor IIB renders H-2(b) mice susceptible to collagen-induced arthritis. JExp Med 1999,189:187-194.
    17. Pritchard NR, Cutler AJ, Uribe S, Chadban SJ, Morley BJ, Smith KG: Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcgammaRII. Curr Biol 2000, 10:227-230.
    18. Holmdahl R, Andersson EC, Andersen CB, Svejgaard A, Fugger L:Transgenic mouse models of rheumatoid arthritis. Immunol Rev 1999,169:161-173.
    19. Kotzin BL:Susceptibility loci for lupus:a guiding light from murine models? J Clin Invest 1997,99:557-558. Fc receptors in autoimmunity Hogarth 801
    20. Morel L, Blenman KR, Croker BP, Wakeland EK:The major murine systemic lupus erythematosus susceptibility locus, Slel, is a cluster of functionally related genes. Proc Natl Acad Sci USA 2001,98:1787-1792.
    21. Vyse TJ, Kotzin BL:Genetic susceptibility to systemic lupus erythematosus. Annu Rev Immunol 1998,16:261-292.
    22. Wakeland EK, Liu K, Graham RR, Behrens TW:Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001,15:397-408.
    23. Okada H, Bolland S, Hashimoto A, Kurosaki M, Kabuyama Y, Iino M, Ravetch JV, Kurosaki T:Role of the inositol phosphatase SHIP in B cell receptor-induced Ca2+oscillatory response. J Immunol 1998,161:5129-5132.
    24. Clynes R, Dumitru C, Ravetch JV:Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 1998,279:1052-1054.
    25. Kleinau S, Martinsson P, Heyman B:Induction and suppression of collagen-induced arthritis is dependent on distinct fcgamma receptors. JExp Med 2000,191:1611-1616.
    26. Maxwell KF, Powell MS, Hulett MD, Barton PA, McKenzie IF, Garrett TP, Hogarth PM:Crystal structure of the human leukocyte Fc receptor, Fc gammaRIIa. Nat Struct Biol 1999,6:437-442.
    27. Chuang FY, Sassaroli M, Unkeless JC:Convergence of Fc gamma receptor IIA and Fc gamma receptor IIIB signaling pathways in human neutrophils. JImmunol 2000,164:350-360.
    28. McKenzie S, Taylor S, Malladi P, Yuhan H, Cassel D, Chien P, Schwartz E, Schreiber A, Surrey S, Reilly M:The role of the human Fc receptor Fc gamma RIIA in the immune clearance of platelets:a transgenic mouse model. J Immunol 1999,162:4311-4318.
    29. Reilly M, Taylor S, Hartman N, Arepally G, Sachais B, Cines D, Poncz M, McKenzie S:Heparin-induced thrombocytopenia/thrombosis in a transgenic mouse model requires human platelet factor 4 and platelet activation through FcgammaRIIA. Blood 2001,98:2442-2447.
    30. Matsumoto I, Staub A, Benoist C, Mathis D:Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 1999,286:1732-1735.
    31. Maccioni M, Zeder-Lutz G, Huang H, Ebel C, Gerber P, Hergueux J, Marchal P, Duchatelle V, Degott C, van Regenmortel M et al.:Arthritogenic monoclonal antibodies from K/BxN mice. JExp Med 2002,195:1071-1077.
    32. Ji H, Pettit A, Ohmura K, Ortiz-Lopez A, Duchatelle V, Degott C, Gravallese E, Mathis D, Benoist C:Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis. JExp Med 2002,196:77-85.
    33. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K, Holers VM, Walport M, Gerard C et al:Arthritis critically dependent on innate immune system players. Immunity 2002,16:157-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700