用户名: 密码: 验证码:
WAVE1在儿童急性髓细胞白血病多药耐药中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白血病是儿童最常见的造血系统恶性肿瘤,化疗是当前主要的治疗方法。白血病化疗失败的主要原因之一是多药耐药(multidrug resistance, MDR)的发生,尤其在儿童急性髓细胞白血病(AML)中更为突出。而且多药耐药的发生严重限制患儿长期无事件生存率。因此,揭示MDR的发病机制,寻找新的治疗十预靶点,对于防治儿童白血病具有重要意义。WASP家族富含脯氨酸同源蛋白1(WASP-family verprolin homologous protein 1, WAVE1)为肌动蛋白调节蛋白,在肌动蛋白聚合和细胞骨架重排中发挥重要作用。项目组前期研究中发现WAVE1是白血病细胞中一新型抗凋亡蛋白,并与白血病K562/A02细胞系的多药耐药发生密切相关。
     本研究首先收集AML患儿的BMMCs,通过实时定量PCR和蛋白印迹方法(Western blotting)对52例AML患儿骨髓单个核细胞(BMMCs)中WAVE1、P-糖蛋白(P-glycoprotein, P-gp)、多药耐药相关蛋白1(Multiple resistance-associated protein-1, MRP1)、肺耐药蛋白(lung-resistance related protein, LRP)和乳腺癌耐药蛋白(breast cancer resistance protein, BCRP)的表达情况进行了检测。研究结果显示复发/难治组AML的WAVE1及耐药相关基因表达水平显著高于缓解组患儿,而且同一患儿初治及复发时的WAVE1基因表达水平明显高于缓解期,表明WAVE1表达水平与AML的预后和疾病活动程度相关。进一步利用白血病HL60,K562及其耐药细胞系,分析了WAVE1对P-gp、MRP1和BCRP表达的影响。研究发现WAVE1能够增加K562细胞系P-gp的表达,HL60细胞系MRP1和BCRP的表达。相反,采用RNA干扰技术降低K562/A02和HL60/ADR耐药细胞系中WAVE1的蛋白表达,能显著下调这些细胞系中耐药相关基因P-gp, MRP1和BCRP的表达水平。
     为进一步探讨WAVE1影响P-gp等耐药相关蛋白表达的机制,本研究以WAVE1蛋白为诱饵,采用抗WAVE1抗体免疫沉淀白血病细胞中的WAVE1结合蛋白,然后利用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)技术对含有WAVE1结合蛋白的复合物进行分离,最后采用电喷雾四极杆飞行时间质谱(ESI-Q-TOF)结合数据库查询鉴定白血病细胞中WAVE1的结合蛋白,提示WAVE1与埃兹蛋白(Ezrin)存在结合。同时通过质谱分析,发现和鉴定了白血病细胞中43个可能与WAVE1具有直接结合的蛋白质,这些蛋白主要包含了肿瘤相关蛋白、细胞骨架蛋白、受体、代谢相关酶、免疫相关蛋白、膜及离子通道蛋白和信号通路蛋白。
     为进一步证实WAVE1-Ezrin-P-gp之间的相互作用,本研究通过活细胞免疫荧光技术证明了WAVE1和Ezrin存在空间位置上的共分布。通过基因转染和干扰技术,发现K562细胞转染WAVE1基因后可使Ezrin及P-gp表达升高,同时降低了K562细胞对阿霉素(ADM)的敏感性;而在高表达WAVE1的同时,沉默Ezrin基因的表达,P-gp水平并不能明显增加,而且K562细胞对ADM的耐药性也没有明显改变,表明WAVE1对P-gp表达的影响主要是通过Ezrin介导。在降低Ezrin表达的同时,白血病细胞系中WAVE1表达并不能明显降低,进一步提示Ezrin为WAVE1的下游效应蛋白,而不是WAVE1上游调控蛋白。因此,WAVE1对白血病细胞耐药性的影响主要是通过Ezrin来完成的。
     最后,本研究通过免疫磁珠分选出白血病细胞系和AML患儿BMMCs中的CD34阳性(CD34+)和CD34阴性(CD34-)细胞,通过Western blotting分析发现CD34+细胞的WAVE1表达水平明显高于CD34-细胞,提示WAVE1可能参与了造血干细胞的分化成熟与白血病干细胞的恶性克隆。
     综上所述,细胞骨架调节蛋白WAVE1参与了儿童AML发病及多药耐药的形成,WAVE1可能通过多个途径影响AML耐药的形成,其中WAVE1-Ezrin-P-gp信号通路为其重要的作用机制。同时,WAVE1可能与白血病干细胞的增值、分化相关。本研究揭示了WAVE1调控儿童AML多药耐药的作用机制,为寻找逆转白血病的多药耐药靶点提供了新线索和实验依据。
Leukemia, a malignant disease of the bone marrow and blood, is the most common form of cancer in children. Chemotherapy is the main treatment for nearly all type of childhood leukemia. Multidrug resistance (MDR) is one of the primary reasons causing suboptimal chemotherapy in children with acute myeloblastic leukemia (AML). The occurrence of MDR restricts the long-term event-free survival (EFS). It is important to reveal the role of WAVE1 in MDR of AML and to find a new target for therapeutics. WASP-family verprolin-homologous protein 1 (WAVE1) is a member of the actin regulatory protein family and plays an important role in the regulation with actin's polymerization and cytoskeleton's reorganization. In our previous study, we demonstrated that WAVE1 was a novel regulator of apoptosis, and was involved in the MDR in K562/A02 leukemia cells.
     At first, Real-time fluorescence quantitative PCR(RQ-PCR) and Western blotting analysis the mRNA and protein expression levels of WAVE1, P-glycoprotein, MRP 1 (Multiple resistance-associated protein-1), LRP(lung-resistance related protein) and BCRP(breast cancer resistance protein) in bone marrow mononuclear cells (BMMCs) in a cohort of 52 children with AML. We found the expression levels of these genes or proteins in refractory/relapsing group were much higher than complete continuous remission (CCR) group. Moreover, the mRNA and protein expression levels of WAVE1 in BMMCs of AML patients were higher in the phase of newly diagnosed or relapsed than complete continuous remission, suggesting that WAVE1 is correlated to the development of AML. Furthermore, overexpression of WAVE1 in K562 and HL60 cell lines increased the expression levels of P-gp, MRP and BCRP respectively; whereas suppression of WAVE1 expression in K562/A02 and HL60/ADR cells by RNA interference decreased the expression levels of P-gp, MRP1 and BCRP respectively.
     At second, in order to evaluate the mechanisms of WAVE1-mediated MDR, WAVE1 binding proteins were separated and identified in AML BMMCs and leukemia cell lines respectively. WAVE1 binding proteins were captured by anti-WAVE1 antibody using immunop-recipitation with the total proteins from BMMCs and leukemia cell lines. The captured protein complexes were subjected to SDS-PAGE. Protein bands were cut off from gel and in-gel digested analyzed by ESI-Q-TOF. Ezrin protein were identified by peptide sequence tags (PST) and database searching, and it was confirmed by co-immunoprecipitation and Western blotting analysis. Furthermore,43 proteins were identified in the WAVE1 immunoprecipitates complex by preteomic analysis. These proteins were divided into seven main groups based on their functions: tumor-associated proteins, cytoskeletal proteins, receptors, metabolism-related enzymes, immune-related proteins, membrane and ion channel proteins and signaling pathway proteins.
     At third, to find the interaction of WAVE1-Ezrin-P-gp in vitro, we use immunofluoresence to observe the co-localization of WAVE1 and Ezrin in cell membrane. Indeed, overexpression of WAVE1 in K562 cell lines increased the expression levels of P-gp and ezrin, whereas suppression of WAVE1 or Ezrin expression by RNA interference decreased the expression levels of P-gp in K562/A02 cell lines and further restored leukemia cells'sensitivity to ADM. In contrast, overexpression of WAVE1 and suppression of ezrin didn't increase the expression levels of P-gp. Thus, Ezrin may be a downstream acting factor of WAVE1. These results suggested that WAVE1 regulated P-gp via ezrin in leukemia cells.
     Finally, we use magnetic activated cell sorting (MACS) to isolate CD34+/- cells from AML BMMCs and leukemia cell lines. We found that the expression of WAVE1 in CD34+ cells was significantly higher than CD34- cells by Western blotting. WAVE1 may be involved in the formation and maturation of hematopoietic stem cell (HSC) and leukemia stem cell (LSC).
     In conclusion, WAVE1 was involved in the regulation of multidrug resistance (MDR) and pathogenesis of acute myeloblastic leukemia. WAVE1 regulated MDR partly via a WAVE1-Ezrin-P-gp dependent way in AML. WAVE1 may be associated with the formation of malignant clones of LSC. Our experimental data revealed a noval function of WAVE1 in leukemia and provided clues to reverse MDR in AML.
引文
[1]胡亚美,江载芳.实用儿科学.第七版.人民卫生出版社,2002年12月.2199.
    [2]Kantarjian H, O'Brien S, Cortes J, et al. Therapeutic advances in leukemia and myelodysplastic syndrome over the past 40 years. Cancer. 2008,113(7):1933-1952.
    [3]Swerts K, De Moerloose B, Dhooge C,et al. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer.2006,42(3):295-309.
    [4]van den Heuvel-Eibrink MM, Sonneveld P, Pieters R. The prognostic significance of membrane transport-associated multidrug resistance (MDR) proteins in leukemia.Int J Clin Pharmacol Ther.2000,38(3):94-110.
    [5]N(?)rgaard JM, Olesen LH, Hokland P. Changing picture of cellular drug resistance in human leukemia. Crit Rev Oncol Hematol.2004,50(1):39-49.
    [6]Hatok J, Racay P, Hudecek J, et al. Genes of multidrug resistance in haematological malignancies. Biologia.2006,61(3):247-256.
    [7]Borst P, Evers R, Kool M, et al. The multidrug resistance protein family. Biochim Biophys Acta.1999,1461(2):347-357.
    [8]Mimeault M, Hauke R, Batra SK. Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther.2008,83(5):673-91.
    [9]Stavrovskaya AA; Stromskaya TP. Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Mosc).2008,73 (5): 592-604.
    [10]Li Y, Yuan H, Yang K, et al. The Structure and Functions of P-Glycoprotein. Curr Med Chem,2010,17(8):786-800
    [11]Kavallaris, M. The role of multidrug resistance-associated protein (MRP) expression in multidrug resistance. Anticancer Drugs.1997 Jan;8(1):17-25.
    [12]Doyle LA, RossD D, Ordonez JV, et al. An etoposide resistant lung cancer subline overexp resses the multidrug resistence associated protein. Br J Cancer, 1995,72 (3):535-542.
    [13]Gourlay C W,Ayscough K R. The actin cytoskeleton:a key regulator of apoptosis and ageing.Nat Rev Mol Cell Biol.2005;6(7):583-589.
    [14]Yanagawa R,Furukawa Y, Tsunoda T, et al. Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray. Neoplasis,2001,3(5)395-401.
    [15]T. Fojo, M. Menefee. Mechanisms of multidrug resistance:the potential role of microtubule-stabilizing agents. Annals of Oncology 18 (Supplement 5):v3-v8, 2007.doi:10.1093/annonc/mdm 172.
    [16]Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer:role of ATP-dependent transporters. Nat Rev Cancer.2002,2(1):48-58.
    [17]Scheffer GL, Schroeijers AB, Izquierdo MA, et al. Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr Opin Oncol.2000,12(6):550-556.
    [18]Pauwels EK, Erba P, Mariani G,et al. Multidrug resistance in cancer:its mechanism and its modulation. Drug News Perspect,2007,20:371-377.
    [19]Mahadevan D, List AF. Targeting the multidrug resistance-1 transporter in AML:molecular regulation and therapeutic strategies. Blood,2004,104(7) 1940-1951
    [20]Mizutani T, Masuda M, Nakai E,et al. Genuine functions of P-glycoprotein (ABCB1). Curr Drug Metab.2008,9(2):167-74.
    [21]Shman TV, Savitskii VP, Potapnev MP, et al. Study of expression and functional activity of P-GP membrane glycoprotein in children with acute leukemia. Bull Exp Biol Med,2006,141 (6):727-730.
    [22]Seitz G, Bonin M, Fuchs J, et al. Inhibition of glutathione-S-transferase as a treatment strategy for multidrug resistance in childhood rhabdomyosarcoma. Int J Oncol.2010,36(2):491-500.
    [23]Zhao GS; Wang, XB. Advance in antitumor agents targeting glutathione-S-transferase, Curr Med Chem,2006,13(12):1461-1471
    [24]Perez EA. Impact, mechanisms, and novel chemotherapy strategies for overcoming resistance to anthracyclines and taxanes in metastatic breast cancer.Breast Cancer Res Treat.2009,114(2):195-201.
    [25]O'Brian CA, Ward NE, Stewart JR,et al. Prospects for targeting protein kinase C isozymes in the therapy of drug-resistant cancer--an evolving story. Cancer Metastasis Rev.2001,20(1-2):95-100.
    [26]Podar K, Raab MS, Chauhan D, Anderson KC. The therapeutic role of targeting protein kinase C in solid and hematologic malignancies. Expert Opin Investig Drugs.2007,16(10):1693-1707.
    [27]Hengartner M. The biochemistry of apoptosis.Nature,2000,407(6805):770-776.
    [28]Meier P, Finch A, Evan G. Apoptosis in development. Nature, 2000,407(6805):796-801.
    [29]Evan GI; Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature, 2000,407(6805):802-809.
    [30]Igney FH, Krammer PH. Death and anti-death:Tumour resistance to apoptosis. Nat Rev Cancer,2002,2(4):277-288
    [31]Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature,2006,443(7113):796-802
    [32]Hughes PD; Belz GT; Fortner KA, et al. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity.Immunity,2008,28(2):197-205.
    [33]Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal.Cancer Sci.2003,94(1):15-21
    [34]Reed JC. Bcl-2-family proteins and hematologic malignancies:history and future prospects. Blood,2008,111(7):3322-3330.
    [35]Watson AJ. An overview of apoptosis and the prevention of colorectal cancer. Crit Rev Oncol Hematol.2006,57(2):107-21.
    [36]Bourdon JC. p53 and its isoforms in cancer. Br J Cancer.2007,97(3):277-82.
    [37]Fais S, De Milito A, Lozupone F, et al.The role of FAS to ezrin association in FAS-mediated apoptoais. Apoptosis,2005,10(5):941-947.
    [38]Breitbart H, Cohen G, Rubinstein, S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reprodution.2005,129(3): 263-268.
    [39]Arce CA, Casale CH, Barra HS. Submembraneous microtubule cytoskeleton: regulation of ATPases by interaction with acetylated tubulin. Febs Journal. 2008,275(19):4664-4674.
    [40]Eden S, Rohatgi R, Podtelejnikov A.V, et al.Mechanism of regulation of WAVE1-induced actin nucleation by Racl and Nck. Nature,2002,418(6899): 790-793.
    [41]袁聿军.细胞骨架的基本成分与功能.生物学教学,2006,31(4):5-8
    [42]徐国恒.细胞骨架-肌动蛋白纤维.生物学通报,2005,40(2):43
    [43]Cingolani LA:Goda Y. Actin in action:the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci,2008,9(5):344-356.
    [44]沈绍华,叶欣,顾龙君.微管蛋白与多药耐药.国际肿瘤学杂志,2006,33(2):104-108
    [45]Martello LA,Verdier Pinard P,Shen HJ, et al.Elevated levels of microtubule destabilizing factors in a taxol-resistenat/dependent A549 cell line with an alpha-tubulin mutation.Cancer Res,2003,63(6):1207-1213.
    [46]Ivetic A, Ridley AJ. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology.2004,112(2):165-176.
    [47]Monni R, Haddaoui L, Naba A, et al.Ezrin is a target for oncogenic Kit mutants in murine erythroleukemia. Blood.2008,111 (6):3163-3172.
    [48]Luciani F, Molinari A, Lozupone F, et al. P-glycoprotein-actin association through ERM family proteins:a role in P-glycoprotein function in human cells of lymphoid origin. Blood.2002,99(2):641-6488.
    [49]Luna EJ, Hitt AL. Cytoskeleton-plasma membrane interactions. Science. 1992,258 (5084):955-964.
    [50]Ivetic A, Ridley AJ. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology.2004,112(2):165-176.
    [51]Defacque H, Egeberg M, Habermann A, et al. Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes. EMBO J.2000; 19:199-212.
    [52]Puddu P, Fais S, Luciani F, et al. Interferon-y upregulates expression and activity of P-glycoprotein in human peripheral blood monocyte-derived macrophages. Lab Invest.1999;79 (10):1299-1309.
    [53]Ancliff PJ, Blundell MP, Cory GO, et al. Two novel activating mutations in the
    Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood, 2006,108(7):2182-2189.
    [54]Wiskott A. Familiarer, angeborener Morbus Welhofii? Monatsschr. Kinderheilkd,1937,68(1):212-216.
    [55]Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell.1994,78(4):635-644.
    [56]Miki H, Suetsugu S, Takenawa T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. Embo J. 1998,17(23):6932-6941.
    [57]Miki H, Miura K, Takenawa T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J.1996,15(19):5326-35.
    [58]Suetsugu S, Miki H, Takenawa T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem Biophys Res Commun.1999,260(1):296-302.
    [59]Rawe V Y, Payne C, Navara C, et al. WAVE1 intranuclear trafficking is essential for genomic and cytoskeletal dynamics during fertilization: cell-cycle-dependent shuttling between M-phase and interphase nuclei.Dev Biol.2004,276(2):253-67.
    [60]Kim HJ, DiBernardo AB, Sloane JA, Rasband MN, Solomon D, Kosaras B, Kwak SP,Vartanian TK. WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J Neurosci. 2006,26(21):5849-59.
    [61]Rawe VY, Ramalho-Santos J, Payne C, Chemes HE, Schatten G. WAVE1, an A-kinase anchoring protein, during mammalian spermatogenesis. Hum Reprod. 2004,19(11):2594-604.
    [62]Yamazaki D, Oikawa T, Takenawa T.Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion. J Cell Sci, 2007,120 (1):86-100
    [63]Zipfel P A,Bunnell S C,Witherow D S,et al.Role for the Abi/wave protein complex in T cell receptor-mediated proliferation and cytoskeletal remodeling.
    Curr Biol,2006,16(1):35-36.
    [64]Yamazaki D,Fujiwara T,Suetsuqu S,et al. A novel function of WAVE in lamellipodia:WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading.Genes Cell.2005,10(5):381-392.
    [65]Fernando HS, Sanders AJ, Kynaston HG, et al. WAVE1 is associated with invasiveness and growth of prostate cancer cells. J Urol,2008,180(4): 1515-1521.
    [66]Launay S, Brown G, Machesky LM. Expression of WASP and Scarl/WAVEl actin-associated proteins is differentially modulated during differentiation of HL-60 cells. Cell Motil Cytoskeleton.2003,54(4):274-285.
    [67]Wang Yan, Zhang Lian-fen,Feng Lei, et al.The difference of ADM binding protein in human breast cancer cell line MCF-7/Wild and MCF-7/ADM Cell. Zhongguo Yaolixue Tongbao,2007 (23(9):1188-1193
    [68]Liu, B; Staren, ED; Iwamura, T, et al. Mechanisms of taxotere-related drug resistance in pancreatic carcinoma. J Surg Res.2001,99(2):179-186.
    [69]康睿,曹励之,俞燕,等.WAVE1基因在K562/A02白血病细胞多药耐药中的作用.中华血液杂志,2007,28(6):379-382.
    [70]王卓,胡婷,曹励之,等.儿童急性淋巴细胞白血病及阿霉素所致Jurkat细胞凋亡时WAVE1表达研究.中国当代儿科杂志,2008,10(5):620-624.
    [71]Kang R, Tang D, Yu Y, et al. WAVE1 regulates Bcl-2 localization and phosphorylation in leukemia cells. Leukemia.2010,24(1):177-186.
    [72]杨明华,赵明一,贺钰磊,等.儿童急性髓细胞白血病WAVE1基因对耐药相关基因表达影响的研究.中华儿科杂志,2010,48(3):175-179
    [73]Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet.2008, 22;371(9617):1030-1043.
    [74]Pui CH, Sandlund JT, Pei D, et al. Improved outcome for children with acute lymphoblastic leukemia:results of Total Therapy Study ⅩⅢB at St Jude Children's Research Hospital. Blood.2004,104(9):2690-2696.
    [75]Moricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood.2008, 111(9):4477-4489.
    [76]Schultz KR, Pullen DJ, Sather HN,et al. Risk and response-based classification of childhood B-precursor acute lymphoblastic leukemia:a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood,2007,109 (3):926-935.
    [77]顾龙君,李娟,薛惠良,等ALL-XH-99方案治疗儿童急性淋巴细胞白血病158例疗效分析,中华血液学杂志,2004,25(1):1-3.
    [78]杨明华,贾文广,曹励之,等.188例急性淋巴细胞白血病患儿的疗效及预后分析.中华儿科杂志,2008,46(7):498-501.
    [79]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods,2001,25 (4):402-408.
    [80]Styczynski J. Drug resistance in childhood acute myeloid leukemia. Curr Pharm Biotechnol.2007,8(2):59-75.
    [81]van der Kolk DM, de Vries EG, Muller M, et al. The role of drug efflux pumps in acute myeloid leukemia. Leuk Lymphoma.2002,43(4):685-701.
    [82]Nakanishi T, Shiozawa K, Hassel BA, et al. Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells:BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood,2006,108 (2):678-684.
    [83]Hirose M. The Process Behind the Expression of mdr-1/P-gp and mrp/MRP in Human Leukemia/lymphoma. Anticancer Res.2009,29:1073-1077.
    [84]Ross DD. Novel mechanisms of drug resistance in leukemia. Leukemia, 2000,14:467-437
    [85]Labroille G, Belloc F, Bilhou-Nabera C, et al. Cytometric study of intracellular P-gp expression and reversal of drug resistance. Cytometry.1998,32(2):86-94.
    [86]Ozvegy-Laczka C, Cserepes J, Elkind NB, et al. Tyrosine kinase inhibitor resistance in cancer:role of ABC multidrug transporters. Drug Resist Updat. 2005,8(1-2):15-26.
    [87]Rajagopal A, Pant AC, Simon SM, et al. In vivo analysis of human multidrug resistance protein 1 (MRP1) activity using transient expression of fluorescently tagged MRP1. Cancer Res.2002,62(2) 391-396
    [88]Suvannasankha A, Minderman H, O'Loughlin KL, et al.Breast cancer resistance protein (BCRP/MXR/ABCG2) in acute myeloid leukemia:discordance between expression and function. Leukemia.2004,18(7):1252-1257
    [89]Pandey A, Mann M. Proteomics to study genes and genomes. Nature,2000, 405(6788):937-846.
    [90]Hauash S. Disease protenmics. Nature,2003,422(6928):226-232.
    [91]Williams NS, Gaynor RB, Scoggin S, et al. Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res,2003,9(3):931-946.
    [92]Surks HK, Richards CT, Mendelsohn ME. Myosin phosphatase-Rho interacting protein. A new member of the myosin phosphatase complex that directly binds RhoA. J Biol Chem.2003,278(51):51484-51493.
    [93]贺钰磊,曹励之,杨明华,等.WAVE1对K562细胞侵袭能力的影响及其机制研究.中华血液学杂志,2009,30(4):237-241.
    [94]Hari M,Wang Y, Veeraraghavan S,et al. Mutations in alpha-and beta-tubulin that stabilize microtubules and confer resistance to colcemid and vinblastine. Mol Cancer Ther,2003,2(7):579-605.
    [95]Visintin R, Prinz S, AmonA. CDC20 and CDH1:A family of substrate specific activators of APC-dependent proteolysis. Science,1997,278:460-463.
    [96]Thornton BR, Toczyski DP. Precise destruction:all emerging picture of the APC. Genes Dev.2006.20(22):3069-3078.
    [97]Nel, AE. T-cell activation through the antigen receptor. Part 1:Signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. Journal of allergy and clinical immunology.2002,109(5): 758-977.
    [98]Pugliano FA, Piccirillo J F.Zequeira MR,et al. Clinical-severity staging system for oropharyngeal cancer. Arch Otolaryngol Head Neck Surg,1997,123:1118.
    [99]Lohrum MA, Ludwig RL, Kubbutat MH,et al. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell.2003,3(6):577-587.
    [100]Bradbury PA, Middleton MR. DNA repair pathways in drug resistance in
    melanoma. Anticancer Drugs,2004,15(5):421-426.
    [101]贺钰磊.WAVE1在K562白血病细胞侵袭中的作用及机制[博士学位论文].长沙:中南大学,2009,34-36.
    [102]Litman, T; Druley, TE; Stein, WD, et al.From MDR to MXR:new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci.2001,58 (7):931-959.
    [103]Dick JE. Stem cell concept renew caner research.Blood,2008,112:4793-4807.
    [104]Reisner Y, Martelli MF. Transplantation tolerance induced by "mega dose" CD34+ cell transplants. Exp Hematol.2000,28(2):119-127.
    [105]Ailles LE, Weissman IL. Cancer stem cells in solid tumors. Curr Opin Biotechnol.2007,18:460-466.
    [106]Butt NM.CD34 positive selection as prophylaxis against graft versus host disease in allogeneic peripheral blood stem cell transplantation. Leuk Lymphoma.2003,44(9):1509.
    [107]Nilsson SK, Simmons PJ; Bertoncello I. Hemopoietic stem cell engraftment. Exp Hematol.2006,34(2):123-129
    [108]Martin PA,Coveney C,Kraft A,Brown N,et al.Commercial development of stem cell technology:lessons from the past, strategies for the future. Regen Med, 2006, 1(6):801-807.
    [109]Huang EH, Heidt DG, Li CW, et al. Cancer stem cells:a new paradigm for understanding tumor progression and therapeutic resistance. Surgery.2007, 141(4):415-419.
    [110]Misaghianl N, Ligresti G, Steelmanl LS, et al.Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia,2009,23(1):25-42.
    [111]Cho RW, Clarke MF. Recent advances in cancer stem cells. Curr Opin Genet Dev.2008,18(1):48-53.
    [112]Bonnet D,Dick JE.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Met, 1997,3(7):730-737.
    [113]Geens M,Van de Velde H, De Block G, et al.The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod.2007,22(3):733-742.
    [114]Schmitz B, Radbruch A, Kummel T, et al. Magnetic activated cell sorting (MACS)--a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. Eur J Haematol. 1994,52(5):267-275.
    [1]Lightfoot TJ, Roman E. Causes of childhood leukaemia and lymphoma. Toxicol Appl Pharmacol.2004,199(2):104-117.
    [2]Pallap ies D. Trends in childhood disease. Mutat Res,2006,1608 (2):100-110.
    [3]胡亚美,江载芳.实用儿科学.第七版.人民卫生出版社,2002年12月.2199.
    [4]俞燕,曹励之,张朝霞,等.2002-2005年湖南省儿童白血病临床资料分析.中国当代儿科杂志,2007,9(3):198-200.
    [5]Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet.2008, 22;371(9617):1030-1043.
    [6]Hatok J, Racay P, Hudecek J, et al. Genes of multidrug resistance in haematological malignancies. Biologia.2006,61(3):247-256.
    [7]Borst P, Evers R, Kool M, et al. The multidrug resistance protein family. Biochim Biophys Acta.1999,1461(2):347-357.
    [8]Mimeault M, Hauke R, Batra SK. Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther.2008,83(5):673-691.
    [9]Stavrovskaya AA; Stromskaya TP. Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Mosc).2008,73 (5): 592-604.
    [10]Li Y; Yuan H; Yang K, et al. The Structure and Functions of P-Glycoprotein. Curr Med Chem,2010,17(8):786-800
    [11]Kavallaris, M. The role of multidrug resistance-associated protein (MRP) expression in multidrug resistance. Anticancer Drugs.1997 Jan;8(1):17-25.
    [12]Doyle LA, RossD D, Ordonez JV, et al. An etoposide resistant lung cancer subline overexpresses the multidrug resistence associated protein. Br J Cancer, 1995,72 (3):535-542.
    [13]Gourlay C W,Ayscough K R. The actin cytoskeleton:a key regulator of apoptosis and ageing.Nat Rev Mol Cell Biol.2005;6(7):583-589.
    [14]Yanagawa R,Furukawa Y, Tsunoda T, et al. Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray. Neoplasis,2001,3(5)395-401.
    [15]Fojo T, Menefee M. Mechanisms of multidrug resistance:the potential role of microtubule-stabilizing agents. Annals of Oncology 18 (Supplement 5):v3-v8, 2007.doi:10.1093/annonc/mdm 172.
    [16]Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer:role of ATP-dependent transporters. Nat Rev Cancer.2002,2(1):48-58.
    [17]Scheffer GL, Schroeijers AB, Izquierdo MA, et al. Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr Opin Oncol.2000,12(6):550-556.
    [18]Pauwels EK, Erba P, Mariani G,et al. Multidrug resistance in cancer:its mechanism and its modulation. Drug News Perspect,2007,20:371-377.
    [19]Mahadevan D, List AF. Targeting the multidrug resistance-1 transporter in AML:molecular regulation and therapeutic strategies. Blood,2004,104(7) 1940-1951
    [20]Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature.2007,446(7137):749-757.
    [21]Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res.2001,11(7):1156-1166.
    [22]Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol.1999,39:361-398.
    [23]Shman TV, Savitskii VP, Potapnev MP, et al. Study of expression and functional activity of P-GP membrane glycoprotein in children with acute leukemia [J]. Bull Exp Biol Med,2006,41(6):727-730.
    [24]Ambudkar SV, Kim IW, Sauna ZE. The power of the pump:Mechanisms of action of P-glycoprotein (ABCB1). Eur J Pharm Sci.2006,27(5):392-400.
    [25]Kohji T, Toshiyuki S, Katsuhiko O. An Update on Overcoming MDR1 Mediated Multidrug Resistance in Cancer Chemotherapy [J]. Current Pharmaceutical Design,2006,12 (3):273-286.
    [26]Borst P, Evers R, Kool M, Wijnholds J. The multidrug resistance protein family. Biochim Biophys Acta.1999,1461(2):347-357.
    [27]Cole S,Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug resistant human lung cancer cell line. Science,1992,258:1650-1654.
    [28]Valera E T, Scrideli C A, Queiroz R G, et al. Multidrug resistance protein (MDR-1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) gene expression in childhood acute lymphoblastic leukemia [J]. Sao Paulo Med J,2004,122(4):166-171.
    [29]Chen YN, Mickley LA. Schwartz Am, et al. Characterization of adriamycin resistant human breast cancer cells which display overexpression of a novel resistance related membrance protein.Biol chem,1990,265:10073-10080.
    [30]Ross DD, Karp J, Chen T,et al.Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood,2000,96:365-368.
    [31]Oostendorp RL, Buckle T, Beijnen JH, et al.The effect of P-gp (Mdr1a/1b), BCRP (Bcrpl) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs.2009,27(1) 31-40.
    [32]Scheper RJ, Broxterman HJ, Scheffer GL,et al. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res.1993,53(7):1475-1479.
    [33]Izquierdo MA, Scheffer GL, FlensM J, et al. Broad distribution of the multidrug resistence-related vault lung resistence p rotein in normal human tissue and tumors. Am J Pathol,1996 148 (3):877-887.
    [34]Scheffer GL, Schroeijers AB, Izquierdo MA, Wiemer EA, Scheper RJ. Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr Opin Oncol.2000,12(6):550-556.
    [35]van der Pol MA, Pater JM, Feller N, et al. Functional characterization of minimal residual disease for P-glycoprotein and multidrug resistance protein activity in acute myeloid leukemia. Leukemia.2001,15(10):1554-1563.
    [36]Illmer T, Schaich M, Platzbecker U, et al.P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia.2004,18(3):401-408.
    [37]de Jonge-Peeters SD, Kuipers F, de Vries EG, et al. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit Rev Oncol Hematol.2007,62(3):214-226.
    [38]Turella P, Filomeni G, Dupuis ML, et al. A strong glutathione S-transferase inhibitor overcomes the P-glycoprotein-mediated resistance in tumor cells 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) triggers a caspase-dependent apoptosis in MDR1-expressing leukemia cells. J Biol Chem.2006,281(33):23725-23732
    [39]Swerts K, De Moerloose B, Dhooge C, et al.Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer,2006,42(3):295-309.
    [40]Bracht K, Liebeke M, Ritter CA, et al.Correlations between the activities of 19 standard anticancer agents, antioxidative enzyme activities and the expression of ATP-binding cassette transporters:comparison with the National Cancer Institute data. Anticancer drugs,2007,18(4):389-404.
    [41]Chikamori K, Hill J E, Grabowski D R, et al. Downregulation of topoisomerase II beta in myeloid leukemia cell lines leads to activation of apoptosis following all-trans retinoic acid-induced differentiation/growth arrest. Leukemia,2006, 20(10):1809-1818.
    [42]Mellor HR; Callaghan R. Resistance to chemotherapy in cancer:A complex and integrated cellular response. Pharmacology,2008,81(4):275-300.
    [43]Basu A,Weixel K, Sajjo N. Characterization of the protein kinase C singal transduction pathway in cisplatin sensitive and resistance human small cell lung carcinomer cells. Cell Growth Differ,1996,7 (11):1507-1512.
    [44]Katayama K, Yoshioka S, Tsukahara S, et al. Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol Cancer Ther.2007,6(7):2092-2102
    [45]Bradbury PA, Middleton MR. DNA repair pathways in drug resistance in melanoma. Anticancer Drugs,2004,15(5):421-426.
    [46]Lage H. An overview of cancer multidrug resistance:a still unsolved problem. Cell Mol Life Sci.2008,65(20):3145-3167.
    [47]Su YM, Zhang XP, Sinko PJ.Exploitation of drug-induced Bcl-2 overexpression for restoring normal apoptosis function:A promising new approach to the treatment of multidrug resistant cancer. Cancer Letters,2007,253(1):115-123.
    [48]The BCL-2 Family Reunion. Chipuk, JE; Moldoveanu, T; Llambi, F, et al. Mol Cell,2010,37(3):299-310.
    [49]Bourdon, JC. p53 and its isoforms in cancer. Br J Cancer.2007,97:277-282.
    [50]Bossi G, Sacchi A. Restoration of wild-type p53 function in human cancer: Relevance for tumor therapy. Head Neck,2007,29(3):272-284.
    [51]Kang KW, Bin Im Y, Go WJ, et al. c-Myc Amplification Altered the Gene Expression of ABC-and SLC-Transporters in Human Breast Epithelial Cells. Mol Pharm.2009,6(2):627-633.
    [52]Fais S, De Milito A, Lozupone F, et al.The role of FAS to ezrin association in FAS-mediated apoptoais. Apoptosis,2005,10(5):941-947.
    [53]Watson AJ. An overview of apoptosis and the prevention of colorectal cancer. Crit Rev Oncol Hematol.2006,57(2):107-121.
    [54]Breitbart H, Cohen G, Rubinstein, S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reprodution.2005,129(3): 263-268.
    [55]Arce CA, Casale CH, Barra HS. Submembraneous microtubule cytoskeleton: regulation of ATPases by interaction with acetylated tubulin. Febs Journal.2008, 275(19):4664-4674.
    [56]Eden S, Rohatgi R, Podtelejnikov A.V, et al.Mechanism of regulation of WAVE1-induced actin nucleation by Racl and Nck. Nature,2002,418(6899): 790-793.
    [57]袁聿军.细胞骨架的基本成分与功能.生物学教学,2006,31(4):5-8
    [58]徐国恒.细胞骨架-肌动蛋白纤维.生物学通报,2005,40(2):43
    [59]沈绍华,叶欣,顾龙君.微管蛋白与多药耐药.国际肿瘤学杂志,2006,33(2):104-108
    [60]Martello LA,Verdier Pinard P,Shen HJ, et al.Elevated levels of microtubule destabilizing factors in a taxol-resistenat/dependent A549 cell line with an alpha-tubulin mutation.Cancer Res,2003,63(6):1207-1213.
    [61]Ivetic A, Ridley AJ. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology.2004,112(2):165-176.
    [62]Monni R, Haddaoui L, Naba A, et al.Ezrin is a target for oncogenic Kit mutants in murine erythroleukemia. Blood.2008,111(6):3163-3172.
    [63]Luciani F, Molinari A, Lozupone F, et al. P-glycoprotein-actin association through ERM family proteins:a role in P-glycoprotein function in human cells of lymphoid origin. Blood.2002,99(2):641-6488.
    [64]Luna EJ, Hitt AL. Cytoskeleton-plasma membrane interactions. Science. 1992,258 (5084):955-964.
    [65]Ivetic A, Ridley AJ. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology.2004,112(2):165-176.
    [66]Defacque H, Egeberg M, Habermann A, et al. Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes. EMBO J.2000; 19:199-212.
    [67]Puddu P, Fais S, Luciani F, et al. Interferon-y upregulates expression and activity of P-glycoprotein in human peripheral blood monocyte-derived macrophages. Lab Invest.1999;79 (10):1299-1309.
    [68]Ancliff PJ, Blundell MP, Cory GO, et al. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood, 2006,108(7):2182-2189.
    [69]Wiskott A. Familiarer, angeborener Morbus Welhofii? Monatsschr. Kinderheilkd,1937,68(1):212-216.
    [70]Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell.1994,78(4):635-644.
    [71]Miki H, Suetsugu S, Takenawa T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. Embo J. 1998,17(23):6932-6941.
    [72]Miki H, Miura K, Takenawa T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J.1996,15(19):5326-5335.
    [73]Suetsugu S, Miki H, Takenawa T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem Biophys Res Commun.1999,260(1):296-302.
    [74]Rawe V Y, Payne C, Navara C, et al. WAVE1 intranuclear trafficking is essential for genomic and cytoskeletal dynamics during fertilization: cell-cycle-dependent shuttling between M-phase and interphase nuclei.Dev Biol. 2004,276(2):253-267.
    [75]Kim HJ, DiBernardo AB, Sloane JA, Rasband MN, Solomon D, Kosaras B, Kwak SP,Vartanian TK. WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J Neurosci. 2006,26(21):5849-5859.
    [76]Rawe VY, Ramalho-Santos J, Payne C, Chemes HE, Schatten G. WAVE1, an A-kinase anchoring protein, during mammalian spermatogenesis. Hum Reprod. 2004,19(11):2594-2604.
    [77]Yamazaki D, Oikawa T,Takenawa T.Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion. J Cell Sci, 2007,120 (1):86-100
    [78]Zipfel P A,Bunnell S C,Witherow D S,et al.Role for the Abi/wave protein complex in T cell receptor-mediated proliferation and cytoskeletal remodeling. Curr Biol,2006,16(1):35-36.
    [79]Yamazaki D,Fujiwara T,Suetsuqu S,et al. A novel function of WAVE in lamellipodia:WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading.Genes Cell.2005,10(5):381-392.
    [80]Launay S, Brown G, Machesky LM. Expression of WASP and Scarl/WAVEl actin-associated proteins is differentially modulated during differentiation of HL-60 cells. Cell Motil Cytoskeleton.2003,54(4):274-285.
    [81]Wang Yan, Zhang Lian-fen,Feng Lei, et al.The difference of ADM binding protein in human breast cancer cell line MCF-7/Wild and MCF-7/ADM Cell. Zhongguo Yaolixue Tongbao,2007 (23(9):1188-1193
    [82]Liu, B; Staren, ED; Iwamura, T, et al. Mechanisms of taxotere-related drug resistance in pancreatic carcinoma. J Surg Res.2001,99(2):179-186.
    [83]康睿,曹励之,俞燕,等.WAVE1基因在K562/A02白血病细胞多药耐药中的作用.中华血液杂志,2007,28(6):379-382.
    [84]王卓,胡婷,曹励之,等.儿童急性淋巴细胞白血病及阿霉素所致Jurkat细胞凋亡时WAVE1表达研究.中国当代儿科杂志,2008,10(5):620-624.
    [85]Rui K, Daolin T, Yan Y, et al. WAVE1 regulates Bcl-2 localization and phosphorylation in leukemia cells. Leukemia.2010,24(1):177-186.
    [86]杨明华,赵明一,贺钰磊,等.儿童急性髓细胞白血病WAVE1基因对耐药相关基因表达影响的研究.中华儿科杂志,2010,48(3):175-179.
    [87]El-Readi Mahmoud Zaki, Hamdan Dalia, Farrag Nawal, et al. Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines. Eur J Pharmacol. 2010,632(2-3):139-145.
    [88]Ishri RK, Menzies S, Halliday GM.Verapamil induces upregulation of P-glycoprotein expression on human monocyte derived dendritic cells. Immunol Invest.2006,35(1):1-18.
    [89]Eberl S,Renner B,Neubert A, et al. Role of P-glycoprotein inhibition for drug interactions:Evidence from in vitro and pharmacoepidemiological studies. Clin Pharmacokinet.2007,46(12):1039-1049.
    [90]Mayur YC, Peters GJ, Prasad VVSR, et al. Design of New Drug Molecules to be Used in Reversing Multidrug Resistance in Cancer Cells. Curr Cancer Drug Targets.2009,9(3):298-306.
    [91]Frydrych Ivo, Mlejnek Petr, Dolezel Petr, et al. Cyclosporin A sensitises Bcr-Abl positive cells to imatinib mesylate independently of P-glycoprotein expression. Toxicol In Vitro.2009,23(8):1482-1490.
    [92]List AF, Kopecky KJ, Willman CL, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia:a Southwest Oncology Group study. Blood,2001,98:3212-3220.
    [93]Dahl GV, Lacayo NJ, Brophy N, et al. Mitoxantrone, etoposide, and cyclosporine therapy in pediatric patients with recurrent or re-fractory acute myeloid leukemia. J Clin Oncol,2000,18(9):1867-1875.
    [94]Becton D, Dahl GV, Ravindranath Y, et al.Randomized use of cyclosporin A (CsA) to modulate P-glycoprotein in children with AML in remission:Pediatric Oncology Group Study 9421. Blood.2006,107(4):1315-1324.
    [95]Choi DH, Chung JH, Choi JS. Pharmacokinetic interaction between oral lovastatin and verapamil in healthy subjects:role of P-glycoprotein inhibition by lovastatin. Eur J Clin Pharmacol.2010,66(3):285-290.
    [96]Perrotton T, Trompier D, Chang XB, et al. (R)-and (S)-verapamil differentially modulate the multidrug-resistant protein MRP1. J Biol Chem.2007, 282:31542-31548.
    [97]Shen F, Bailey BJ, Chu SY, et al. Dynamic Assessment of Mitoxantrone Resistance and Modulation of Multidrug Resistance by Valspodar (PSC833) in Multidrug Resistance Human Cancer Cells. J Pharmacol Exp Ther.2009,330(2):423-429.
    [98]Gandhi L, Harding MW, Neubauer M, et al.A phase Ⅱ study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer.2007,109(5):924-932.
    [99]Mullin S, Mani N, Grossman TH.Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853). Antimicrob Agents Chemother.2004,48(11):4171-4176.
    [100]Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist,2003,8 (5):411-424.
    [101]Dorr R, Karanes C, Spier C, et al. Phase Ⅰ/Ⅱ study of the P-glycoprotein modulator PSC 833 in patients with acute myeloid leukemia. J Clin Oncol,2001, 19(6):1589-1599.
    [102]Maria RB, Stephen LG, Richard K D, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia:cancer and leukemia group B study 9720. Blood.2002,100(4):1224-1232.
    [103]Wandel C, Kim RB, Kajiji S, et al. P-glycoprotein and cytochrome P450 3A inhibition:dissociation of inhibitory potencies. Cancer Res,1999,59:3944-3948.
    [104]Kwak JO, Lee SH, Lee GS, et al. Selective inhibition of MDR1 (ABCB1) by HM30181 increases oral bioavailability and therapeutic efficacy of paclitaxel. Eur J Pharmacol.2010,627(1-3):92-98.
    [105]Fox E, Bates SE. Tariquidar (XR9576):a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther.2007,7(4):447-459.
    [106]Ruff Paul, Vorobiof D A, Jordaan JP, et al. A randomized, placebo-controlled, double-blind phase 2 study of docetaxel compared to docetaxel plus zosuquidar (LY335979) in women with metastatic or locally recurrent breast cancer who have received one prior chemotherapy regimen. Cancer Chemother Pharmacol.2009,64(4):763-768.
    [107]van Zuylen, L; Sparreboom, A; van der Gaast, A, et al. Disposition of docetaxel in the presence of P-glycoprotein inhibition by intravenous administration of R101933. Eur J Cancer.2002,38(8):1090-1099.
    [108]Kuppens IELM, Bosch TM, van Maanen MJ, et al. Oral bioavailability of docetaxel in combination with OC144-093 (ONT-093).Cancer Chemother Pharmacol.2005,55(1):72-78.
    [109]Kwak JO, Lee SH, Lee GS, et al. Selective inhibition of MDR1 (ABCB1) by HM30181 increases oral bioavailability and therapeutic efficacy of paclitaxel. Eur J Pharmacol.2010,627(1-3):92-98.
    [110]van Zuylen L,Nooter K, Sparreboom A,et al.Development of multidrug-resistance convertors:sense or nonsense. Invest New Drugs,2000,18:205-220.
    [111]Mistry P, Stewart AJ, Dangerfield W, et al. In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potentmodulator, XR9576. Cancer Res,2001,61:749-758.
    [112]Pan QR, Wang T, Lu Q, et al. Schisandrin B--a novel inhibitor of P-glycoprotein. Biochem Biophys Res Commun,2005,335(2):406-411.
    [113]Fong WF, Wan CK, Zhu GY, et al. Schisandrol A from Schisandra chinensis reverses P-glycoprotein-mediated multidrug resistance by affecting Pgp-substrate complexes. Planta Med,2007,73(3):212-220.
    [114]Huang M, Jin J, Sun H, et al. Reversal of P-glycoprotein-mediated multidrug resistance of cancer cells by five schizandrins isolated from the Chinese herb Fructus Schizandrae. Cancer Chemother Pharmacol,2008,62(6):1015-1026.
    [115]Tian H, Pan QC. A comparative study on effect of two bisbenzylisoquinolines, tetrandrine and berbamine, on reversal of multidrug resistance. Acta Pharma Sin, 1997,32(4):245-250.
    [116]Chen B, Dong Y, Zhang P, et al. Effect of tetrandrine and droloxifene on the reversion of drug resistance of K562/A02 cell line and induction of apoptosis. Chin J Oncol,2002,24(6):526-528.
    [117]Fu LW, Zhang YM, Liang YJ, et al. The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells. Eur J Cancer,2002,38(3):418-426.
    [118]Fu L, Liang Y, Deng L, et al. Characterization of tetrandrine, a potent inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Chemother Pharmacol, 2004,53(4):349-356.
    [119]Molnar J, Szabo D, Pusztai R, et al. Membrane associated antitumor effects of crocine-, ginsenoside-and cannabinoid derivates. Anticancer Res,2000,20(2A): 861-867.
    [120]Jin J, Shahi S, Kang HK, et al. Metabolites of ginsenosides as novel BCRP inhibitors. Biochem Biophys Res Commun,2006,345(4):1308-1314.
    [121]李旭芬,张苏展,郑树.苦参碱对K562及多药耐药细胞K562/Vin的细胞生物学影响.中国病理生理杂志,2002,18(10):1233-1237.
    [122]El-Readi MZ, Hamdan D, Farrag N, El-Shazly A, Wink M. Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines. Eur J Pharmacol. 2010,626(2-3):139-145.
    [123]Leith CP, Kopecky KJ, Chen IM, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia:a Southwest Oncology Group Study. Blood 1999,94:1086-1099.
    [124]MichieliM, Damiani D,Ermacora A,et al. P-glycoprotein(PGP), lung resistance-related protein (LRP) and multidrug-resistance-associated protein (MRP) expression in acute promyclocytic leukemia. Br J Hacmatol,2000,108 (4):703-709.
    [125]Chauvier D, Kegelaer G, Morjani H, et al. Reversal of multidrug resistance-associated protein-mediated daunorubicin resistance by camptothecin. J Pharm Sci,2002,91(8):1765-1775.
    [126]Chen Zs, Aoki S, Komatsu M, et al. Reversal of drug resistance mediated by multidrug resistance protein(MRP)1 by dual effects of agosterol A on MRP1 function. Int J Cancer,2001,93(1):107-113.
    [127]van Zanden JJ, van der Woude H, Vaessen J, et al. The effect of quercetin phase II metabolism on its MRP1 and MRP2 inhibiting potential. Biochem Pharmacol. 2007,74(2):345-351.
    [128]Rabindran SK, Ross DD, Doyle LA, et al. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res,2000,60(1):47-50.
    [129]Ahmed-Belkacem A, Pozza A, Macalou S, et al. Inhibitors of cancer cell multidrug resistance mediated by breast cancer resistance protein (BCRP/ABCG2). Anticancer Drugs.2006,17(3):239-243.
    [130]Nakamura Y, Oka M, Soda H,et al. Gefitinib ("Iressa",ZD1839), an epidermal growth factor receptor'tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res,2005,65(4): 1541-1546.
    [131]Shiozawa K, Oka M, Soda H, et al. Reversal ofbreast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Cancer,2004,108(1):146-151.
    [132]Zhang S, Wang X, Sagawa K,et al. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors,have no significant effector topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab Dispos,2005, 33(3):341-348.
    [133]Zhou XF, Yang X, Wang Q,et al. Effects of dihydropyridines and pyridines on multidrug resistance mediated by breast cencer resistance protein:in vitro and in vivo studies. Drug Metab Dispos,2005,33(8):1220-1228.
    [134]Ciaccio PJ, Shen HX, Kruh GD, et al.Effects of chronic ethacrynic acid exposure on glutathione conjugation and MRP expression in human colon tumor cells. Biochem Biophys Res Commun,1996,222(1):111-115.
    [135]Yu CH, Kastin AJ, Tu H, et al. TNF activates P-glycoprotein in cerebral microvascular endothelial cells. Cell Physiol Biochem.2007,20:853-858
    [136]Williams BR, Zhu ZP. Intrabody-based approaches to cancer therapy:Status and prospects. Curr Med Chem,2006,13(12):1473-1480.
    [137]Evseenko DA, Paxton JW, Keelan JA. Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors. Drug Metab Dispos.2007,35(4): 595-601.
    [138]Bentires AM, Barbu V, Fillet M, et al. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene, 2003,22(1):90-97.
    [139]Ghetie MA, Marches R, Kufert S, et al. An anti-CD19 antibody inhibits the interaction between P-glycoprotein (P-gp) and CD 19, causes P-gp to translocate out of lipid rafts, and chemosensitizes a multidrug-resistant (NMR) lymphoma cell line. Blood,2004,104(1):178-183.
    [140]Ghetie MA, Crank M, Kufert S, et al. Rituximab but not other anti-CD20 antibodies reverses multidrug resistance in 2 B lymphoma cell lines, blocks the activity of P-glycoprotein (P-gp), and induces P-gp to translocate out of lipid rafts. J Immunother.2006,29(5):536-544
    [141]Pich A, Rancourt C. A role for intracellular immunization in chemosensitization of tumor cells? Gene Ther.1999 Jul;6(7):1202-1209.
    [142]Mauz-Koerholz C, Dietzsch S, Banning U, et al. Thermo-chemotherapy-induced apoptosis of leukemic blasts. Blood.2001,98(11):117.
    [143]Zaffaroni N, Fiorentini G, De Giorgi U. Hyperthermia and hypoxia:new developments in anticancer chemotherapy. Eur J Surg Oncol. 2001,27(4):340-342.
    [144]卫东,王大章,冯戈,等.热疗对舌鳞癌Tca8113细胞及其耐药细胞株耐药性的影响.华西口腔医学杂志,2006,24(5):447-450.
    [145]Walther W, Arlt F, Fichtner I, et al. Heat-inducible in vivo gene therapy of colon carcinoma by human mdrl promoter-regulated tumor necrosis factor-alpha expression. Mol Cancer Ther.2007,6(1):236-243.
    [146]Yan Xi, Hou Mei, Li Sheng-Fu, et al. Experimental study on thermochemotherapy combined with verapamil for reversing the multidrug resistance responsible to breast cancer cell. Sichuan Da Xue Xue Bao Yi Xue Ban.2008,39(3):391-393.
    [147]Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci.2003,94(1)15-21.
    [148]Nadali F, Pourfathollah AA, Alimoghaddam K, et al. Multidrug resistance inhibition by antisense oligonucleotide against MDRl/mRNA in P-glycoprotein expressing leukemic cells. Hematology,2007,12:393-401.
    [149]Pakunlu RI, Cook TJ, Minko T. Simultaneous modulation of multidrug resistance and antiapoptotic cellular defense by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharm Res.2003,20(3):351-359.
    [150]Kostenko EV, Laktionov PP, Vlassov VV, et al. Downregulation of PGY1/MDR1 mRNA level in human KB cells by antisense oligonucleotide conjugates. RNA accessibility in vitro and intracellular antisense activity. Biochim Biophys Acta,2002,1576(1-2):143-147.
    [151]Aharinejad S, Sioud M, Lucas T, et al. Target validation using RNA interference in solid tumors. Methods Mol Biol,2007,361:227-238.
    [152]Goyal BR, Patel MM, Soni MK, et al. Therapeutic opportunities of small interfering RNA. Fundam Clin Pharmacol.2009 Aug;23(4):367-386.
    [153]Ye XS, Liu T, Gong YP, et al.Lentivirus-mediated RNA interference reversing the drug-resistance in MDR1 single-factor resistant cell line K562/MDR1. Leuk Res.2009,33(8):1114-1119.
    [154]Wang FS, Kobayashi H, Liang KW, et al.Retrovirus-mediated transfer of anti-MDRl ribozymes fully restores chemosensitivity of P-glycoprotein-expressing human lymphoma cells. Human gene therapy.1999,10(7): 1185-1195.
    [155]Wu Chung-Pu, Calcagno Anna Maria, Ambudkar Suresh V. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells:evaluation of current strategies. Curr Mol Pharmacol,2008,1(2):93-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700