用户名: 密码: 验证码:
有机磷酸酯杀虫剂促进动脉粥样硬化及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨毒死蜱对高脂饮食致动脉粥样硬化形成的影响及相关机制。
     方法:
     1.32只健康雄性新西兰兔随机分为如下四组(n=8):对照组、毒死蜱组、高脂饮食组、高脂饮食+毒死蜱组。高脂饮食配方为通用配方,毒死蜱的剂量为(20 mg/kg/d,毒死蜱兔的口服LD50为1000-2000 mg/kg),连续观察6个月。
     2.动物处死前从耳缘静脉取血并分离出血清储存,用于检测血脂水平和胆碱酯酶(AChE)、对氧磷酶1(PON1)和超氧化物歧化酶(SOD)的活性以及丙二醛(MDA)的含量,及相关肝、肾功能指标。
     3.收集并培养腹腔巨噬细胞,测定其胆固醇流出率。
     4.切取一段胸主动脉采用离体血管环灌流法检测血管舒缩功能。
     5.采用苏丹Ⅳ染色法观察胸主动脉粥样硬化斑块,计算斑块与血管内皮表面积的百分比。颈总动脉、主动脉弓作石蜡切片,用以观察血管的形态学变化。
     6.采用实时定量PCR和蛋白印迹法分别检测肝、血管组织和腹腔巨噬细胞中三磷酸腺苷结合盒转运体A1 (ABCA1)的表达以及肝脏PON1的表达。
     结果:
     1.高脂饮食6个月,其血浆总胆固醇和脂蛋白水平明显升高,SOD活性降低,而MDA水平升高,其肝脏、主动脉和腹腔巨噬细胞中ABCA1的表达升高,腹腔巨噬细胞中胆固醇流出增加,肝脏中PON1的表达降低,与对照组相比,均有显著性差异;其主动脉和颈总动脉有明显的动脉粥样硬化斑块形成。但血清AChE有轻度升高,但无显著性差异。
     2.毒死蜱组兔血清AChE和PON1、和SOD活性和HDL-C水平降低,MDA水平升高,与对照组比较有显著性差异;肝肾功能指标与对照组比,无显著性差异。主动脉和腹腔巨噬细胞ABCA1的表达、肝脏PON1的表达均有降低,腹腔巨噬细胞中胆固醇流出减少,与对照组比较有显著性差异。
     3.高脂饮食+毒死蜱组PON1、和SOD活性和HDL-C水平降低,MDA水平升高,主动脉和腹腔巨噬细胞ABCA1的表达、肝脏PON1的表达均有降低,腹腔巨噬细胞中胆固醇流出减少,与单高脂饮食组或毒死蜱组相比,上述指标的改变更明显,统计学处理有显著性差异。主动脉和颈总动脉粥样硬化斑块更加明显。但血清AChE无明显改变。
     结论:
     亚毒性剂量的毒死蜱可加快高脂饮食致动脉粥样硬化形成,加重血清中总胆固醇、脂蛋白、及其它生化指标的改变,其机制可能与毒死蜱消耗有抗氧化作用的PON1和降低其活性,从而间接或直接触发氧化应激,损伤内皮功能,降低体内ABCAl的表达,继而减少胆固醇流出有关。
     目的:
     探讨对氧磷对Ox-LDL诱导的鼠源巨噬细胞性泡沫细胞形成及相关机制
     方法:
     1.将RAW264.7巨噬细胞,分为下例5组:(1)对照组,(2)Ox-LDL泡沫细胞模型组,(3-5)组分别为Ox-LDL+对氧磷(1、10和100μmol/1)组。各组细胞置5%CO2培养箱,37℃,常规培养72 h。
     2.油红染色进行形态学观察,高效液相色谱法测定细胞内总胆固醇(TC)、游离胆固醇(FC)水平,及胆固醇流出率。
     3.采用实时定量PCR和蛋白印迹法分别检测巨噬细胞中CD36、ABCA1、和酰基辅酶A胆固醇酰基转移酶1(ACAT1)的表达。
     结果:
     1. Ox-LDL处理48 h后,与正常巨噬细胞相比,油红0染色阳性细胞显著增加,细胞体积明显增大,形态多呈圆形或不规则形;对氧磷(10, 100μmol/l)组细胞油红0染色阳性细胞比Ox-LDL模型组形态学改变更明显,细胞体积明显增大,而对氧磷(1μmol/l)组细胞与模型组相比没有显著性差异。
     2.泡沫细胞模型组细胞内TC、FC、CE水平显著高于对照组,且CE/TC有显著性差异;对氧磷(10,100μmol/l)组细胞内TC、FC、CE水平及CE/TC均有显著性增加,与泡沫细胞模型组相比,有显著性差异,对氧磷(1μmol/l)组TC、FC、CE与泡沫细胞模型组差异无显著性。
     3. Ox-LDL泡沫细胞模型组细胞胆固醇流出率显著性增加,与对照组相比,有显著性差异;对氧磷(10和100μmol/l)组细胞胆固醇流出率显著性降低,与泡沫细胞模型组相比,有显著性差异;对氧磷(1μmol/l)处理组与泡沫细胞模型组相之间无显著性差异。
     4. Ox-LDL刺激的泡沫细胞组与对照组比CD36 mRNA表达显著增加,Ox-LDL刺激的泡沫细胞加对氧磷(10和100μmol/l)组与泡沫细胞组相比CD36 mRNA表达显著增加。对氧磷(1μmol/l)处理组与泡沫细胞模型组相比没有显著性差异。
     5.泡沫细胞模型组ABCA1表达较对照组显著增加;与模型组相比,对氧磷(10和100μmol/l)显著地下调了泡沫细胞中ABCA1的表达,而对氧磷(1μmol/l)没有影响泡沫细胞中ABCA1的表达。
     6.泡沫细胞模型组ACAT1mRNA表达较对照组显著增加;与模型组相比,对氧磷(10和100μmol/l)组显著地增加了泡沫细胞中ACAT1的表达,而对氧磷(1μmol/l)处理组没有明显增加泡沫细胞的ACAT1 mRNA表达。
     结论:
     对氧磷能加速Ox-LDL诱导的鼠源巨噬细胞性泡沫细胞形成。其机制可能与对氧磷上调泡沫细胞中CD36和ACAT1表达而降低ABCA1的表达有关。
     目的:
     探讨对氧磷下调鼠源巨噬细胞性泡沫细胞ABCA1表达和胆固醇流出的机制
     方法:
     1.将Ox-LDL刺激形成的鼠源巨噬细胞性泡沫细胞分为以下组:(1)对照组,(2)对氧磷处理组:对氧磷(1,10和100μmol/1)孵育泡沫细胞24h;对氧磷(100μmol/1)孵育泡沫细胞(6,12,24)h。
     2.高效液相色谱法测定测定细胞内TC及FC水平,计算CE,测定胆固醇流出率。
     3.采用ELISA法检测泡沫细胞内cAMP水平、腺苷酸环化酶和磷酸二脂酶的活性。
     4.采用实时定量PCR和蛋白印迹分别检测泡沫细胞中ABCA1的mRNA和蛋白水平的表达。
     结果:
     1.对氧磷以时间和剂量依赖的方式增加RAW264.7巨噬细胞源性泡沫细胞中TC、FC和CE水平,降低ABCA1表达和胆固醇流出。
     2.对氧磷降低了细胞中cAMP的水平及腺苷酸环化酶(AC)的活性和增加磷酸二酯酶(PDE)的活性。
     3. cAMP的类似物双丁酰环腺苷酸(dBcAMP)能抑制对氧磷降低ABCA1表达和部分阻断对氧磷降低胆固醇流出的作用。
     4.AC激动剂福斯高林(Forskolin)和PDE抑制剂3-异丁基-1-甲基黄嘌呤(IBMX)能拮抗对氧磷降低cAMP的作用。结论:
     对氧磷下调鼠源巨噬细胞性泡沫细胞ABCA1的表达,降低细胞内胆固醇流出和增加细胞内胆固醇堆积可能与干预cAMP信号通路有关
     目的:
     观察外源性PON1基因转染对对氧磷促鼠源巨噬细胞性泡沫细胞形成的影响
     方法:
     1.实验分为以下各组:(1)RAW巨噬细胞组、(2)Ox-LDL+RAW巨噬细胞组、(3)对氧磷+Ox-LDL+RAW巨噬细胞组、(4)对氧磷+Ox-LDL+PON1(+)RAW巨噬细胞组。将外源性的人的PON1基因转染RAW264.7细胞,用Ox-LDL(50μg/ml)诱导泡沫细胞形成,对氧磷处理组加对氧磷(100μmol/1)共孵育48 h。
     2.油红染色进行形态学观察,高效液相色谱法测定细胞内TC及FC水平,计算CE水平,测定胆固醇流出率。
     结果:
     1.Ox-LDL+RAW细胞组细胞内TC、FC、CE水平和CE/T值与RAW细胞组相比显著性增高;对氧磷(100μmol/1)+Ox-LDL+RAW细胞组组细胞内TC.FC.CE水平及CE/TC较Ox-LDL+RAW细胞组均有显著性增加,而PON1转染拮抗了对氧磷的作用。
     2.Ox-LDL+RAW组细胞胆固醇流出率与RAW细胞相比显著性增加;与Ox-LDL+RAW细胞组相比,对氧磷(100μmol/l)处理组细胞胆固醇流出率显著性降低,而PON1转染拮抗了对氧磷的作用。
     结论:
     外源性对氧磷酶1抑制了对氧磷促进鼠源巨噬细胞性泡沫细胞形成的作用
Objective:
     To explore the effect of chlorpyrifos on the formation of atherosclerosis induced by the high fat diet in New Zealand rabbits and analyze the possible mechanisms.
     Methods:
     1.Thirty two healthy male New Zealand rabbits were divided randomly into four groups with eight rabbits in each group:control group, high-fat diet group, chlorpyrifos group and high-fat diet+chlorpyrifos group. Chlorpyrifos (20 mg/kg/d, the LD50 of chlorpyrifos by mouth in rabbit is 1000-2000mg/kg) was administered by lavage every day for six months.
     2.The levels of serum fat and activities of cholinesterase (CHE), paraoxonase 1(PON1) and alanine aminotransferase were measured respectively. Serum creatinine and blood urea nitrogen were measured respectively..The levels of serum superoxide dismutase (SOD) and malondialdehyde (MDA) were measured respectively.
     3.The vascular functions test was performed by using isolated blood vessel method.
     4.The peritoneal macrophages were assembled.and cellular cholesterol efflux was analyzed.
     5.Area of atherosclerosis plaque of thoracic aorta was measured by SudanⅣ. Common carotid artery and thoracic aorta were fixed in formalin, sliced and HE dyed and pathology analysis system was used.
     6.The expressions of ABCA1 and PON1 were detected by Real-time PCR and Western blot.
     Results:
     1.Serum activities of CHE and PON1 compared with control group were singificantly decreased, but there were not symptom of intoxation and injury of function of liver and kidney, and the level of HDL and SOD were markedly decreased, the level of MDA was increased, PON1 expression of liver was decreased, endothelium-depent and non-dependent relaxation of abdominal aorta was decreased, and expression of ABCA1 in liver, aorta and peritoneal macrophages and cholesterol efflux from peritoneal macrophages were markedly decreased in chlorpyrifos group compared with control group.
     2.Compared with control group, serum total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and triglyceride (TG) were singificantly increased, endothelium-depent and non-dependent relaxation of abdominal aorta was decreased, serum activity of PON1 and expression of ABCA1 in liver were singificantly, expression of ABCA1 in liver, aorta and peritoneal macrophages was markedly increased and cholesterol efflux was significantly increased in peritoneal macrophages in high-fat diet group. There was obvious atherosclerosis lesion in thoracic aorta and common carotid artery in high-fat diet group.
     3.Compared with high-fat diet group, serum activities of CHE and PON1 were singificantly decreased, but there were not symptom of intoxation and injury of function of liver and kidney, the level of SOD was markedly decreased, the level of MDA was increased, endothelium-depent and non-dependent relaxation of abdominal aorta was decreased, PON1 expression of liver was decreased and expression of ABCA1 and cholesterol efflux were singificantly decreased, the atherosclerosis lesion area in thoracic aorta and common carotid artery was increased in high-fat diet+chlorpyrifos group.
     Conclusion:
     Subtoxic dose of chlorpyrifos may accelerate formation of atherosclerosis induced by the high fat diet in New Zealand rabbits, which the mechanism may be related to the injury of endothelium, the decrease of ABCA1 expression and cholesterol efflux, the decrease of ABCA1 expression and increase of oxidative stress induced by chlorpyrifos.
     Objective:
     To explore the effect of paraoxon (PXN) on the formation of foam cells induced by the oxidized low density lipoprotein (Ox-LDL) and analyze the possible mechanisms.
     Methods:
     1.RAW 264.7 macrophages were divided into five groups:control group, foam cells model induced by Ox-LDL group, Ox-LDL+paraoxon (1μmol/l) group, Ox-LDL+paraoxon (10μmol/l) group, Ox-LDL+ paraoxon (100μmol/l) group. Cells were maintained at 37℃in 50% CO2-95% air in an incubator for 72 h.
     2.The cellular lipid accumulation was examined by oil red staining. The cellular contents of total cholesterol (TC) and free cholesterol (FC) were deteeted by high performance liquid chromatography assays. Cholesterol efflux from macrophages was examined.
     3.The expressions of CD36, ATP-binding Cassette Transporter A1 (ABCA1) and cholesterol acyltransferases-1 (ACAT-1) were detected by Real-time PCR and Western blot.
     Results:
     1.Oil red-staining positive cells were found and macrophages were filled with lipid droplet in foam cells model group. Compared with the foam cells, paraoxon (10μmol/l,100μmol/l) significantly increased the amount of oil red-staining positive cells and the contents of lipid droplet of foam cells. There was no significant differences between paraoxon (1μmol/l) group and control group.
     2.Compared with the control macrophages group, the contents of TC, FC, eholesterylester (CE) and CE/TC ratio in model group were significantly increased in foam cells model group. Paraoxon (10μmol/l, 100μmol/l) significantly increased the contents of TC, FC, eholesterylester (CE) and CE/TC ratio compared with foam cells model group. There was no significant differences between paraoxon (1μmol/l) group and control group.
     3. Compared with the control macrophages group, cholesterol efflux was markly increased in foam cell model group. Compared with the foam cell model group, cholesterol efflux was significant increased in paraoxon (10μmol/l,100μmol/l) group. Paraoxon (1μmol/l) did not influence cholesterol efflux.
     4. Expression of CD36 was markly up regulated in foam cells compared to the control cells. Compared with the foam cell, expression of CD36 was significantly increased in paraoxon (10μmol/l,100μmol/l) group. Paraoxon (1μmol/l) did not affect the expression of CD36.
     5. Compared with the control macrophages group, expression of ABCA1 was markly up regulated in foam cells group. Paraoxon (10μmol/l,100μmol/l) significantly down regulated the expression of ABCA1 compared to foam cells group. There was no significant differences between paraoxon (1μmol/l) group and control group.
     6. Expression of ACAT1 was markly increased in foam cells compared to the control cells. Compared with the foam cell, expression of ACAT1 was significantly up regulated in paraoxon (10μmol/l,100μmol/l) group. Paraoxon (1μmol/l) did not affect the expression of CD3
     Conclusion:
     Paraoxon accelerates the formation of foam cell induced by Ox-LDL, which the mechanism is related with up-regulation of expression CD36 and ACAT1 and down-regulation of expression ABCA1 induced by paraoxon.
     Objective:
     To investigated the effect of paraoxon on ABCA1 expression and ABCA1-dependent cholesterol efflux, and then examined the role of cyclic adenosine monophosphate (cAMP) signaling pathway in the regulation of ABCA1 expression and ABCA1-mediated cholesterol efflux by paraoxon in RAW 264.7 macrophage-derived foam cells.
     Methods:
     1. RAW 264.7 macrophages were cultured in the medium with 50μg/ml Ox-LDL to induce foam cells. Foam cells were divided into several groups:control group, paraoxon group:paraoxon (1,10 and 100μmol/1) for 24 h and paraoxon (100μmol/1) for 6,12,24 h.
     2. The cellular contents of total cholesterol (TC) and free cholesterol (FC) were deteeted by high performance liquid chromatography assays. Cholesterol efflux from macrophages was examined.
     3. The level of intracellular cAMP was measure by ELISA. The activities of adenylate cyclase(AC) and phosphodiesterase (PDE) were examined.
     4.The expressions of ATP-binding Cassette Transporter A1 (ABCA1) was detected by Real-time PCR and Western blot.
     Results:
     1.Paraoxn significantly down regulated ABCA1 expression and reduced ABCA1-dependent cholesterol efflux and increased the levels of the total, free and esterified cholesterols in a time-and dose-dependent manner.
     2.Paraoxon also markedly reduced cAMP level and decreased adenylate cyclase (AC) activity and increased cAMP-specific phosphodiesterase (PDE) activity.
     3.CAMP analogs dibutyryl cyclic adenosine monophosphate (dBcAMP) markedly compensated the down-regulation of ABCA1 expression and partly compensated the reduction of ABCA1-mediated cholesterol efflux induced by paraoxon.
     4.Both adenylate cyclase agonist forskolin and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) markedly compensated the suppression effect on cAMP level induced by paraoxon.
     Conclusion:
     Paraoxon down regulates ABCA1 expression and decreases ABCA1-mediated cholesterol efflux through cyclic AMP signaling pathway in RAW 264.7 macrophage-derived foam cells.
     Objective:
     To investigate the effect of ectogenic PON1 transfected on accelerated atherosclerosis effect of paraoxon in RAW 264.7 macrophage-derived foam cells
     Methods:
     1. Experiments were divided into several groups:RAW 264.7 macrophages group; Ox-LDL+RAW 264.7 macrophages group; paraoxon (100μmol/1)+Ox-LDL+RAW 264.7 macrophages group; human PON1 gene transfection+paraoxon (100μmol/l)+Ox-LDL+ RAW 264.7 macrophages group. The plasmid DNA (human PON1 gene in pcDNA3.1+plasmid) was introduced into the RAW 264.7 macrophages. Foam cells were induced by 50μg/ml Ox-LDL and 100μmol/1 paraoxon was treated for 48 h.
     2. The cellular lipid accumulation was examined by oil red staining. The cellular contents of total cholesterol (TC) and free cholesterol (FC) were deteeted by high performance liquid chromatography assays. Cholesterol efflux from macrophages was examined.
     Results:
     1. The contents of TC, FC, eholesterylester (CE) and CE/TC ratio were significantly increased and cholesterol efflux was markly decreased in foam cells group compared with RAW macrophages group. The contents of TC, FC, eholesterylester (CE) and CE/TC ratio were significantly increased and cholesterol efflux was markly decreased in foam cells treated with paraoxon group compared with foam cells group. Compared with foam cells treated with paraoxon, the contents of TC, FC, eholesterylester (CE) and CE/TC ratio were significantly decreased and cholesterol efflux was markly increased in ectogenic PON1 transfected group.
     2. Cholesterol efflux was markly increased in foam cells group compared with RAW macrophages group. Cholesterol efflux was markly increased in foam cells treated with paraoxon group compared with foam cells group. Compared with foam cells treated with paraoxon, cholesterol efflux was markly increased in ectogenic PON1 transfected group.
     Conclusion:
     Ectogenic PON1 inhibits accelerated atherosclerosis effect of paraoxon in RAW 264.7 macrophage-derived foam cells.
引文
[1].Aihara K, Azuma H, Akaike M, Sata M, Matsumoto T. Heparin cofactor II as a novel vascular protective factor against atherosclerosis.J Atheroscler Thromb,2009, 16(5):523-531.
    [2].Ott SJ, El Mokhtari NE, Musfeldt M, Hellmig S, Freitag S, Rehman A, Kiihbacher T, Nikolaus S, Namsolleck P, Blaut M, Hampe J, Sahly H, Reinecke A, Haake N, Gunther R, Kriiger D, Lins M, Herrmann G, Folsch UR, Simon R, Schreiber S. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation,2006,113(7):929-937.
    [3].Meurman JH, Sanz M, Janket SJ. Oral health, atherosclerosis, and cardiovascular disease. Crit Rev Oral Biol Med,2004,15(6):403-413.
    [4].杨永宗.中国动脉粥样硬化病理生理学研究近况.中国动脉硬化杂志,2004,12(4):481-489.
    [5].杨永宗.动脉粥样硬化实验研究模型百年回溯.中国动脉硬化杂志,2008,16(12):925-927.[6].Camps J, Marsillach J, Joven J. The paraoxonases:role in human diseases and methodological difficulties in measurement. Crit Rev Clin Lab Sci,2009,46(2): 83-106.
    [7].Rochu D, Chabriere E, Masson P. Human paraoxonase:a promising approach for pre-treatment and therapy of organophosphorus poisoning. Toxicology,2007, 233(1-3):47-59.
    [8].Reiner E. Recommendations of the IUBMB Nomenclature Committee:comments concerning classification and nomenclature of esterases hydrolysing organophosphorus compounds. Chem Biol Interact,1993,87(1-3):15-16.
    [9].La Du BN, Adkins S, Kuo CL, Lipsig D. Studise on human serum paraoxonase/arylesterase. Chem Biol Interact,1993,87(1):25-34.
    [10].Goswami B, Tayal D, Gupta N, Mallika V.Paraoxonase:a multifaceted biomolecule. Clin Chim Acta,2009,410(1-2):1-12.
    [11].Mackness M, Mackness B, Durrington P, Connelly P, and Hegele R. Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol, 2009,7(2):69-76.
    [12].Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol,2001,21(4):473-480.
    [13].Jakubowski H. Protein N-homocysteinylation:implications for atherosclerosis.Biomed Pharmacother,2001,55(8):443-447.
    [14].Costal LG, Cole T B, Furlong C E. Paraoxonase (PON1):from toxicology to cardiovascular. Medicine Acta Biomed,2005,47(2):50-57.
    [15].Aviram M,Billecke S,Soren SR. Paraoxonase active site required for protein against LDL oxidation involves its free sul-fhydryl group and is different from that required for its ary-lesterase/paraoxonase activities selective action of human paraoxonase allozymes Q and R. Arterioscler Thromb Vasc Biol,1998,18 (10):16-17.
    [16].Babaev VR, Gleaves LA, Carter KJ, Suzuki H, Kodama T, Fazio S, Linton MF. Reduced atherosclerotic lesions in mice deficient for total ormacrophage-specific expression of scavenger receptor-A. Arterioscler Thomb Vasc Biol,2000,20(12): 2593-2599.
    [17].Marcel YL, Ouimet M, Wang MD. Regulation of cholesterol efflux from macrophages. Curr Opin Lipidol,2008,19(5):455-461.
    [18].Bielicki JK, Forte TM, McCall MR. Minimally oxidized LDL is a potent inhibitor of lecithin:cholesterol acyltransferase activity. J Lipid Res,1996,37(5): 1012-1021.
    [19].Marcel YL, Ouimet M, Wang MD. Regulation of cholesterol efflux from macrophages. Curr Opin Lipidol,2008,19(5):455-461.
    [20]. Brousseau ME, Schaefer EJ, Wolfe ML, Bloedon LT, Digenio AG, Clark RW, et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med,2004,350(15):1505-1515.
    [21].Bielicki JK, Forte TM, McCall MR. Minimally oxidized LDL is a potent inhibitor of lecithin:cholesterol acyltransferase activity. J Lipid Res,1996,37(5): 1012-1021.
    [22].Ribas V, Sanchez-Quesada JL, Anton R, Camacho M, Julve J Escola-Gil JC. Human apolipoprotein A-Ⅱ enrichment displaces paraoxonase from HDL and impairs its antioxidant properties:a new mechanism linking HDL protein composition and antiatherogenic potential. Circ Res,2004,95(8):789-797.
    [23].Murao K, Terpstra V, Green SR, Kondratenko N, Steinberg D, Quehenberger O. Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J Biol Chem,1997, 272(28):17551-71755.
    [23].Varban ML, Rinninger F, Wang N, Fairchild-Huntress V, Dunmore JH, Fang Q. Targeted mutation reveals a central rolefor SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci USA,1998,95(8):4619-46124.
    [25].Ji Y, Wang N, Ramakrishnan R, Sehayek E, Huszar D, Breslow JL. Hepatic scavenger receptor BI promotes rapid. clearance of high density lipoprotein free cholesterol and its transportinto bile. J Biol Chem,1999,274(47):33398-33402.
    [26].Babaev VR, Gleaves LA, Carter KJ, Suzuki H, Kodama T, Fazio S, Linton MF. Reduced atherosclerotic lesions in mice deficient for total ormacrophage-specific expression of scavenger receptor-A. Arterioscler Thomb Vasc Biol,2000,20(12): 2593-2599.
    [27].Tall A R, Costet P, Wang N. Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest,2002,110(7):899-904.
    [28].Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res,2001,42(7):1007-1017.
    [29].Kanome T, Watanabe T, Nishio K, Takahashi K, Hongo S, Miyazaki A. Angiotensin II upregulates acyl-CoA:cholesterol acyltransferase-1 via the angiotensin Ⅱ Type 1 receptor in human monocyte-macrophages. Hypertens Res,2008,31(9): 1801-1810.
    [30].Ioriya K, Noguchi T, Muraoka M, Fujita K, Shimizu H, Ohashi N. Effect of SMP-500, a novel acyl-coA:cholesterol acyltransferase inhibitor, on the cholesterol esterification and its hypocholesterolemic properties. Pharmacology,2002,65(1): 18-25.
    [31]. Foxenberg RJ, McGarrigle BP, Knaak JB, Kostyniak PJ, Olson JR. Human hepatic cytochrome p450-specific metabolism of parathion and chlorpyrifos. Drug Metab Dispos,2007,35(2):189-193.
    [32].Baerg RJ, Barrett M, Polge ND. Insecticide and Insecticide Metabolite Interactions with Cytochrome P450 Mediated Activities in Maize Pestic. Biochem Physiol,1996,55(1):10-20.
    [33].Hotopf M, Mackness I, Nikolaou V. Paraoxonase in Persian Gulf War veterans. J Occup Environ Med,2003,45(7):668-675.
    [34].Khan F, Kennedy G, Spence VA, Newton DJ, Belch JJ. Peripheral cholinergic function in humans with chronic fatigue syndrome, Gulf War syndrome and with illness following organophosphate exposure. Clin Sci,2004,106(2):183-189.
    [35].Hernandez AF, Mackness B, Rodrigo L, Lopez O, Pla A, Gil F, Durrington PN, Pena G, Parron T, Serrano JL, Mackness MI. Paraoxonase activity and genetic polymorphisms in greenhouse workers with long term pesticide exposure. Hum Exp Toxicol,2003,22(11):565-574.
    [36].Mackness B, Durrington P, Povey A, Thomson S, Dippnall M, Mackness M, Smith T, Cherry N. Paraoxonase and susceptibility to organophosphorus poisoning in farmers dipping sheep. Pharmacogenetics,2003,13(2):81-88.
    [37].熊小明,周寿红,胡敏.敌百虫加重高脂饮食致兔动脉粥样硬化作用与降低对氧磷酶活性有关.中国动脉硬化杂志,2009,17(3):172-176.
    [38].胡敏,刘立英,熊小明,钟才高,陈双秀,吴晋湘.敌百虫促高脂饮食致兔动脉粥样硬化作用研究中国药理学通报,2006,22(4):510-511.
    [39]. Lim S L, Sim M K, Loke W K. Acetylcholinesterase-independent action of diisopropyl-flurophosphate in the rat aorta. Eur J Pharmacol.2000,404(3):353-359.
    [40].Costa L G, Cole T B, Furlong C E. Paraoxonase (PON1):from toxicology to cardiovascular medicine. Acta Biomed,2005,76(2):50-57
    [41].T M van Himbergen, L J van Tits, M Roest. The story of PON1:how an organophosphate-hydrolysing enzyme is becoming a player in cardiovascular medicine. Neth J Med,2006,64(2):34-38.
    [42].邓礼,赵玲玲.亚中毒阈剂量毒死蜱的神经发育毒性.中国职业医学,2006,33(5):390-392.
    [43].Slotkin TA, Tate CA, Cousins MM, Seidler FJ. Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlorpyrifos exposure. Brain Res Dev Brain Res,2002,133(2):163-173.
    [44].Roy TS, Seidler FJ, Slotkin TA. Morphologic effects of subtoxic neonatal chlorpyrifos exposure in developing rat brain:regionally selective alterations in neurons and glia. Brain Res Dev Brain Res,2004,148(2):197-206.
    [45].Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol, 2008,28(5):812-819.
    [46].Schmitz G, Grandl M. Lipid homeostasis in macrophages-implications for atherosclerosis. Rev Physiol Biochem Pharmacol,2008,160(7):93-125.
    [47].Alexander ET, Weibel GL, Joshi MR, Vedhachalam C, dela Llera-Moya M, Rothblat GH, Phillips MC, Rader DJ. Macrophage reverse cholesterol transport in mice expressing ApoA-Ⅰ Milano. Arterioscler Thromb Vasc Biol,2009,29(10): 1496-501.
    [48].Cutri BA, Hime NJ, Nicholls SJ. High-density lipoproteins:an emerging target in the prevention of cardiovascular disease. Cell Res,2006,16(10):799-808.
    [49].Aiello RJ, Brees D, Francone OL. ABCA1-deficient mice:insights into the role of monocyte lipid efflux in HDL formation and inflammation. Arterioscler Thromb Vasc Biol,2003,23(6):972-980.
    [50].Furlong CE, Richter RJ, Seidel SL, Costa LG, Motulsky AG. Spectrophotometric assays for the enzymatic hydrolysis of the active metabolites of chlorpyrifos and parathion by plasma paraoxonase/arylesterase. Anal Biochem.1989,180(2):242-247.
    [51]毒死蜱.农药科学与管理.1983-07-02.
    [52].唐朝克,易光辉,王佐.干扰素-Y对THP-1巨噬细胞源性泡沫细胞胆固醇流出和ABCA1表达的影响.生物化学与生物物理进展,2004,31(2):127-133.
    [53].Liu J, Huan C, Chakraborty M, Zhang H, Lu D, Kuo MS, Cao G, Jiang XC. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ Res,2009,105(3):295-303.
    [54].周寿红,凌宏艳,田绍文,刘显庆,王炳香,胡弼.17-β-雌二醇对去卵巢胰岛素抵抗大鼠主动脉舒缩功能损伤的保护作用.生理学报,2005,57(5):627-635.
    [55].Tachikawa M, Toki H, Tomi M, Hosoya K. Gene expression profiles of ATP-binding cassette transporter A and C subfamilies in mouse retinal vascular endothelial cells. Microvasc Res,2008,75(1):68-72.
    [56].唐朝克,冯大明,孙文清.动脉粥样硬化小型猪三磷酸腺苷结合盒转运体A1表达的变化.生物化学与生物物理进展,2005,32(3):221-227.
    [57]. Foxenberg RJ, McGarrigle BP, Knaak JB, Kostyniak PJ, Olson JR. Human hepatic cytochrome p450-specific metabolism of parathion and chlorpyrifos. Drug Metab Dispos,2007,35(2):189-193.
    [58].Baerg RJ, Barrett M, Polge ND. Insecticide and Insecticide Metabolite Interactions with Cytochrome P450 Mediated Activities in Maize Pestic. Biochem Physiol,1996,55(1):10-20.
    [59].Coleman HA, Tare M, Parkington HC. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol,2004,31(9):641-649.
    [60].Feletou M, Verbeuren TJ, Vanhoutte PM. Endothelium-dependent contractions in SHR:a tale of prostanoid TP and IP receptors. Br J Pharmacol,2009,156(4): 563-574.
    [61].Simon BC, Cunningham LD, Cohen RA. Oxidized low density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery. J Clin Invest,1990,86(1):75-79.
    [62].Osborne JA, Lento PH, Siegfried MR, Stahl GL, Fusman B, Lefer AM. Cardiovascular effects of acute hypercholesterolemia in rabbits. Reversal with lovastatin treatment. J Clin Invest,1989,83(2):465-473.
    [63].Arcaro G, Zenere BM, Travia D, Zenti MG, Covi G, Lechi A, Muggeo M. Non-invasive detection of early endothelial dysfunction in hypercholesteolemic subjects. Atherosclerosis,1995,114(2):247-254.
    [64].李鹏,刘立英,周寿红,吴树金.对氧磷对血管内皮细胞的损伤作用及机制探讨.中国动脉硬化杂志,2007,15(9):666-670.
    [65].Jagavelu K, Tietge UJ, Gaestel M, Drexler H, Schieffer B, Bavendiek U. Systemic deficiency of the MAP kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice. Circ Res,2007,101(11):1104-1112.
    [66].Simionescu M. Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol,2007,27(2): 266-274.
    [66].Ritter JM. Nebivolol:endothelium-mediated vasodilating effect. J Cardiovasc Pharmacol.2001,38(13):13-16.
    [67].Davies MG, Hagen PO. Diabetes attenuates the alterations in both venous endothelial and smooth muscle cell function induced by prolonged hypercholesterolemia in an experimental model. J Invest Surg,1999,12(2):107-114.
    [68].Aki Nakamura, Nagakatsu Harada, Akira Takahashi, Kazuaki Mawatari, Masayuki Nakano, Kazuhiko Tsutsumi, Yutaka Nakaya. NO-1886, a lipoprotein lipase activator, attenuates vascular smooth muscle contraction in rat aorta. European Journal of Pharmacology,2007,554 (2-3):183-190.
    [69].Mueed I, Zhang Y, Aziz T, Chu V, Janssen LJ. Structural and electrophysiological changes in atherosclerotic radial artery grafts account for impairment of vessel reactivity. Atherosclerosis,2009,206(2):405-410.
    [70].McKenzie C, MacDonald A, Shaw AM. Mechanisms of U46619-induced contraction of rat pulmonary arteries in the presence and absence of the endothelium. Br J Pharmacol,2009,157(4):581-596.
    [71].Vatanparast J, Janahmadi M, Asgari AR, Sepehri H, Haeri-Rohani A. Paraoxon suppresses Ca2+ spike and afterhyperpolarization in snail neurons:Relevance to the hyperexcitability induction. Brain Res,2006,1083(1):110-117.
    [72].Larsson D, Nemere I. Vectorial transcellular calcium transport in intestine: integration of current models. J Biomed Biotechnol,2002,2(3):117-119.
    [73].Dobrev D, Nattel S. Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J Cardiovasc Pharmacol,2008,52(4):293-299.
    [74].Senti M, Tomas M, Fito M, Weinbrenner T, Covas MI, Sala J. Antioxidant paraoxonase 1 activity in the metabolic syndrome. J Clin Endocrinol Metab,2003, 88(11):5422-5426.
    [75].Furlong CE, Cole TB, Jarvik GP, Pettan-Brewer C, Geiss GK, Richter RJ. Role of paraoxonase (PON1) status in pesticide sensitivity:genetic and temporal determinants. Neurotoxicology,2005,26(4):651-659.
    [76].Costa LG, Cole TB, Vitalone A, Furlong CE. Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity. Clin Chim Acta,2005,352(1-2):37-47.
    [77].Nguyen SD, Jeong TS, Kim MR, Sok DE. Broad-spectrum antioxidant peptides derived from His residue-containing sequences present in human paraoxonase 1. Free Radic Res,2006,40(4):349-358.
    [78].Baskol G, Karakucuk S, Oner AO, Baskol M, Kocer D, Mirza E. Serum paraoxonase 1 activity and lipid peroxidation levels in patients with age-related macular degeneration. Ophthalmologica,2006,220(1):12-16.
    [79].Rozenberg O, Rosenblat M, Coleman R, Shih DM, Aviram M. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress:studies in PON1-knockout mice. Free Radic Biol Med,2003,34(6):774-784.
    [80].Fuhrman B, Volkova N, Aviram M. Oxidative stress increases the expression of the CD36 scavenger receptor and the cellular uptake of oxidized low-density lipoprotein in macrophages from atherosclerotic mice:protective role of antioxidants and of paraoxonase. Atherosclerosis,2002,161(2):307-316.
    [81].Rozenberg O, Shih DM, Aviram M. Human serum paraoxonase (PON1) decreases macrophage cholesterol biosynthesis:a possible role for its phospholipase-A2 activity and lysophosphatidylcholine formation. Arterioscler Thromb Vase Biol,2003,23(3):461-467.
    [82].Rosenblat M, Vaya J, Shih D, Aviram M. Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells:a possible role for lysophosphatidylcholine. Atherosclerosis,2005,179(1):69-77.
    [83].Janero DR. Malondiadehyde and thiobarbituric acid-reactivity as diagnostic indiced of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med, 1990,9(6):515-540.
    [84].Tall AR, Costet P, Wang N. Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest,2002,110(7):899-904.
    [85].Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res,2001,42(7):1007-1017.
    [86].Michael Walter, Nicholas R Forsyth, Woodring E. The Establishment of Telomerase-immortalized Tangier Disease Cell Lines Indicates the Existence of an Apolipoprotein A-I-inducible but ABCA1-independent Cholesterol Efflux Pathway. J Biol Chem,2004(20),279:20866-20873.
    [87].Jose Maria Araujo-Santos, Adriana Parodi-Talice, Santiago Castanys. The overexpression of an intracellular ABCA-like transporter alters phospholipid trafficking in Leishmania. Biochemical and Biophysical Research Communications, 2005,330(1):349-355.
    [88].Santamarina-Fojo S, Remaley T, Neufeld B. Regulation and intracellular trafficking of the ABCA 1 transporter. J Lipid Res,2001,42(9):1339-1345.
    [89].唐朝克,贺修胜,易光辉,王佐,袁中华,刘录山,危当恒,王燕,杨永宗.肝χ受体α在泡沫细胞胆固醇流出中的调控作用.生物化学与生物物理进展,2003,30(6):940-944.
    [90].Albrecht C, Soumian S, Amey JS, Sardini A, Higgins CF, Davies AH, Gibbs RG. ABCA1 Expression in Carotid Atherosclerotic Plaques. Stroke,2004,35(12): 2801-2806.
    [91].Hu YW, Ma X, Li XX, Liu XH, Xiao J, Mo ZC, Xiang J, Liao DF, Tang CK. Eicosapentaenoic acid reduces ABCA1 serine phosphorylation and impairs ABCA1-dependent cholesterol efflux through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells. Atherosclerosis,2009,204(2): 35-43.
    [92].Hofnagel O, Luechtenborg B, Weissen-Plenz G, Robenek H. Statins and foam cell formation:impact on LDL oxidation and uptake of oxidized lipoproteins via scavenger receptors. Biochim Biophys Acta,2007,1771 (9):1117-1124.
    [93].Yanai H, Yoshida H, Tomono Y, Tada N, Chiba H. The possible contribution of a general glycosphingolipid transporter, GM2 activator protein, to atherosclerosis. J Atheroscler Thromb,2006,13(6):281-285.
    [94].Sviridov D, Mukhamedova N, Remaley AT, Chin-Dusting J, Nestel P. Antiatherogenic functionality of high density lipoprotein:how much versus how good. J Atheroscler Thromb,2008,15(2):52-62.
    [95].Ohashi R, Mu H, Wang X, Yao Q, Chen C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM,2005,98(12):845-856.
    [96].Manning-Tobin JJ, Moore KJ, Seimon TA, Bell SA, Sharuk M, Alvarez-Leite JI, de Winther MP, Tabas I, Freeman MW. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol,2009,29(1):19-26.
    [97].Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor JL. CD36 and macrophages in atherosclerosis. Cardiovasc Res,2007,75(3):468-477.
    [98].Yvan-Charvet L, Welch C, Pagler TA, Ranalletta M, Lamkanfi M, Han S, Ishibashi M, Li R, Wang N, Tall AR. Increased inflammatory gene expression in ABC transporter-deficient macrophages:free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation,2008,118(18):1837-1847.
    [99].Yokoyama S. ABCA1 and biogenesis of HDL. J Atheroscler Thromb,2006, 13(1):1-15.
    [100].Tardif JC, Gregoire J, L'Allier PL, Anderson TJ, Bertrand O, Reeves F, Title LM, Alfonso F, Schampaert E, Hassan A, McLain R, Pressler ML, Ibrahim R, Lesperance J, Blue J, Heinonen T, Rodes-Cabau J. Avasimibe and Progression of Lesions on UltraSound (A-PLUS) Investigators.Effects of the acyl coenzyme A: cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation,2004,110(21):3372-3377.
    [101].Drimal J, Faberova V, Schmidtova L, Bednarikova M, Drimal J Jr, Drimal D. The ACAT inhibitor VULM1457 significantly reduced production and secretion of adrenomedullin (AM) and down-regulated AM receptors on human hepatoblastic cells. Gen Physiol Biophys,2005,24(4):397-409.
    [102].Biro A, Thielens NM, Cervenak L, Prohaszka Z, Fust G, Arlaud GJ. Modified low density lipoproteins differentially bind and activate the C1 complex of complement. Mol Immunol,2007,44(6):1169-1177.
    [103].唐朝克,杨永宗,易光辉,王燕,危当恒,王佐.三磷酸腺苷结合盒转运体Al在THP-1巨噬细胞源性泡沫细胞胆固醇流出中的作用.中国病理生理杂志,2003,19(8):1084-1088.
    [104].Klein BY, Kerem Z, Rojansky N. Preparation of low density lipoprotein from large apheresis cartridges for induction of cell death in Saos2 osteoblasts. Ther Apher Dial,2006,10(3):224-232.
    [105].王佐,李全忠,杨向东,肖尚志,杨永宗.高效液相色谱分析氧化型低密度脂蛋白处理的U937细胞胞内胆固醇及胆固醇酯.中国动脉硬化杂志,1998,6(4): 317-320.
    [106].Chen GP, Yao L, Lu X, Li L, Hu SJ. Tissue-specific effects of atorvastatin on 3-hydroxy-3-methylglutarylcoenzyme A reductase expression and activity in spontaneously hypertensive rats. Acta Pharmacol Sin,2008,29(10):1181-1186.
    [107].Collins RF, Touret N, Kuwata H, Tandon NN, Grinstein S, Trimble WS. Uptake of oxidized low density lipoprotein by CD36 occurs by an actin-dependent pathway distinct from macropinocytosis. J Biol Chem,2009,284(44):30288-30297.
    [108].Silverstein RL. Inflammation, atherosclerosis, and arterial thrombosis:role of the scavenger receptor CD36. Cleve Clin J Med,2009,76(2):27-30.
    [109].Hoosdally SJ, Andress EJ, Wooding C, Martin CA, Linton KJ. The Human Scavenger Receptor CD36:glycosylation status and its role in trafficking and function. J Biol Chem,2009,284(24):16277-16288.
    [110].Harb D, Bujold K, Febbraio M, Sirois MG, Ong H, Marleau S. The role of the scavenger receptor CD36 in regulating mononuclear phagocyte trafficking to atherosclerotic lesions and vascular inflammation. Cardiovasc Res,2009,83(1): 42-51.
    [111].Kuchibhotla S, Vanegas D, Kennedy DJ, Guy E, Nimako G, Morton RE, Febbraio M. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A Ⅰ/Ⅱ. Cardiovasc Rec,2008,78(1):185-196.
    [112].Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL. Targeted disruption of the class B seavenger receptor CD36 protects against atheroselerosis lesion development in mice. J Clin Invest,2000,105(5): 1049-1056.
    [113].Febbraio M, Guy E, Silverstein RL.Stem cell transplantation reveals that absence of macrophage CD36 is protective against atheroselerosis. Arterioscler Thromb Vase Biol,2004,24(12):2333-2338.
    [114].Kashiwagi H, Tomiyama Y, Kosugi Y. Identification of the molecular defects in a subject with typel CD36 deficiency. Blood,1994,83(12):3545-3552.
    [115].Nicholson AC, Frieda S, Pearce A, Silverstein RL. Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site. Arterioscler Thromb Vase Biol,1995,15(2):269-275.
    [116].Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B, Proctor BM, Petty M, Chen Z, Schechtman KB, Bernal-Mizrachi L, Bernal-Mizrachi C.1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation,2009,120(8):687-698.
    [117].Bujold K, Rhainds D, Jossart C, Febbraio M, Marleau S, Ong H. CD36-mediated cholesterol efflux is associated with PPAR gamma activation via a MAPK-dependent COX-2 pathway in macrophages. Cardiovasc Res,2009,83(3): 457-464.
    [118].Lee KJ, Ha ES, Kim MK, Lee SH, Suh JS, Lee SH, Park KH, Park JH, Kim DJ, Kang D, Kim BC, Jeoung D, Kim YK, Kim HD, Hahn JH. CD36 signaling inhibits the translation of heat shock protein 70 induced by oxidized low density lipoprotein through activation of peroxisome proliferators-activated receptor gamma. Exp Mol Med,2008,40(6):658-668.
    [119].Rios FJ, Jancar S, Melo IB, Ketelhuth DF, Gidlund M. Role of PPAR-gamma in the modulation of CD36 and FcgammaRII induced by LDL with low and high degrees of oxidation during the differentiation of the monocytic THP-1 cell line. Cell Physiol Biochem,2008,22(5-6):549-556.
    [120].Santamarina-Fojo S, Peterson K, Knapper C, Qiu Y, Freeman L, Cheng JF, Osorio J, Remaley A, Yang XP, Haudenschild C, Prades C, Chimini G, Blackmon E, Francois T, Duverger N, Rubin EM, Rosier M, Denefle P, Fredrickson DS, Brewer HB Jr. Complete genomic sequence of the human ABCA1 gene:analysis of the human and mouse ATP-binding cassette A promoter. Proc Natl Acad Sci U S A,2000, 97(14):7987-7992.
    [121].Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, Kaminski WE, Schmitz G. Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1):evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun,1999,257(1):29-33.
    [122].Lawn RM, Wade DP, Couse TL, Wilcox JN. Localization of human ATP-binding cassette transporter 1 (ABC1) in normal and atherosclerotic tissues. Arterioscler Thromb Vasc Biol,2001,21(3):378-385.
    [123].Frikke-Schmidt R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis,2010,208(2): 305-316.
    [124].Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux:implications for the treatment of atherosclerosis. Cell Metab,2008,7(5):365-375.
    [125],Cameron J, Ranheim T, Halvorsen B, Kulseth MA, Leren TP, Berge KE. Tangier disease caused by compound heterozygosity for ABCA1 mutations R282X and Y1532C. Atherosclerosis,2010,209(1):163-166.
    [126].Uehara Y, Tsuboi Y, Zhang B, Miura S, Baba Y, Higuchi MA, Yamada T, Rye KA, Saku K. POPC/apoA-Ⅰ discs as a potent lipoprotein modulator in Tangier disease. Atherosclerosis,2008,197(1):283-289.
    [127].Cavelier LB, Qiu Y, Bielicki JK, Afzal V, Cheng JF, Rubin EM. Regulation and activity of the human ABCA1 gene in transgenic mice. J Biol Chem,2001,276(21): 18046-18051.
    [128].Joyce CW, Amar MJ, Lambert G, Vaisman BL, Paigen B, Najib-Fruchart J, Hoyt RF Jr, Neufeld ED, Remaley AT, Fredrickson DS, Brewer HB Jr, Santamarina-Fojo S. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc Natl Acad Sci USA, 2002,99(1):407-412.
    [129].Singaraja RR, Fievet C, Castro G. Increased ABCAlactivity protects against atherosclerosis. J Clin Invest,2002,110(1):35-42.
    [130].Tang CK, Yi GH, Yang JH, Liu LS, Wang Z, Ruan CG, Yang YZ. Oxidized LDL upregulated ATP binding cassette transporter-1 in THP-1 macrophages. Acta Pharmacol Sin,2004,25(5):581-586.
    [131].O'Rourke L, Gronning LM, Yeaman SJ, Shepherd PR.Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin. J Biol Chem,2002,277(45):42557-42562.
    [132].Maehira F, Zaha F, Miyagi I, Tanahara A, Noho A. Effects of passive smoking on the regulation of rat aortic cholesteryl ester hydrolases by signal transduction. Lipids,2000,35(5):503-511.
    [133].Chinetti G, Lestavel S, Fruchart JC, Clavey V, Staels B. Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages. Circ Res,2003,92(2):212-217.
    [134].Suguro T, Watanabe T, Kanome T, Kodate S, Hirano T, Miyazaki A, Adachi M. Serotonin acts as an up-regulator of acyl-coenzyme A:cholesterol acyltransferase-1 in human monocyte-macrophages. Atherosclerosis,2006,186(2):275-281.
    [135].Hongo S, Watanabe T, Arita S, Kanome T, Kageyama H, Shioda S, Miyazaki A.Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages. Am J Physiol Endocrinol Metab,2009,297(2):474-482.
    [136].Fujiwara Y, Kiyota N, Hori M, Matsushita S, Iijima Y, Aoki K, Shibata D, Takeya M, Ikeda T, Nohara T, Nagai R. Esculeogenin A, a new tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in ApoE-deficient mice by inhibiting ACAT. Arterioscler Thromb Vase Biol,2007,27(11):2400-2406.
    [137].Maeng S, Ko YJ, Kim GB, Jung KW, Floyd A, Heitman J, Bahn YS. Comparative transcriptome analysis reveals novel roles of the Ras and cyclic AMP signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot Cell,2010,9(3):360-78.
    [138].Boo YC, Hwang J, Sykes M, Michell BJ, Kemp BE, Lum H, Jo H. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am J Physiol Heart Circ Physiol,2002,283(5):1819-1828.
    [139].Hanson MS, Stephenson AH, Bowles EA, Sridharan M, Adderley S, Sprague RS. Phosphodiesterase 3 is present in rabbit and human erythrocytes and its inhibition potentiates iloprost-induced increases in cAMP. Am J Physiol Heart Circ Physiol, 2008,295(2):786-793.
    [140].Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res,2005,96 (12):1221-1232.
    [141].Tall AR, Costet P, Wang N. Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest,2002,110(7):899-904.
    [142].Foxenberg RJ, McGarrigle BP, Knaak JB, Kostyniak PJ, Olson JR. Human hepatic cytochrome p450-specific metabolism of parathion and chlorpyrifos. Drug Metab Dispos,2007,35(2):189-193.
    [143]. Crow JA, Middleton BL, Borazjani A, Hatfield MJ, Potter PM, Ross MK. Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages. Biochim Biophys Acta,2008,1781(10):643-654.
    [144]. Brewer HB Jr, Remaley AT, Neufeld EB, Basso F, Joyce C. Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol,2004,24(10):1755-1760.
    [145].Eckardstein AV, Hersberger M, Rohrer L. Current understanding of the metabolism and biological actions of HDL. Curr Opin Clin Nutr Metab Care,2005, 8(2):147-152.
    [146].Oram J F. ATP-binding cassette transporter Al and cholesterol trafficking. Curr Opin Lipidol,2002,13(4):373-381.
    [147].Francone O L, Aiello R J. ABCA1:regulation, function and relationship to atherosclerosis. Curr Opin Invest Drugs,2002,3(3):415-419.
    [148].唐朝克,贺修胜,易光辉,等.肝χ受体α在泡沫细胞胆固醇流出中的调控作用.生物化学与生物物理进展,2003,30(6):940-944.
    [149].Olivier K J, Liu J, Pope C. Inhibition of forskolin-stimulated cAMP formation in vitro by paraoxon and chlorpyrifos oxon in cortical slices from neonatal, juvenile, and adult rats. J Biochem Mol Toxicol,2001,15(5):263-269.
    [150].Svoboda N, Zierler S, Kerschbaum HH. cAMP mediates ammonia-induced programmed cell death in the microglial cell line BV-2. Eur J Neurosci,2007,25(8): 2285-2295.
    [151].Adderley SP, Dufaux EA, Sridharan M, Bowles EA, Hanson MS, Stephenson AH, Ellsworth ML, Sprague RS. Iloprost-and isoproterenol-induced increases in cAMP are regulated by different phosphodiesterases in erythrocytes of both rabbits and humans. Am J Physiol Heart Circ Physiol,2009,296(5):1617-1624.
    [152]. Huff RA, Corcoran JJ, Anderson JK, Abou-Donia MB. Chlorpyrifos oxon binds directly to muscarinic receptorsand inhibits cAMP accumulation in rat striatum. J Pharmacol Exp Ther,1994,269(1):329-335.
    [153].Ward TR, Mundy WR. Organophosphorus compounds preferentially affect second messenger systems coupled to M2/M4 receptors in rat frontal cortex. Brain Res Bull,1996,39(1):49-55.
    [154]. Haidar B, Denis M, Krimbou L, Marcil M, Genest J Jr. cAMP induces ABCA1 phosphorylation activity and promotes cholesterol efflux from fibroblasts. J Lipid Res, 2002,43(12):2087-2094.
    [155].Nandi S, Ma L, Denis M, Karwatsky J, Li Z, Jiang XC, Zha X. ABCA1-mediated cholesterol efflux generates microparticles in addition to HDL through processes governed by membrane rigidity. J Lipid Res.2009,50(3):456-466.
    [156].Lin G, Bornfeldt KE. Cyclic AMP-specific phosphodiesterase 4 inhibitors promote ABCA1 expression and cholesterol efflux. Biochem Biophys Res Commun, 2002,290(2):663-669.
    [157].Brook RD, Franklin B, Cascio W. Air pollution and cardiovascular disease. Circulation,2004,109(21):2655-2671.
    [158].Andreassi MG. Metabolic syndrome, diabetes and atherosclerosis:Influence of gene-environment interaction. Mutat Res,2009,667(1-2):35-43.
    [159].Senti M, Tomas M, Fito M, Weinbrenner T, Covas MI, Sala J. Antioxidant paraoxonase 1 activity in the metabolic syndrome. J Clin Endocrinol Metab.2003, 88(11):5422-5426.
    [160].Barbieri M, Bonafe'M, Marfella R, Ragno E, Giugliano D, Franceschi C. LL-paraoxonase genotype is associated with a more severe degree of homeostasis model assessment IR in healthy subjects. J Clin Endocrinol Metab.2002,87: 222-222.
    [161].Paolisso G, Tagliamonta MR, Rizzo MR, Giugliano D. Advancing age and insulin resistance:new facts for an ancient history. Eur J Clin Invest.1999,29: 758-769.
    [162].Orit Rozenberga, Diana M. Shiha,b, Michael Aviram. Paraoxonase 1 (PON1) attenuates macrophage oxidative status:studies in PON1 transfected cells and in PON1 transgenic mice. Atherosclerosis,2005,181(1):9-18.
    [163].Rozenberg O, Rosenblat M, Coleman R, Shih DM, Aviram M. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress:studies in PON1-knockout mice. Free Radic Biol Med,2003,34(6):774-784.
    [164].Shih DM, Lusis AJ. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature,1998,394(6690):284-287.
    [165].Rozenberg O. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress:studies in PON 1-knockout mice. Free Radic Biol Med, 2003,34(6):774-784.
    [166]. Fuhrman B, Volkova N, Aviram M. Oxidative stress increases the expression of the CD36 scavenger receptor and the cellular uptake of oxidized low-density lipoprotein in macrophages from atherosclerotic mice:protective role of antioxidants and of paraoxonase. Atherosclerosis.2002;161(2):307-316.
    [167].Fuhrman B, Oikinine J, Keidar S, Ben-Yaish L, Kaplan M, Aviram M. Increased uptake of LDL by oxidized macrophages is the result of an initial enhanced LDL receptor activity and of further progression oxidation of LDL. Free Radic Biol Med,1997,23:34-46.
    [168]. Rozenberg O, Shih DM, Aviram M. Human serum paraoxonase (PON1) decreases macrophage cholesterol biosynthesis:a possible role for its phospholipase-A2 activity and lysophosphatidylcholine formation. Arterioscler Thromb Vasc Biol,2003,23:461-467.
    [169]. Rosenblat M, Vaya J, Shih D, Aviram M. Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells:a possible role for lysophosphatidylcholine. Atherosclerosis,2005,179(1):69-77.
    [1].Repetto R, Balia SS. Pesticides and the immune system:the public health risks. Cent Eur J Public Health,1996,4(4):263-265.
    [2].Furlongc E, Li WF, Richter RJ. Genetic and temporal determinants of pestici-desensitivity:Role of paraoxonase (PON1). Neuro-toxicology,2000,21(4): 91-100.
    [3].吴伟,孙丽霞,王伟.急性重症有机磷中毒的心脏损害.中国全科医学,2002,7(2):80-82.
    [4].Karki P, Ansari JA, Bhandary S, Koirala S. Cardiac manifestations of acute carbamate and organophosphate poisoning. Singapore Med J,2004,45(8):385-389.
    [5].Yavuz Y, Yurumez Y, Ciftci IH, Sahin O, Saglam H, Buyukokuroglu M. Effect of diphenhydramine on myocardial injury caused by organophosphate poisoning. Clin Toxicol,2008,46(1):67-70.
    [6].何伟明.急性有机磷农药中毒发生心率失常51例临床分析[J].浙江实用医学,2002,7(2):80-82.
    [7]Kose A, Gunay N, Yildirim C, Tarakcioglu M, Sari I, Demiryurek AT. Cardiac damage in acute organophosphate poisoning in rats:effects of atropine and pralidoxime. Am J Emerg Med,2009,27(2):169-175.
    [8].Marosi G, Karcsu S, Toth L, Ivan J. Mitochondrial calcium sequestration in myocardial cells in experimental acute organic phosphate ester (dimethoate) poisoning. Morphol Igazsagugyi Orv Sz,1987,27(2):81-86.
    [9].Gohel DR, Oza JJ, Panjwani SJ, Gajjar PP. Organophosphate compound poisoning and cardiac toxicity. J Assoc Physicians India,1996,44(4):287.
    [10].胡云平,周志俊,孙运光.乐果对培养乳鼠心肌细胞的毒作用.卫生毒理学杂志,2000,14(4):209-211.
    [11].Yen DH, Yen JC, Len WB. Spectral changes in systemic arterial pressure signals during acute mevinphos intoxication in the rat. Shock,2001,15(1):35-41.
    [12].Abraham S, Oz N, Sahar R, Kadar T. QTc prolongation and cardiac lesions following acute organophosphate poisoning in rats. Proc West Pharmacol,2001, 44(1):185-186.
    [13].Bataillard A, Sannajust F, Yoccoz D. Cardiovascular consequences of organophosphorus poisoning and of antidotes in conscious unrestrained rats. Pharmacol Toxicol,1990,67(2):27-35.
    [14].Gordon BJ, Padnos BK. Prolonged elevation in blood pressure in the unrestrained rat exposed to chlorpyrifos. Toxicol,2000,146 (1):1-13.
    [15].Lim SL, Sim MK, Loke WK. Acetylcholinesterase-independent action of diisopropyl-flurophosphate in the rat aorta. Eur J Pharmacol,2000,404(3):353-359.
    [16].Boutsiouki P, Clough GF. Modulation of microvascular function following low-dose exposure to the organophosphorous compound malathion in human skin in vivo. J Appl Physiol,2004,97(3):1091-1097.
    [17].McCain WC, Wilcke J, Lee JC, Ehrich M. Effect of cyclic phenyl saligenin phosphate and paraoxon treatment on vascular response to adrenergic and cholinergic agents in hens. J Toxicol Environ Health,1995,44(2):167-187.
    [18].Preston E, Heath C. Depression of the vasomotor system in rabbits poisoned with an organophosphate anticholinesterase. Arch Int Pharmacodyn Ther,1972,200(2): 245-254.
    [19].李鹏,刘立英,周寿红.对氧磷对血管内皮细胞的损伤作用及机制探讨.中国动脉硬化杂志,2007,15(5):666-670.
    [20].Carpentier P, Delamanche IS, Le Bert M, Blanchet G, Bouchaud C. Seizure-related opening of the blood-brain barrier induced by soman:possible correlation with the acute neuropathology observed in poisoned rats. Neurotoxicology, 1990,11(3):493-508.
    [21].Prozorovskii VB, Skopichev VG. Finding cholinesterase in endotheliocytes: cholinesterase inhibition by organophosphorus compounds leads to endotheliocyte deformation. Eksp Klin Farmakol,2005,68(3):64-67.
    [22].Song X, Pope C, Murthy R, Shaikh J, Lal B, Bressler JP. Interactive effects of paraoxon and pyridostigmine on blood-brain barrier integrity and cholinergic toxicity. Toxicol Sci,2004,78(2):241-247.
    [23].Roth A, Zellinger T, Arad M. Organophosphae and the heart. Chest,1993, 103(7):576-582.
    [24].Anand S, Singh S, Nahar Saikia U, Bhalla A, Paul Sharma Y, Singh D. Cardiac abnormalities in acute organophosphate poisoning. Clin Toxicol,2009,47(3): 230-235.
    [25].El-Naggar Ael-R, Abdalla MS, El-Sebaey AS, Badawy SM. Clinical findings and cholinesterase levels in children of organophosphates and carbamates poisoning. Eur J Pediatr,2009,168(8):951-956.
    [26].Joosen MJ, van Helden HP. Correlations between acetylcholinesterase inhibition, acetylcholine levels and EEG changes during perfusion with neostigmine and N6-cyclopentyladenosine in rat brain. Eur J Pharmacol,2007,555(2-3):122-128.
    [27].Li J, Brezenoff HE, Tracs NC. Identification of Pressor regions activated bycentval cholinergic stimulation in rat brain. Rur J Pharmacol,1997,33(2): 227-233.
    [28].Petrianu G, Rufer R. Beta-blockade or magnesia in organophosphorus insecticide poisoning. Anaesth Intensive Care,1992(20):538-539.
    [29].Georg P, Toomes LM, Petroianu A. Control of blood pressure, heart rate and haematocrit during high-dose intravenous paraoxon exposure in mini pigs. J Appl Toxicol,199,18:293-298.
    [30].Saadeh AM, Farsakh VA, AL-Ali MK. Cardiac manifestations of acute carbamate and rganophosphate poisoning. Heart,1997,77(1):461-464.
    [31].Roth A, Zellinger T, Arad M. Organophosphae and the heart. Chest,1993(5): 103:576-582.
    [32].Ayub S, Verma J, Das N. Effect of endosulfan and malathion on lipid peroxidation, nitrite and TNF-alpha release by rat peritoneal macrophages. Int Immunopharmacol,2003,3(13-14):1819-1828.
    [33].Kleszczynska H, Sarapuk J, Bielecki K. Physiological activity of some organophosphorus compounds and their effects on the physicochemical properties of model membranes. Folia Microbiol,2000,45(5):204-206.
    [34].Grange MV, Raison D, Bouchaud C. Compared effects of extracellular K+ ions and soman, a neuro toxic, on cerebralastrocyte morphology. An in vitro study. J Submicrosc Cytol Pathol,1996,28(2):151-159.
    [35], Karlsson BM, W aara LM, F redrik sson SA. The effect of calcium antagonist nimodip ine on the detoxification of soman in anaesthetized rabbits. J Pharm Pharmaco,1997,49 (3):296-300.
    [36].Katz LC, Marquis JK. Modulation of central muscarinic receptor binding in vitro by ultra low levels of the organophosphate paraoxon. Toxicol Appl Pharmacol,1989, 101(8):114-123.
    [37].Katz EJ, Cortes VI, Eldefrawi ME, Eldefrawi AT. Chlorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor:relevance to their toxicities. Toxicol Appl Pharmacol,1997,146(12):227-236.
    [38].Howard MD, Pope CN. In vitro effects of chlorpyrifos, parathion, methyl parathion and their oxons on cardiac muscarinic receptor binding in neonatal and adult rats. Toxicol,2002,170 (122):1-10.
    [39].Silveira CL, Eldefrawi AT, Eldefrawi ME. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases. Toxicol Appl Pharmacol,1990,103(8):474-481.
    [40].Karki P, Ansari JA, Bhandary S, Koirala S. Cardiac and electrocardiographical manifestations of acute organophosphate poisoning. Singapore Med J,2004,45(8): 385-389.
    [41].Saadeh AM, Farsakh VA, AL-Ali MK1 Cardiac manifestations of acute carbamate and rganophosphate poisoning. Heart,1997,77(4):461-464.
    [42].Gralewicz S. Possible consequences of acetylcholinesterase inhibition in organophosphate poisoning. Discussion continued. Med Pr,2006,57(3):291-302.
    [43].Zhou JF, Xu GB, Fang WJ. Relationship between Acute Organophosphorus Pesticide Poisoning and Damages Induced by Free Radicals. Biomed Environ Sci, 2002,15(2):177-186.
    [44].Gunay N, Kose B, Demiryurek S, Ocak AR, Erel O, Demiryurek AT. Effects of a selective Rho-kinase inhibitor Y-27632 on oxidative stress parameters in acute dichlorvos poisoning in rats. Cell Biochem Funct,2008,26(7):747-754.
    [45].Cankayali I, Demirag K, Eris O, Ersoz B, Moral AR. The effects of N-acetylcysteine on oxidative stress in organophosphate poisoning model. Adv Ther, 2005,22(2):107-116.
    [46].胡敏,刘立英,熊小明,钟才高,陈双秀,吴晋湘.敌百虫促高脂饮食致兔动脉粥样硬化作用研究.中国药理学通报.2006,22(4):510-511.
    [47].Hernandez AF, Mackness B, Rodrigo L, Lopez O, Pla A, Gil F, Durrington PN, Pena G, Parron T, Serrano JL, Mackness MI. Paraoxonase activity and genetic polymorphisms in greenhouse workers with long term pesticide exposure. Hum Exp Toxicol,2003,22(11):565-574.
    [48].Rozenberg O, Rosenblat M, Coleman R, Shih DM, Aviram M. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress:studies in PON1-knockout mice. Free Radic Biol Med,2003,34(6):774-784.
    [49].李荣霏,谢利,郭鹏程,朱炳阳,黄红林.敌百虫对兔食饵性动脉硬化加速作用.现代生物医学进展.2008,8(8):1422-1424.
    [50].熊小明,周寿红,胡敏,刘立英.敌百虫加重高脂饮食致兔动脉粥样硬化作用与降低对氧磷酶活性有关.中国动脉硬化杂志,2009,17(3):172-176.
    [51].Rousseau JM, Ruttimann M, Brinquin L. Acute neurotoxic organophosphate poisoning:insecticides and chemical weapons. Ann Fr Anesth Reanim,2000,19(8): 588-598.
    [52].Kass R, Kochar G, Lippman M. Adult respiratory distress syndrome from organophosphate poisoning.. Am J Emerg Med,1991,9(1):32-33.
    [53].Tuovinen K, Kaliste-Korhonen E, Raushel FM, Hanninen O. Success of pyridostigmine, physostigmine, eptastigmine and phosphotriesterase treatments in acute sarin intoxication.Toxicology,1999,134 (223):169-178.
    [54].Yen DH, Chan JY, Huang CI, Lee CH, Chan SH, Chang AY. Coenzyme q10 confers cardiovascular protection against acute mevinphos intoxication by ameliorating bioenergetic failure and hypoxia in the rostral ventrolateral medulla of the rat. Shock,2005,23(4):353-359.
    [55].Li FC, Tseng HP, Chang AY. Neuroprotective role of coenzyme Q10 against dysfunction of mitochondrial respiratory chain at rostral ventrolateral medulla during fatal mevinphos intoxication in the rat. Ann N Y Acad Sci,2005,1042(15):195-202.
    [56].Chan JY, Chan SH, Dai KY, Cheng HL, Chou JL, Chang AY. Cholinergic-receptor-independent dysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembrane potential and ATP depletion underlie necrotic cell death induced by the organophosphate poison mevinphos. Neuropharmacology,2006,51(7-8):1109-1119.
    [57].Kaur P, Radotra B, Minz RW, Gill KD. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicology,2007,28(6):1208-1219.
    [58].Mazumder PK, Gupta AK, Kaushik MP, Kumar D, Dube SN. Cardiovascular effects of an organophosphate toxin isolated from ptychodicus brevis. Biomed Environ Sci,1997,10(1):85-92.
    [59].Collinson IR, Skehel JM, Fearnley IM, Runswick MJ, Walker JE. The F1F0-ATPase complex from bovine heart mitochondria:the molar ratio of the subunits in the stalk region linking the F1 and F0 domains. Biochemistry,1996,35 (38):12640-12646.
    [60].Tracey KJ. Trends in shock research:tumor necrosis factor ccachectin in the biology of septic shock syndrome. Circ Shock,1991,35(2):123.
    [61].张在其,梁仁,黄韬,杨华喜,彭巍,李峰,尹芙蓉,易高,王承志.急性有机磷农药中毒血管活性物质及炎性介质的动态变化及其临床意义.中国危重病急救医学,2003,15(12):762-763.
    [62].Monnet-Tschudi F, Zurich MG, Honegger P. Neurotoxicant-induced inflammatory response in three-dimensional brain cell cultures. Hum Exp Toxicol, 2007,26(4):339-346.
    [63].Doctor BP, Saxena A. Bioscavengers for the protection of humans against organophosphate toxicity. Chem Biol Interact,2005,157-158:167-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700