用户名: 密码: 验证码:
小麦品种陕253α-醇溶蛋白基因的克隆、原核表达及功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦贮藏蛋白的主要类型包括麦谷蛋白(glutenin)与麦醇溶蛋白(gliadin),约占小麦籽粒蛋白质的80%,并共同构成了面筋的主要成分,其数量与比例关系决定着面筋的质量。醇溶蛋白是组成面筋的主要成分之一,约占蛋白质总量的40%~50%,其所具有的品质效应一直是争论的焦点与研究的难点,其原因不仅归结于该类蛋白亚基在分离上的难度,也与该基因家族的多样性及蛋白质空间重构有关。虽然不同学者得出了正负相关的矛盾结论,但大多数的研究结果认为醇溶蛋白降低面团的稳定性。
     本研究根据已知的α-醇溶蛋白基因的两端保守序列来设计特异引物,以基因组DNA为模板通过PCR扩增目的基因,克隆测序后比较分析克隆基因的分子结构及其同源关系;然后利用设计的不扩增信号肽的表达引物,扩增的目的片段,回收的目的片段后与表达载体连接,利用E. coli体外表达α-醇溶蛋白,经柱层析及低温冷冻干燥获得目的蛋白亚基,通过氧化-还原反应将蛋白亚基整合到基础弱筋面粉中,并利用4g粉质仪研究α-醇溶蛋白亚基对面团流变学特性的影响,结果如下:
     1.从强筋小麦品种陕253中克隆得到7条序列,分别命名为α-Agli-1~7,GenBank登录号为GQ891681~ GQ891687,其中α-Agli-3和α-Agli-5为真基因,其余5个基因由于编码区存在提前终止密码子,因此推测为假基因。序列分析表明,α-Agli-3和α-Agli-5的编码区的相似性为97.90%,推导的氨基酸序列的相似性为97.33%,其余5个序列的相似性达到85%以上。从提前终止密码子的分布区域来看,主要分布在重复区。提前终止密码子出现的位点和类型主要有CAA/CAG→TAA和CAA/CAG/GAG→TAG,其使用频率依次为: TAA (66%)> TAG (34%)。
     2.进一步的分析表明,克隆得到的7条序列都具有α-醇溶蛋白基因的典型结构,包括保守的信号肽、N-端重复区、多聚谷氨酰胺I区、N-端非重复区(特征区I)、多聚谷氨酰胺II区和C-端非重复区(特征区II)。重复区具有基本的重复单元PQPQPFP和PQQPY,多聚谷氨酰胺区的主要差异在于长度不同和非谷氨酰胺残基的出现。α-Agli-4,α-Agli-6和α-Agli-7均有6个半胱氨酸残基。α-Agli-1和α-Agli-2分别含有5个和9个半胱氨酸残基,可能是由于移码突变导致的;α-Agli-3和α-Agli-5含有7个半胱氨酸残基,是由于在Uniq domain II区编码第6位点氨基酸的碱基发生C→G转换,导致丝氨酸(Ser)→半胱氨酸(Cys),这一额外的半胱氨酸残基将有可能与相邻储藏蛋白亚基形成一个分子间二硫键,从而参与面筋的聚合。
     3.分析α-Agli-3和α-Agli-5的序列,将α-Agli-5进行了原核表达,根据其编码区序列设计特异的表达引物,扩增目的基因,构建了原核表达载体pET32a-α-Agli-5,将含有重组质粒pET32a-α-Agli-5的阳性克隆经过夜培养转化到表达宿主菌BL21 (DE3)感受态细胞中,经过1mmoL的IPTG诱导,28℃培养6 h ,提取细菌总蛋白上清液,经12 % SDS-PAGE电泳和western blot检测后,发现均产生了一个55 kD大小的蛋白条带,即为表达的目的蛋白,结果与预测的分子量相符。
     4.大量制备表达的目的蛋白,经?KTA purifier 100蛋白层析系统(Amersham Biosciences, NJ)纯化获得目的蛋白,通过氧化-还原反应将亚基整合到基础面粉中,利用4 g粉质仪研究α-醇溶蛋白亚基对面团流变学特性的影响,结果表明α-醇溶蛋白α-Agli-5的添加增强了面筋的弹性但是降低了面筋的强度。
Wheat storage protein mainly included glutenin and gliadin , about 80% of wheat seed protein, and constituted the main ingredient of gluten. Quality of gluten was determined by quantity and scale of glutenin and gliadin. Gliadin was one of the main ingredient of gluten, about 40%~50% of total amount of protein, the quality of effects had been issue and difficulty of research.The reasons was not only to the difficulty of separation, but also with rich diversity of the genes family and reconsitution of the protein space. Though different scholars had severally conflicting conclusion, most of the research results showed that gliadin reduced stability of the dough.
     Specific primers were designed according to conserved ends of the coding region of knownα-gliadin genes, the genomic DNA was a template for PCR, the molecular structure of gene and its kinship were analyzed;Target fragment was PCR with primers of expression of which didn’t PCR signal peptide, then recovered target fragment and was connected with express vector. The subunit ofα-gliadin was expressed by E. coli effectively and was got by purifying, then integrated into the flour by the oxidation reduction reaction, rheological properties were tested by micro 4g farinograph in order to research the effect ofα-gliadin to dough, the results were as follows:
     1. Seven DNA sequences were cloned from a strong gluten wheat variety Shaan 253, namedα-Agli-1~7(GenBank NO. was GQ891681~ GQ891687)respectively, except forα-Agli-3 andα-Agli-5, the remaining five genes were pseudogene of which genetic coding region had stop codons.The sequence analysis showed that the identity ofα-Agli-3 andα-Agli-5 was 97.90%, the remaining five sequences was above 85%. The analysis of the distribution region of stop codons showed that they were mainly in repeated sequence region. The sites and type were CAA/CAG→TAA and CAA/CAG/GAG→TAG,the frequency of each stop codons was TAA (66%)> TAG (34%)of which CAA mutate to TAA was the highest.
     2. Further analysis showed that the seven cloned sequences had typical structure ofα-gliadin genes of which included: a conservative signal peptide, N-terminal repeats, poly-glutamine I region, N-terminal non-repeat region (unique domain I), poly-glutamine II region and C-terminal non-repeat region(unique domain II). Repeated region had basic repeat unit PQPQPFP and PQQPY. The differences of poly-glutamine region were length and appearance of non-glutamine.α-Agli-4,α-Agli-6 andα-Agli-7 had six cysteine residues,α-Agli-1 andα-Agli-2 had five and nine cysteine residues respectively, may be caused by frameshift mutations;α-Agli-3 andα-Agli-5 had seven cysteine residues of which in the unique domain II cysteine was instead of serine due to C→G in the codon of the sixth amino acid, which maybe form intermolecular disulfide bond.
     3. Analyzedα-Agli-3 andα-Agli-5 sequence,α-Agli-5 was expressed in E.coli. Specific expressed primers were designed according to its coding sequence to amplify the target fragment.Prokaryotic expression vector pET32a-α-Agli-5 was constructed, the positive clones of recombinant plasmid pET32a-α-Agli-5 was transformed into expression host strain BL21(DE3)competent cells, after inducting by IPTG of 1mmoL, 28℃6 h culture , supernatant of the total bacterial proteins was extracted then 12% SDS-PAGE electrophoresis and western blot were used to test the product, they both appeared a 55 kD protein band of which was the purpose expression protein, and the results was in accord with the predicted molecular weight.
     4. A large number of expressed protein was prepared and purified by ?KTA purifier 100 protein chromatography system.Purified protein was integrated into the flour by the oxidation reduction reaction, rheological properties were tested by micro 4 g farinograph in order to research the effect ofα-gliadin to dough. The results show that flexibility of gluten increased but strength of gluten decreaded whenα-gliadinα-Agli-5 was added.
引文
陈华萍,龙海,刘千,魏育明,郑有良. 2006.四川小麦地方品种AS1643中α/β-醇溶蛋白基因的序列分析.中国农业科学, 39 (9): 1743~1750
    黄萱,徐子勤,陈立余,王建. 2006.小麦NBS-LRR类抗病基因同源序列的分离与鉴定.分子细胞生物学报, 39 (2): 91~96
    焦明大,韩方普,何孟元,郝水,张延滨,祁适. 1999.八倍体小冰麦及其亲本种子醇溶蛋白和高分子量麦谷蛋白亚基的研究.植物学报, 41: 405~408
    李根英,孟庆华,隋新霞,管延安,黄承彦. 2003.小麦基因克隆研究进展.麦类作物学报, 23(2): 92~96
    李景娟,张正斌,李魏强,徐萍. 2007.六倍体小麦基因克隆方法研究进展.麦类作物学报, 27(2): 349~353
    刘千,龙海,祁鹏飞,魏育明,颜泽洪,郑有良. 2007.小麦新品种“良麦2号”α-醇溶蛋白基因序列分析.农业生物技术学报,15(2): 274~278
    裴玉贺,孙辉,宋希云,晏月明,祭康敏,李巧云,何中虎,刘丽,黄兴峰. 2008.小麦高分子量谷蛋白亚基功能的体外鉴定.作物学报, 34(11): 1910~1915
    蒲至恩,龙海,魏育明,颜泽洪,郑有良. 2008.斯卑尔脱小麦α-醇溶蛋白基因克隆与序列分析.中国农业科学, 41(6): 1845~1850
    桑建利,王玉秀,朱至清. 1992.小麦体细胞无性系种子醇溶蛋白和谷蛋白的变异.植物学报, 34(11): 845~849
    师俊玲,魏益民. 1999.蛋白质与小麦品质关系分析.粮食与油脂, 4: 3~7
    王培,范光年,方仁. 1992.幼穗无性系变异在小麦育种上的应用.作物学报, 18(5): 391~396
    王瑞娟. 2005.小麦低分子量麦谷蛋白基因XYGLuD3-LMWGS1的原核表达和功能验证.陕西杨凌,西北农林科技大学.
    王晓娟,李兴林,王亚馥. 2001.高粱总DNA导入春小麦稳定后代高分子量麦谷蛋白亚基的变化.西北植物学报, 20: 979~983
    王亚馥,陈克明,焦成瑾,周文麟,倪建福. 1995.外源DNA导入小麦后的变异系生物学特性及胚乳蛋白的研究.作物学报, 21: 404~411
    魏益民,李志西,王立宏. 1992.小麦品种籽粒蛋白质品质的研究.西北农林科技大学学报(自然科学版),20 (4): 18~23
    吴丹,高翔,于旭,董剑,赵万春,陈其皎,庞红喜,李哲清. 2009.小麦品种陕253低分子量谷蛋白亚基基因的克隆及原核表达.作物学报, 35(4): 672~678
    夏光敏,向凤宁,周爱芬,王槐,何世贤,陈惠民. 1999.小麦与高冰草属间体细胞杂交获可育杂种植株.植物学报, 41(4): 349~352
    徐兆飞,张惠叶,张定一. 2000.小麦品质及其改良.北京:北京气象出版社
    晏本菊,任正隆. 2001.我国部分小麦新品种(系)的高分子谷蛋白亚基遗传变异分析.四川农业大学学报, 19(4): 380~383
    晏月明,刘广田, Prodanovic S, Zoric D. 1998.小麦醇溶蛋白的遗传与品质改良.麦类作物, 18 (1): 1~4
    张怀刚,陈集贤,胡含. 1997.小麦体细胞无性系Glu-1基因突变体的遗传分析.遗传, 19(1): 23~25
    张怀刚,陈集贤,胡含. 1998.小麦体细胞无性系SDS沉淀值的变异与遗传.西北农业学报, 7(2): l~5
    赵同金,权太勇,夏光敏,陈惠民. 2003.小麦与高冰草体细胞杂种F5胚乳贮藏蛋白和SDS沉降值分析.山东大学学报(理学版), 38(3): 112~116
    朱至清,桑建利,王玉秀,李银心,朱颖民,王培,方仁,范光年,陈玉蓉,翡翠娟. 1992.体细胞无性系变异培育高蛋白小麦种质.植物学报, 34(12): 912~918
    Altpeter F, Vasil V, Srivastava V, Vasil I K. 1996. Intergration and expression of the high molecular weight glutenin subunit 1Ax1 gene into wheat. Nature biotechnology, 14: 1155~1159
    Anderson O D, Litts J C, Greene F C. 1997a. Theα-gliadin gene family.I.characterization of ten new wheatα-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and southern analysis of the gene family. Theoretical and Applied Genetics, 95: 50~58
    Anderson O D. 1991. Characterization of members of a pseudogene subfamily of the wheat alpha-gliadin storage protein genes. Plant Molecular Biology, 16(2): 335~337
    Anderson O D, Greene F C. 1997b. Theα-gliadin gene family.II.DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theoretical and Applied Genetics, 95:59~65
    Anderson O D, Hisa C C, Torres V. 2001. The wheatγ-gliadin genes: characterization of ten new sequences and further understanding ofγ-gLiadin gene family structure. Theoretical and Applied Genetics, 103: 323~330
    Anderson O D, Litts J C, Gautier M F, Greene F C. 1984. Nucleic acid sequence and chromosome assignment of a wheat srorage protein gene. Nucleic Acids Research, 12: 8129~8144
    Andreas G, Schieberle P, Koehler P. 2003. Fractionation and reconstitution of wheat flour effect on dough rheology and baking. European Food Research Technology, 216: 204~211
    Arentz H E H, McAdam S N, Molberg O. 2000. Production of a panel of recombinant gliadins for the of T cell: aetivity in coeliae disease. Gut, 46(1): 46~51
    Barro F, Rooke L, Bekes F, Graps P, Tatham A S, Fido R, Lazzeri P A, Shewry P R, Barcelo P. 1997. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nature biotechnology, 15: 1295~1299
    Bates G W. 1987. Treatment of the donor protoplasts with lethal doses of a mutagen has the additional positive effect of elimination of protoplasts not involved in the fusion. Theoretical and Applied Genetics, 74: 718~726
    Bekes E, Gras P W, Gupta R B, Hickman D R, Tatham A S. 1994. Effects of the high Mr glutenin subunits (1Bx20) on the dough mixing properties of wheat flour. Journal of Cereal Science, 19: 3~7
    Békés F, Gras P W, Gupta R B. 1994. Mixing properties as a measure of reversible reduction and oxidation of doughs. Cereal Chemistry, 71(1): 44~50
    Békés F and Gras P W. 1999. In vitro studies on gluten protein functionality. Cereal Food World, 44: 580~586
    Békés F, Lukow O M, Uthayakumaran S. 2002. Small-scale quality measurements. In: Shewry P R and Lookhart G L, ed.Wheat Gluten Protein Analysis, AACC, St. Paul, MN, 173~198
    Bietz J A. 1987. Genetic and biochemical studies of nonenzymatic endosperm protein. In: Heyne E G, ed. Wheat and Wheat Improvement. Madison: American Society of Agronomy Inc, 215~241
    Bietz J A, Huebner F R, Sanderson J E, Wall J S. 1977. Wheat gliadin homology revealed through N-terminal amino acid sequence analysis. Cereal Chemistry, 54: 1070~1083
    Blackman J A and Payne P I. 1987. Grain quality. In: LUPTON F G H ed. Wheat Breeding-its Scientific Basisi .Chapman and Hall, London, 455~485
    Borja J, Abdalla O, Mujeeb-Kazi A, Ter-Kuile N, Autrique E. 1994. Agronomic evaluation of somaclonal variants from durum wheat cultivars. Agron Abstr. American Society of Agronomy, Madison
    Branlard G and Dardevet M. 1985. Diversity of grain proteins and bread wheat quality: I. correlation between gliadin bands and flour quality characteristics. Journal of Cereal Science, 3: 329~343
    Bushuk W and Zilllnan R R. 1978. Wheat cultivar identification by gliadin electrophoregrams.I. Apparatu- s,method,and nomenclature. Canadian Journal Plant Science, 58: 505~515
    Cheng M, Fry J E, Pang S I, Zhou H, Horinaka C M, Duncan D R, Conner T W, Wan Y. 1997. Genetic transformation of wheat mediated by Agrobacterium tumerfaciens. Plant physiology, 115: 971~980
    Ciaffi M, LeeY K, Tamas L, Gupta R, Skerritt J, Appels R. 1999. The low-molecular-weight glutenin subunit proteins of primitive wheats .III. the genes from D-genome species. Theoretical and Applied Genetics, 98: 135~148
    Clarke B C, Phongkham T, Gianibelli M C, Beasley H, Bekes F. 2003. The characterisation and mapping of a family of LMW-gliadin genes:effects on dough properties and bread volume. Theoretical and Applied Genetics, 106: 629~635
    Colot V, Bartels D, Thompson R, Flavell R. 1989. Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes. Molecular and General Genetics, 216:81~90
    Cooper D B, Sears R G, Lookhart G L, Jones B L. 1986. Heritable somaclonal variation of gliadin proteins of wheat plants derived from immature embro callus culture. Theoretical and Applied Genetics, 71: 784~790
    De Bustos A, Rubio P, Jouve N. 2000. Molecular characterization of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theoretical and Applied Genetics, 100: 1085~1094
    DuPont F M, Vende L W, Encarnacao T, Chan R, Kasarda D D. 2004. Similarities of omega gliadins from Triticum urartu to those encoded on chromosome 1A of hexaploid wheat and evidence for their post-translational processing. Theoretical and Applied Genetics, 108: 1299~1308
    Elmorjani K, Thievin M, Michon T, PopineauY, Hallet J N, Guéguen J. 1997. Synthetic genes specifying periodic polylmers modelled on the repetitive domain of wheat gliadins: conception and expression. Biochemical and Biophysical Research Communications, 239: 240~246
    Evans D and Sharps W. 1983. Singel gene mutation in tomato plants regenerated from tissue culture. Science, 221: 949~951
    Fido R J, Békés F, Gras P W,Tatham A S. 1997. Effects ofα-,β-γ-andω-GLiadins on the dough mixing properties of wheat flour. Journal of Cereal Science, 26: 271~277
    Forde J, Malpica J M, Halford N G, Shewry P R, Anderson O D, Greene F C, MiXin B J. 1985. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum aestivum L.). Nucleic Acids Research, 13: 6817~6832
    Galiba G and Sutka J. 1989. Forst resistance of somaclones derived from Triticum aestivum L. winter calli. Plant breeding, 102: 101~104
    Galili G and Feldman M. 1985. Genetic control of endoperm proteins in wheat. Theoretical and Applied Genetics, 69: 583~589
    Galili G, Levy A A, Feldman M. 1986. Gene-dosage compensation of endosperm proteins in hexaploid wheat Triticum aestivum. Proceedings of the National Academy of Sciences, 83: 6524~6528
    Glimelius K, Fahleson J, Landgren M. 1991. Gene transfer via somatic hybridization in plants. Trends in Biotechnology, 9: 24~30
    Gianibelli M C, Larroque O R, MacRichie F, Wrigley C W. 2001. Biochemical,genetic,and molecular characterization of wheat endosperm proteins.Am.Assoc.Cereal Chem.,Inc.Online review: 1~20
    Gülay M, Simon D, Helen A, Jennifer P, Zena N, Matthew K M, Brian C, Alison S. 2008. Comparison of small-scale and large-scale mixing characteristics: Correlations between small-scale and large-scale mixing and extensional characteristics of wheat flour dough. Journal of Cereal Science, 47: 90~100
    Gupta R B and Shepherd K W. 1993. Production of multiple wheat-rye 1RS translocation stocks and genetic analysis of LMW subunits of glutenin and gliadins in wheat using these stocks. Theoretical and Applied Genetics, 85: 719~728
    Gu Y Q, Coleman D D, Kong X, Anderson O D. 2004a. Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiology, 135: 459~470
    Gu Y Q, Crossman C, Kong X Y, Luo M C, You F V M, Coleman D D, Dubcovsky J, Anderson O D. 2004b. Genomic organization of the complexα-gliadin gene loci in wheat. Theoretical and Applied Genetics, 109: 648~657
    Hisa C C and Anderson O D. 2001. Isolation and characterzation of wheatω-gliadin genes. Theoretical and Applied Genetics, 103: 37~ 44
    Jackson E A, MoreL M H, Sontag S T. 1996. Proposal for combination the classification system of alleles of Gli-1and Gli-3 loci in bread wheat (Triticum aestivum L.). Journal of Genetic Breeding, 50: 321~336
    Kasarda D D and D’Ovidio R. 1999. Deduced amino acid sequenceof an alpha-gliadin gene from wheat (Spelta) includes sequences active in celiac disease. Cereal Chemistry, 76: 548~551
    Kasarda D D, Antran J C, Lew E J L, Nimm C C, Shewry P R. 1983. N-terminal amino acid sequences of ω-gliadins andω-secalins;implications for the evolution of prolamin genes. Biochimical and Biophysical Acta, 747: 138~150
    Kasarda D D, Okita T W, Bernardin J E, Baecker P A, Nimmo C C, Lew E J, Dietler M D, Greene F C. 1984. Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum). Proceedings of the National Academy of Science of USA, 81 (15): 4712 ~ 4716
    Kasarda D D. 1989. Glutenin structure in relation to wheat quality. In:Wheat is unique. Eds. Pomeranz Y Am.Assoc.Cereal Chemistry, 277~302
    Kasarda D D, Bernardin J E, Nimmo C C. 1976. Wheat proteins in Advances in Cereal Science and Technology.Eds.PromeranzY.St.PauL, MN.Am.Assoc.Cereal Chemistry, 1: 158~236
    Khatkar B S, Fido R J, Tatham A S, Schofield J D. 2002a. Functional properties of wheat gliadins .I. effects on mixing characteristics and bread making quality. Journal of Cereal Science, 35: 299~306
    Khatkar B S, Fido R J, Tatham A S, Schofield J D. 2002b. Functional properties of wheat gliadins.II. effects on dynamic rheological properties of wheat gluten. Journal of Cereal Science, 35: 307 ~313
    Lafiandra D, Kasarda D D, Motris R. 1984. Chromosomal assignment of genes coding for the wheat gliadin protein components of the cultivars‘Cheyenne’and‘ChineseSpring’by two-dimensional(two-PH)electrophoresis. Theoretical and Applied Genetics, 68: 531~539
    Larkin P and Scowcroft W. 1981. Somaclonal variation-a novel source of variability from cell cultures forplant improvement. Theoretical and Applied Genetics, 60: 197~214
    Larkin P, Ryan S, Brettel J, Scowcroft W. 1984. Heritable somaclonal variation in wheat. Theoretical and Applied Genetics, 67: 443~445
    Lee Y K, Békés F, Gras P, Ciaffi M, Morell M K,Appels R.1999.The low-molecular-weight glutein subunit proteins of primitive wheats: IV. Functional properties of products from indidual genes. Theoretical and AppLied Genetics, 98: 149~155
    Lee Y K, Ciaffi M, Appels R, Morell M K. The low-molecular-weight glutenin subunit proteins of primitive wheats. II. The genes from A-genome species. Theoretical and Applied Genetics, 1999b, 98: 126~134
    Leon A, Rosell C M, de Barber C B. 2003. A differential scanning calorimetry study of wheat proteins. European Food Research Technology, 217: 13~16
    Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, RouzéP, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1): 325~327
    Lew E J L, Kuzrnicky D D, Kasarda D D. 1992. Characterization of low-molecular-weight glutenin subunits by reversed-phase high-performance liquid chromatography sodium dodecylsulfate- polyacrylamide gel electrophoresis, and N-terminal amino-acid sequencing. Cereal Chemistry, 69: 508~515
    Liu S W, Gao X, Xia G M. 2008. Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding. Theoretical and Applied Genetics, 116: 325~334
    Maruyama N, Iehise K, KatsubeT, Kishimoto T, Kawase S, Matsumura Y, Takeuchi Y, Sawada T Utsumi S. 1998. Identification of major wheat allergens by means of the Eseherichia coli expression system. European Journal of Biochemistry, 255(3): 739~745
    Masci S, Rovelli L, Kasarda D D, Vensel W H, Lafiandra D. 2002. Characterization and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theoretical and Applied Genetics, 104: 422~ 428
    Masci S, Lew E J L, Lafiandra D, Porceddu E, Kasarda D D. 1995. Characterization of low molecular weight glutenin subunits in durum wheat by reversed-phase high-performance liquid chromatography and N-terminal sequencing. Cereal Chemietry, 72: 100~104
    Metakovsky E V and Branlard G. 1998. Genetic diversity of French common wheat germplasm based on gliadin alleles. Theoretical and Applied Genetics, 96:209~218
    Metakovsky E V, Branlard G, Chernakov V M, Upelniek V P, Redaelli R, Pogna N E. 1997a. Recombination mapping of some chromosome 1A-, 1B-, 1D- and 6B-controlled gliadins and low-molecular weight glutenin subunits in common wheat. Theoretical and Applied Genetics, 94: 788~795
    Metakovsky E V, Annicchiarico P, Boggini G, Pogna N E. 1997b. Relationship between gliadin alleles and dough strength in Italian bread wheat cultivars. Journal of Cereal Science, 25: 229~236.
    Müller S W and Wieser H 1995. The location of disulphide bonds inα-type gliadins. Journal of Cereal Science, 22: 21~27
    Okita T W, Cheesbrough V, Reeves C D. 1985. Evolution and heterogeneity of the alpha-/beta -type and gamma-type gliadin DNA sequences. Journal of Biological Chemistry, 260 (13): 8203~8213
    Orenbro J, Nylander T, Eliasson A C, Shewry P R, Tatham A S, Gilbert S M. 2001. Adsorption of the high molecular weight glutenin subunit 1Dx5 compared to the 58 kDa central repetitive domain and α-gliadins. Journal of Cereal Science, 34:141~150
    Orenbro J, Nylander T, Eliasson A C, Shewry P R, Tatham A S, Gilbert S M. 2003.The behavior of the high molecular-weight glutenin subunit 1Dx5, the 58 kDa central repetitive domain andα-gliadins at the air-aqueous interface. Journal of Cereal Science, 38: 147~156
    Osborne T B. 1924.The Vegetable Proteins. London,Longmans,Green Payne P I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review Plant Physiology and Plant Molecular Biology, 38: 141~153
    Payne P I, Jackson E A, Holt L M, Law C N. 1984. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1A and1B in wheat. Theoretical and Applied Genetics, 67: 235~243
    Pena R J, Zarco-Hernandez, Mujeeb-Kazi. 1995. Glutenin subunit compositions and bread making quality characteristics of synthetic hexaploid wheat derived from Triticum turgidum X Triticum tauschii(coss.) schmal crosses. Journal of Cereal Science, 21: 15~23
    Porceddu E, Turchetta T, Masci S, D’Ovidio R, Lafiandra D, Kasarda D D, Impiglia A, Nachit M M. 1998. Variation in endosperm protein composition and technological quality properties in durum wheat. Euphytical. 100: 197~205
    Pratt K A, Madgwick P J, Shewry P R. 1991. Expression of a wheat gliadin protein in yeast (Saccharomyc- es cerevisiae). Journal of Cereal Science, 14: 223~229
    Qi P F, Yue Y W, Long H, Wei Y M, YanZ H, Zheng Y L. 2006a. Molecular characterization ofα-gliadin genes from wild emmer wheat(Triticum dicoccoides) . DNA Sequence, 17(6): 415~421
    Qi P F, Wei Y M, Yue Y W, Yan Z H, Zheng Y L. 2006b. Biochemical and molecular characterization of gliadins. Molecular Biology . 140:713~723
    Rafalski J A. 1986. Structure of wheat gamma-gliadin genes. Gene, 43: 221~229
    Rath C R, Gras P W, Wrigley C W, Walker C E. 1990. Evoluation of dough properties from two grams of flour using the Mixograph principle. Cereal Foods World , 35: 572~574
    Rogers W J and Miller T E. 1997. Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss.ssp. thaoudar at Glu-A1 encoding two high molecular weight subunits of glutenin. Euphytica, 93: 19~29
    Romanova Y A, Gubareva N K, Konarev A V. 2001. Analysis of gliadin polymorphism in a Triricum spelta L.collection. Russian Journal of Genetic, 37(9): 1054~1060
    Rombauts S, Déhais P, Van Montagu M, RouzéP. 1999. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research. 27(1): 295~296
    Scheets K and Hedgcoth C. 1989. Expression of wheat gamma-gliadin in Saccharomyces cerevisiae from a yeast Adh1 promoter. Journal of Agricultural and Food Chemistry, 37: 829~833
    Schofield J D, BottomLey R C, Timms M F, Booth M R. 1983. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. Journal of Cereal Science, 1: 241~253
    Shewry P R and Halford N G. 2002. Cereal grain storage proteins:structures,properties and role in grain utilization. Journal of Experimental Botany, 53: 947~958
    Shewry P R, Napier J A, Tatham A S. 1995. Grain storage proteins:structures and biosynthesis. The PlantCell, 7: 945~956
    Shewry P R, Halford N G,Lafiadra D. 2003. Genetics of wheat gluten proteins. Advances in Genetics, 49: 111~184
    Shewry P R, Tatham A S, Lazzeri P. 1997. Biotechnology of wheat quality. Journal of the Science of Food and Agriculture, 73: 397~406
    Sigarava M A and Earle E D. 1997. Direct transfer of a cold-tolerant Ogura male-sterile cytoplasm into cabbage (Brassica oleracea ssp. capitata) via protoplast fusion. Theoretical and Applied Genetics, 94: 213~220
    Sozinov A A and Poperelya F A. 1980. Genetic classification for prolamines and its use for plant breeding. Annals Technology of Agriculture, 29: 229~245
    Suchy J, Lukow O M, Ingelin M E. 2000. Dough miroextensibility method using a 2g Mixograph and a texture analyzer. Cereal Chemistry, 77: 39~43
    Symillides Y, Henry Y, De Buyser. 1995. Analysis of Chinese Spring regenerants obtained from short- and long-term wheat somatic embryogenesis. Euphytica, 82: 263~268
    Tatham A S and Shewry P R. The S-poor prolamins of wheat,barley and rye. Journal of Cereal Science, 1995, 22: 1~16
    Uthayakumaran S, Tomoskozi S, Tatham A S, Savage A W J, Gianibelli M C, Stoddard F L, Bekes F. 2001. Effects of gliadin fractions on functional properties of wheat dough depending on molecular size and hydrophobicity. Cereal Chemistry, 78(2): 138~141
    Van Herpen T W, Goryunova S V, Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk M F, Veelen P A, Koning F, van Soest L J, Vosman B, Bosch D, Hamer R J, Gilissen L J, Smulders M J. 2006. alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomies, 7: 13
    Vasil V, Castillo A M, Fromm M E, Vasil I K. 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology, 10: 667~674
    Viekers C E, Xue G, Gresshoff P M. 2006. A novel cis-acting element,ESP,contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Molecular Biology, 62(1-2): 195~214
    Wan Y, Wang D, Shewry P R, Halford N G. 2002. Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrica. Theoretical and Applied Genetics, 104: 828~839
    Wang H Y, Wei Y M, Yan Z H, Zheng Y L. 2007. Isolation and analysis ofα-gliadin gene coding sequences from Triticum durum. Scientic Agricultura Sinica, 6(1): 25~32
    Weegels P L, Marseille J P, Bosveld P, Hamer R J. 1994. Large-scale separation of gliadins and their bread making quality. Journal of Cereal Science, 20: 253~264
    Weir B, Gu X, Wang M B, Upadhyaya N, Elliott A R, Brettell R. 2001. Agrobacterium tumefaciens- medidated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Journal of Austrilian plant physiology, 28: 807~818
    Woychik J H, Boundy J A, DimLer R J. 1961. Starch gel-electrophoresis of wheat gluten proteins with concentrated urea. Archives of Biochemistry and Biophysics, 94: 477~482
    Wu H, Sparks C, Amozh B, Jones H D. 2003. Factors influencing successful Agrobacterium-mediatedgenetic transformation of wheat. Plant cell reports, 21: 659~668
    Xia G M, Li Z Y, He C X, Chen H M, Richard B. 1999. Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumerfaciens. Acta phytophysiologica sinica, 25: 22~28
    Xia G M, Xiang F N, Zhou A F, Wang H, He S X, Chen H M. 2003. Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevski. Theoretical and Applied Genetics, 107: 299~305
    Xue Z Y, Zhi D Y, Xue G P, Zhang H, Zhao Y X, Xia G M. 2004. Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant science, 167: 773~779
    Yuan Z W, Chen Q J, Zhang L Q, Yan Z H, Zheng Y L , Liu D C. 2009. Molecular characterization of two silenced y-type genes for Glu-B1 in Triticum aestivum ssp. yunnanese and ssp. tibetanum. Journal of Integrative Plant Biology, 51(1): 93~99
    Zhou A F, Xia G M, Zhang X. 2001. Analysis of chromomal and organellar DNA of somatic hybrids between Triticum aestivum and Haynaldia villosa. Schur Molecular Genetic genomics, 265: 387~393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700