用户名: 密码: 验证码:
小麦抗白粉病基因Pm6、Pm21、Pm23RGAP标记的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究中,结合小麦抗性鉴定结果,选择河南省麦区具有良好抗病性,含不同抗白粉病基因的13个小麦品系,同时选感病品种Chancellor作为对照。根据抗病基因保守序列,合成7对RGA引物,进行RGAP分析。
     通过RGAP引物的筛选,发现引物R11R/R11F在含有Pm6基因的Timgalen中扩增出1102bp的多态性片段C2,在感病品种Chancellor和含其它抗白粉病基因品系中则扩增不出该片段。对该片段进行克隆测序,DNA序列分析发现,C2与Genbank中的小麦抗叶锈病基因Lr10(序列登录号为AY270159.1)、小麦中的抗病基因类似序列RGA2(序列登录号为AF326781.1)、小麦NBS-LRR类蛋白mRNA序列(序列登录号为AY084050.1),有较高的相似性。C2推定的蛋白质保守区域分析,结果表明,C2的氨基酸序列包含抗病基因的类似序列,有1个不完整的核苷酸结合位点(NB-ARC)和2个亮氨酸重复(LRR)保守结构域。
     进一步对C2做序列延伸,结果向5'端成功延伸852bp,与C2拼接后为1954bp。对拼接序列进行Blast序列分析发现,该片段相对于C2,与相应序列相比DNA类似性升高。氨基酸序列保守区域分析结果表明,拼接序列的NB-ARC区域比C2延伸23个氨基酸,类似性由原来的27.9%提高到35.4%。并且与登录号分别为AAW78913.1、AAK84082.1、AAQ01786.1、XP_483560.1、BAA76281.2和ABA98920.1已知的抗病蛋白序列有较高的类似性。
     利用软件GENSCAN 1.0进行基因预测分析,结果表明13-C2含有2个外显子,编码396个氨基酸,cDNA长1188bp。利用软件Tmpred对13-C2编码序列分析发现该蛋白含有2或3个跨膜螺旋。
     在7对RGAP引物中只有R11R/R11F一对引物,能够在携带Pm21基因的扬麦5/sub6v中扩增出1317bp的多态性片段,在感病品种Chancellor和其它抗白粉病基因载体品系中则扩增不出该片段,对该多态性片段回收、克隆、测序结果进行Blast分析,发现C3第1-199核苷酸、第520-792核苷酸两个区域,与Genbank中的已知序列有较高的类似性,这些序列中均含有抗性蛋白的保守区域。例如:与小麦抗叶锈病基因Lr10的序列(AY270159.1)比较结果显示,有两区域的类似性达89%和86%。发现C3的氨基酸序列包含抗病基因的类似序列,有1个不完整的核苷酸结合位点(NB-ARC)。并与已知的抗性蛋白序列有一定的类似性。
     C3列向3'延伸长度为387bp,向5'延伸长度为1028bp,与C3拼接后长达2562bp。对拼接序列13-C3进行Blast分析,发现其第20-699、824-1133、1451-1723、核苷酸三个区域,与Genbank中的已知序列Y14573.1、AF326781.1、AY270159.1、AY084050.1、AY663391.1、AY485643.1有较高的同源性。其中与小麦抗叶锈病基因Lr10序列(AY270159.1),有两个区域类似性分别达87%和89%。拼接序列13-C3的氨基酸保守区域分析结果表明,NB-ARC区域的5'端比C3延伸23个氨基酸,类似性由原来的21.3%提高到29.2%。并且与Genbank中含已知的抗病蛋白序列AAW78913.1、AAK84082.1和AAQ01786.1有较高的类似性
     进一步挑选26个纯合的F_2感抗单株初步验证其连锁性,发现有较高的连锁性。要想实现
Abstract:In this study, we selected thirteen wheat lines carring different powdery mildew resistance genes, which had good resistance in wheat planting zone of henna province, and took the susceptible cultivar chancellor as the control, considering the results of resistance identification. According to the conserved sequence of resistance gene, seven pairs of RGA primers were designed for RGAP analysis.
    a special fragment C2 was amplified by the primer pair R11R/R11F in the Timgulan which carring Pm6 gene through screening the RGAP primers.It didn't appear in other lines tested. This fragment was cloned and sequenced,it was 1102bp. The homology analysis of DNA sequence showed, C2 had higher homology with known sequences in the genebank, such as the sequence of wheat leaf rust resistance gene Lrl0(AY270159.1), Triticum monococcum actin (ACT-1) gene RGA2 (A F326781.1) and Triticum aestivum NBS-LRR-like protein mRNA (AY084050.1). The analysis of inferred protein showed that its amino acid sequence include the analog sequence of resistance gene,an incomplete NB-ARC locus and two LRR sequences.The homology of conserved domain had 27.9% and 45.2% with known resistance protein sequences respectively.
    The 5' end of C2 were successfully extended to 852bp by Tail-PCR technique. The extended sequence became 1954bp.after analying the homology of the fragment, we found its nucleotide domains had higher homology than C2's which compared with known sequences in genebank ;The homology the conserved domains of amino acid arrived at 35.4% from the former 27.9%., The NB-ARC domain of extended sequence had 23 amino acid more than C2, and The extended amino acid sequence have higher homology with known resistance protein sequences. Such as AAW78913.1、 AAK84082.1、 AAQ01786.1、 XP-4835601.1、 BAA76281.2 and ABA 98920.1.
    Forecasting and analysis the jointed sequence 13-C2 by GENSCAN 1.0 TMpred, the results showed that 13-C2 had two exon one is initiation type, and the other is midst type, the forecasting peptide chain composed of 396 amino acid, and the cDNA length is 1188bp which have two or three helixes spanning velum.
    The primer pair R11R/R11F can amplify a special fragment C_3 in the Yangmai
引文
[1] 陈松柏,蔡一林,周荣华,贾继增。小麦抗白粉病基Pm4的STS标记。西南农业大学学报,2002,24:231-234。
    [2] 陈夕军,周益军,徐敬友,范永坚,童蕴慧.利用RGA-PCR方法进行水稻抗瘟基因分子标记[J].扬州大学学报(农业与生命科学版),2004,25(3):55-59。
    [3] 丁海,宛煜嵩,朱美霞,方宣钧.大豆抗病基因同源序列的克隆与分析[J].分子植物育种,2003.1(2):217-223.。
    [4] 段霞瑜,周益林,盛宝钦,等。我国主要麦区小麦白粉病毒性现状[J].植物保护21世纪展望[M].北京:中国科技出版社,1998。
    [5] 姜丽,郑先武,张小红,韩建民,董金皋,翟文学.一个水稻重复序列的分析与定位[J].遗传,2003,25(6):691-694。
    [6] 贾继增.分子标记种质资源鉴定和分子育种。中国农业科学,1996,29(4):1-10。
    [7] 解超杰,杨作民,孙其信。小麦抗白粉病基因。西北植物学报 2003,23(5):822-829
    [8] 解超杰,倪中福,孙其信等,利用小麦微卫星标记定位一个来自野生二粒小麦的抗白粉病基因,遗传学报,2001,28(11):1034~1039。
    [9] 李春来,张怀渝.植物抗病基因同源序列(RGA)研究进展[J].分子植物育种,2004,2(6):853-860。
    [10] 刘红彦,何文兰,杨共强,宋玉立,小麦抗白粉病基因的分子标记及标记辅助育种研究进展,河南农业大学学报,2001,35(1):26-31。
    [11] 刘金元,刘大钧,小麦白粉病抗性基因研究进展[J].植物病理学报.2000,30(4):289-295。
    [12] 刘金元,陶文静,刘大钧,陈佩度,李万隆,向齐君,段霞瑜。小麦-簇毛麦易位系6VS/6VAL中6VS的遗传传递及其所携带Pm21基因的遗传稳定性分析。植物学报,1999,41:1058-1060。
    [13] 刘金元,陶文静,刘大钧,陈佩度。与小麦抗白粉病基因Pm2紧密连锁的RAPD标记的筛选研究。遗传学报,2000,27(2):139-145。
    [14] 刘万才,邵振润。我国小麦白粉病大区流行的气候因素分析.植保技术与推广,1998,18(1):3-5。
    [15] 刘卫东,王石平.水稻中大麦Mlo和玉米Hml抗病同源序列的分析和定位[J].遗传学报,2002,29(10):875-879。
    [16] 刘文轩,张改平,李锁平,张青海(主编),张振臣,张玲,刘红彦,田云峰,王世杰,郅玉宝,易明林(副主编)。现代生物技术与小麦品种改良。北京:中国科学出版社,2000:205-238。
    [17] 刘君丽,司乃国,解会敏,黄林。小麦白粉病化学防治现状及发展方向。农药,2002,41(4):15-16。
    [18] 秦跟基,李万隆,陈佩度,植物抗病基因结构特征及其类似序列的研究进展。南京农业大学学报 1999,22(s):102-107。
    [19] 齐莉莉,陈佩度,刘大均,周波,张守中,盛宝钦,向齐君,段霞瑜,周益林,小麦白粉病新抗原——Pm21,作物学报,1995,21(3):257-262。
    [20] 邱永春,张书绅,小麦抗白粉病基因及其分子标记研究进展,麦类作物学报,2004,24(2):127-132。
    [21] 盛宝钦,段霞瑜,周益林。栽培防病措施对防治小麦白粉病的重要作用。植物保护学报,1998,25(3):218-222。
    [22] 孙黛珍,王署光,成志芳,小麦抗白粉病分子育种研究进展,山西农业大学学报,2004,02-01999-05。
    [23] 孙雁,王云月,何月秋,朱有勇,2001,水稻抗病基因同源序列多态性与品种鉴定。种子,114(2):1-2,6
    [24] 唐益苗,马有志,李连城,辛志勇.小麦反转录转座子家族鉴定及其转录活性分析[J].科学通报,2005,5:546-551。
    [25] 陶文静,刘金元,刘大均,陈佩度。与小麦抗白粉病基因Pm6紧密连锁的分子标记筛选。遗传学报,1999b,26(6):649-656。
    [26] 王立新,苏爱莲,徐民新,王秀琴,Ueng P P,贾继增。小麦品种复壮30抗白粉病基因RAPD标记的研究。农业生物技术学报,2000,8(4):373-376。
    [27] 王新望,王利军,段霞瑜,周文娟,盛宝钦,朱立煌,张文俊.普通小麦中来自黑麦的抗白粉病Pm20基因的抗谱分析和AFLP定位.科学通报,2001,46:666-669。
    [28] 王石平,张启发.高等植物基因组中的反转录转座子[J].植物学报,1998,40(4):291~297。
    [29] 王子成,李忠爱,邓秀新.植物反转录转座子及其分子标记[J].植物学通报,2003,20(3):287-294。
    [30] 王志坤,秦智伟,丁国华,周秀艳,植物抗病基因同源序列及其研究进展。2004年8月第14卷第4期:80。
    [31] 徐兵强,杜中军,黄俊生,RGA法克隆候选抗病基因的研究进展,分子植物育种。2004.2.3.421—428。
    [32] 谢皓,陈孝,1998.小麦白粉病基因定位和抗性评价研究[J].北京农学院院报,13(3):104-111。
    [33] 易图永,谢丙炎,张宝玺,高必达,2002,植物抗病基因同源序列及其在抗病基因克隆于定位中的应用,生物技术通报,2002,2:16-20。
    [34] 于玲,王莱,牛吉山,陈佩度,2002,植物抗病相关基因分离策略,西北植物学报,22(6):1494-1503。
    [35] 张庆利,刘艳华,李涛,高居荣,王洪刚,小麦抗白粉病基因Pm23的RAPD标记。西北植物学报 2003,23(11):1882-1888。
    [36] 朱美霞,孟艳玲,陈良兵,大豆与棉花抗性基因类似物的同源性比较及其进化分析。安徽农业科学,Journal of Anhui Agri.Sci.2005,33(2):189—192。
    [37] 翟淑梅,孟辉,尹小燕,张举仁,2003,玉米候选抗病基因片断的克隆,山东大学学报(理学版),38(2):97-100。
    [38] 周益林,段霞瑜,盛宝钦,植物白粉病的化学防治进展.农药学报,2001,3(2):12-18。
    [39] 朱振东,贾继增,小麦抗白粉病新基因的发现。博士论文,2003.06
    [40] Bennett F G. Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programs. Plant Pathology, 1984, 33:279-300.
    [41] Bougot Y, Lemoine J, pavoine M T, Barloy D, Doussinault G. Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat. Plant Breeding, 2002, 121:325-330.
    [42] Bowen K L, Everts K L, Leath S. Reduction in yield of winter wheat in North Carolina due to powdery mildew and leaf rust. Phytopathology, 1991, 81:503-511.
    [43] Briggle L W, 1966, Crop Science 6: 459-461.
    [44] Cenci A, D'Ovidio R, Tanzarella O A, Ceoloni C, Porceddu E. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet, 98:448-454.
    [45] Chen X.M., Line R.F., and Leung H., 1998, Genome scanning for resistance-gene analogs in rice, barley, and wheat byhigh-resolution electrophoresis, Theor. Appl. Genet., 97 (3):345 - 55
    [46] Chae YA,Fischbeck G W. Genetic analysis of powdery mildew resistance in wheat cultivar diplomat[J].Zeitschyrift fur Pflanzenzuchtung,1997,83:272-280.
    [47] Collins N.C., Webb CA., Seah S., Ellis SG, Hulbert S.H., and Pryor A., 1998, The isolation and mapping of disease resistance gene analogs in maize, Mol. Plant Microbe Interact., 11 1101:968-178
    [48] Ellingboe A H. Horizontal resistance an artifact of experimental procedure? [J]. Australian plant pathology society Newsletter. 1975.4:44-46.
    [49] Everts K L, Leath S. Effect of early season powdery mildew on development, survival, and yield contribution of tillers of winter wheat. Phytopathology, 1992,82:1273-1278.
    [50] GLICK B R,THOMPSON J E. Methods in plant molecular biology and biotechnology[M]. CRC Press Inc Boca Raton, 1993.
    [51] Hartl L, Weiss H, Zeller F J, Jahoor A. Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat. Theor Appl Genet, 1993, 86:959-963.
    [52] Hartl L, Mohler V, Zeller F J, Hsam S L K, Schweizer G. Identification of AFLP markers closely linked to the powdery mildew resistance gene Pm1c and Pm4a in common wheat (Triticum aestivum L.). Genome, 1999, 42:322-329.
    [53] Hartl L, Weiss H, Stephan U, Zeller F J, Jahoor A. Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet, 1995, 90:601-606.
    [54] He C S,Wan Ping,Qi Z X.Solation and Characterization of Mla-like Genes of Wheat[J].Acta Botanica Sinica,2004,46(6):744-750.
    [55] Hsam S L K, Mohler V, Hartl L, Wenzel G, Zeller F J. Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome T1BL.(?)RS using molecular and biochemical markers. Plant Breeding, 2000, 119:87-89.
    [56] Hsam S L K, Huang X Q, Ernst F, Hartl L, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.).5. Alleles at the Pm1 locus. Theor Appl Genet, 1998, 96:1129-1134.
    [57] Hsam S L K, Huang X Q, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 6. Alleles at the Pm5 locus. Theor Appl Genet, 2001, 102:127-133.
    [58] Hautea R, Coffman W, Sorrels M, Bergstron G. Inheritance of partial resistance to powdery mildew in spring wheat. Theor Appl Genet, 1987, 73:609-615.
    [59] Huang X Q, Hsam S L K, Zeller F J. Identification of powdery mildew resistance genes in Common wheat (Triticum aestivum L. em. Thell.): IX. Cultivars, landraces and breeding lines grown in China. Plant Breeding, 1997a, 116:233-238.
    [60] Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of genes for powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.) 4. Gene Pm24 in Chinese landrace Chiyacao. Theor Appl Genet, 1997b, 95:950-953.
    [61] Huang X Q, Hsam S L K, Zeller F J, Wenzel G, Mohler V. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet, 2000a, 101:407-414.
    [62] Huang X Q, Wang L X, Xu M X, Roder M S. Microsatellite mapping of the powdery midew resistance gene Pm5e in common wheat (Triticum Awstevum L. em. Thell.). Theor Appl Genet, 2003, 106:858-865.
    [63] Jarve K, Peusha H O, Tsymblova J, Tamm S, Devos K M, Enno T M. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome, 2000, 43:377-381.
    [64] Jia J, Devos K M, Chao S et al. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops Speltoides to wheat. The practical and Applied Genetic, 1996,92(5):559-565.
    [65] KAWCHUK L M, HACHEY J, LYNCH D R. Development of sequence characterized DNA marker slinked to a dominant verticillium wilt resistance gene in tomato[J]. Genome, 1998,41:91-95.
    [66] Keller M, Keller B, Schachermayr G, Winzeler M, Schmid J E, Stamp P, Messmer M M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat ×spelt population. Theor Appl Genet, 1999, 98:903-912.
    [67] Lebsock K L, Briggle L E. Gene Pm5 for resitance to Erysiphe graminis f. sp. Tritici in Hope wheat. Crop Sci, 1974, 14:561-563.
    [68] Li L A,Ying K X,Hua Z R,Ying M Z,Zeng J J.Isolation and characterization of Mlo and NBS_LRR_Like Gene Sequences in Wheat[J].Acta Botanica Sinica,2003,45(4):472-478.
    [69] Ling P and Chen X M. Construction of a hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome library for cloning genes for stripe rust resistance[J]. Genome, 2005, 48(6): 1028-1036.
    [70] Liu Z, Sun Q, Ni Z, Yang T. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding, 1999, 118:215-219.
    [71] Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang T M. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat origination from wild emmer. Euphytica, 2002, 123:21-29.
    [72] Ma Z Q, Sorrells M E, Tanksley S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3 and Pm4 in wheat. Genome, 1994, 37:871-875.
    [73] Manninen Q, Kalendar R, Robinson J, Schyknab A H. Application of Bare-lretrotransposon markers to the mapping of a major.
    [74] Mclntosh RA. Catalog ofgene symbols for wheat:2003 Supplement.
    [75] McIntosh R A. Genetic and Cytogenetic studies involving Lr18 resistance to Puccinia recondite. In:Sakamoto S (Ed). Proc 6th Int Wheat Genet Symp,1983, pp777-783. Kyoto, Japan..
    [76] McIntosh R A, Devos K M, Gale M D, Dubcovsky J, Rogers W J. Catalogue of gene symnols for wheat:2003 Supplement.
    [77] Mohler V, Hsam S L K, Zeller F J, Wenzel G. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breeding, 2001,120:448-450.
    [78] Mullis K B, Faloona F. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Meth Enzymol, 1987, 155:335-350.
    [79] Peusha H, Hsam S L K, Zeller F J. Chromosomal location of powdery mildew resistance genes in common wheat (Triticum aestivum L. em Thell.). 3. Gene Pm22 in cultivar Virest. Euphytica, 1996, 91:149-152.
    [80] Qi L, Cao M, Chen P, Li W, Liu D. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome, 1996, 39:191-197.
    [81] Quint M, Mhaljevic R, Dussle C M, et al. Development of RGA—CAP markers and genetic mapping of candidate genes fox sugarcane mosaic virus resistance in maize[J]. Theor Appl Genet,2002,105:355-363.
    [82] Roberts J, Caldwell R. General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici. 'Knox' wheat. Phytopathology, 1970, 60:1310.
    [83] Roder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998b, 149:2007-2023.
    [84] Roder M S, Korzun V, Gill B S, Ganal M W. The physical mapping of microsatellite markers in wheat. Gonome, 1998a, 41:278-283
    [85] Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: Introgrssion from wild emmet into common wheat and RFLP-based mapping, Euphytica, 2000, 115:121-126.
    [86] Rouse D I,Nilson R R, Mackenzie D R, et al.Components of rate teducing resistance in seedling of four wheat cultivars and parasitic firness in six isolates of Eryphe graminis f.sp.Tritici.[J].Phytopathology,1980,70:1097-1100.
    [87] Shaner G, Finney R. Inheritance of slow-mildewing resistance in wheat. Proc Am Phytopathology Soc, 1975, 3:49.
    [88] Shi A N, Leath S, Murphy J P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopatology, 1998, 88:144-147.
    [89] Shi Z X, Chen X M, Line R F, Leung H, and Wellings CR. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust[J]. Genome, 2001,44:509-516.
    [90] Singrun C H, Hsam S L K, Hartl L, Zeller F J, Mohler V. 2003. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet, 2003, 106:1420-1424.
    [91] Sourdille P, Robe P, Tixier M H, Doussinault G, Pavoine M T, Bernard M. Location of Pm3g, a powdery mildew resistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica, 1999, 110:193-198.
    [92] Tikunov Yu M, Khrustaleva L I , Karlov G I. Application of ISSR markers in the genus Lycopersicon[J]. Euphytica,2003 ,131 :71-80.
    [93] Tosa Y, Tokunaga H, Ogura H. A gene involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome, 1987, 29:850-852.
    [94] Tosa Y, Tokunaga H, Ogura H. Identification of a gene for resistance to wheatgrass powdery mildew fungus in the common wheat cultivar Chinese Spring. Genome, 1988, 30:612-614.
    [95] Tosa Y, Sakai K. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus. Genome, 1990, 33: 225-230.
    [96] u X Y, Ohm H W, Dweikat I. Identification of RAPD markers linked to the gene Pml for resistance to powdery mildew in wheat. Theor Appl Genet, 1997, 94:832-840.
    [97] Wang X Y, Qi Z J, Ma Z Q, Chen P D, Liu D J. Identification of RAPD markers tightly linked to wheat powdery mildew resistance gene Pm6. Acta Genetica Sinica, 2000, 27(12):1072-1079.
    [98] Zeller F J, Stephan U, Lutz J. Present status of wheat powdery mildew resistance genetics. Proc 8th Inter Wheat Genet Symp (Li ZS and Xin ZY eds), Beijing, China. 1993, pp929-931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700