用户名: 密码: 验证码:
罗汉果二倍体及四倍体遗传变异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗汉果Siraitia grosvenorii (Swingle) C. Jeffrey隶属于葫芦科(Cucurbitaceae)罗汉果属(Siraitia),为多年生草质藤本植物,是我国特有的药用和甜料植物,具止咳祛痰、凉血舒胃、润肠通便等作用。其主要活性成分为罗汉果甜苷V,具强烈甜味,为蔗糖的300-500倍,具抗氧化、免疫调节及抗癌的作用。罗汉果提取物低热、无毒,是一种纯天然的甜味剂及理想的保健品,可为糖尿病和肥胖病患者使用。罗汉果种子数量多、重量大,占果实鲜重的44%,干重的70%,但几乎不含罗汉果皂苷。因此罗汉果无籽化是罗汉果生产中亟待解决的关键问题,而且无籽罗汉果也成为罗汉果育种研究的热点。
     2005年本课题组在罗汉果伯林3号和ND的后代中发现一突变株,植株高大,茎粗叶厚,花大败育,后代无籽。本研究首次对罗汉果正常株及其突变株从细胞学、基因组及基因表达水平进行初步探讨,研究罗汉果正正常株与突变株的遗传变异情况及无籽罗汉果基因表达情况。主要研究结果如下:
     1、染色体核型的研究结果显示罗汉果正常株为二倍体,染色体数目为2n=2x=28,而突变株为四倍体,染色体数目为2n=4x=56,其后代无籽罗汉果为三倍体,染色体数目为2n=3x=42条,同时验证了突变株为四倍体。这是首次对罗汉果多倍体方面进行的报道研究。
     2、本实验采用SRAP分子标记方法对罗汉果二倍体及四倍体的基因组水平进行遗传变异分析。用196对引物组合对两者的基因组进行扩增,其中9对引物组合未能扩增出条带。筛选得到的189对引物组合共扩增出约4573条带,其中577条(12.6%)为差异条带,1998条(87.4%)为共有条带。大部分引物组合均能扩增出条带,获得的条带长度大多集中在100-800bp之间,平均每对引物组合扩增条带数为12.1。结果表明通过SRAP分子标记方法得出罗汉果二倍体及四倍体株系之间基因组DNA的SRAP多态性较低,遗传差异较小。
     3、采用SRAP-cDNA方法对罗汉果二倍体及四倍体的基因表达水平进行差异分析。用196对SRAP引物组合对两者的基因表达水平cDNA进行多态性扩增,其中63对引物组合未能扩增出条带。筛选得到的133对引物组合共扩增出约2917条带,其中289条(9.9%)为差异条带,1313条(90.1%)为共有条带。对其中稳定出现的明显差异片段进行回收、克隆及测序,共获得92条差异表达的基因片段,其中77.2%与已知基因具高度同源性,9.8%为编码未知蛋白基因,13.0%为可能的编码新蛋白基因。对已知序列的结果分析发现大多数序列都与光合、呼吸及抗性相关基因具有很高的同源性,其中比较重要的蛋白质如:核铜糖-1,5-二磷酸羧化酶/加氧酶、磷酸烯醇丙酮酸羧基激酶、丙酮酸激酶、过氧化物酶膜转运蛋白、NBS-LRR抗性蛋白、蛋白磷酸酶等。序列的功能分析结果表明已知基因编码蛋白涉及到生物学的诸多方面,其编码的蛋白主要属于:离子通道、信号转导、代谢途径、转录因子、蛋白合成、生长发育、能量代谢等。这些蛋白质在植物生长发育中都起着重要的调节作用,如:锌指蛋白、分子伴侣、促有丝分裂素活化激酶、转录因子IWS1、信号转导蛋白、内膜蛋白、胞外孔道蛋白、纤维素合酶、细胞色素P450、糖基转移酶GT8、氧化还原酶等。以上实验结果从一定程度上表明罗汉果四倍体在抗逆性及光合能力方面更优于二倍体植株。这也为多倍体在表型及生物学方面优于二倍体的现象提供了分子证据。
     4、利用Solexa高通量测序技术对罗汉果二倍体后代的正常种子及四倍体后代无籽罗汉果干瘪种子进行转录组和表达谱测序。转录组测序结果共得到64372条Unigene,与代谢途径相关的Unigene共17593条。表达谱测序得到87350条reference tags及41678条geneso通过分析发现占mRNA,总量76%-77%的是种类不到5.5%-5.8%的少数nRNA,而占种类58%-62%的mRNA全部加起来不到mRNA,总量的4.2%-4.5%。对差异基因进行比较发现有1748个基因上调,2037个基因下调。
     本文首次对罗汉果多倍体及其后代无籽罗汉果进行报道研究,并从细胞学、基因组及基因表达水平进行初步探讨,研究罗汉果正正常株与突变株的遗传变异情况及无籽罗汉果基因表达情况。这为多倍体罗汉果及无籽罗汉果形成的遗传机理、种子形成及发育相关基因等方面的研究提供重要的基因资源,也为克隆基因、研究其表达和调控机制及功能提供了基础数据,同时为应用生物技术方法实现罗汉果无籽化,提高生产中罗汉果有效成分提取率提供了技术支持,为培育无籽罗汉果及新资源新品种的开发利用提供理论依据,提高育种的预见性和效率。
Siraitia grosvenorii (Swingle) C. Jeffrey, belonging to the genus Siraitia Merr under the family Cucurbitaceae, is a precious and economically important species endemic to southern China and has been cultivated for several centuries. The fruits of S. grosvenorii, called Luohanguo, are used for food, beverages and traditional Chinese medicine. The fruit has evident effects on dry cough, sore throat, extreme thirst and constipation. The major components of Luohanguo are mogrosides, a group of terpene glycosides, estimated to be about 300 times as sweet as sucrose. Moreover, Luohanguo extracts have chemopreventive and antioxidant properties. Its non-caloric properties and effects on the cancer chemopreventive and antioxidant, are being used as sweetening agents for the patients with diabetes mellitus, adiposis, hypertension, heart disease and so on. Mogrosides only exist in flesh, occupying 15% of the dry weigh, whereas seeds constitute 70% of the weight but contain no mogrosides. Thus, seedless Luohanguo will no doubt increase the utilization and extraction rate of mogrosides.
     Our group isolated a novel male mutant plant from hybrids of'Bolin' and 'ND'. The mutant exhibited growth vigor, larger body and increased organ size compared to wild type. We then used pollen to pollinate 'Nongyuan', and the following year fruits of female hybrids were seedless. In this study, we carried out preliminary studies on karyotype analysis and the molecular mechanism of mutant. The results will provide reference information and resources for molecular breeding of seedless Luohanguo.
     1. The chromosome numbers of wild-type, mutant and hybrid were 2n=2x=28,2n =4x=56 and 2n=3x=42, respectively. The results showed that wild-type was a diploid strain. Mutant was a tetraploid, and hybrid was a triploid. To our knowledge, this is the first report on karyotype and molecular studied of polyploids in S. grosvenorii.
     2. A total of 196 SRAP primer combinations were used for DNA amplifications,9 combinations of which failed to amplify banding patterns.189 SRAP primer combinations generated 4573 bands,577 (12.6%) of which were polymorphic while 1998 pairs (87.4%) were identical. Fragment bands obtained were in the size range of 100-800 bp, with a mean of 12.1. There were no apparent differences in the bands of M036 and M038 amplified by most primer pairs. The results generally indicated that the genetic diversity would be quite low between the diploid and tetraploid strains of S. grosvenorii.
     3. A total of 196 SRAP primer combinations were used for cDNA amplifications,63 of which failed to amplify any banding patterns. A total of 133 SRAP primer combinations generated 2917 bands,289 (9.9%) of which were polymorphic while 1313 pairs (90.1%) were identical. Fragment bands obtained were in the size range of 100-800 bp. Stable and clearly differentiated fragments were sorted out, cloned and sequenced. Ninety-two differentially expressed fragments were successfully sequenced,77.2% of them were highly homologous to known genes,9.8% were hypothetical genes and 13.0% were possible new genes as they had no significant similarity to known genes. Sequence analysis revealed that most fragments had significant homologous nucleotide sequence to photosynthesis, respiration and stress response genes. These genes included ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxykinase, pyruvate kinase, peroxisomal membrane transporter, NBS-LRR type resistance protein, protein phosphatase and others. Functional analysis showed that the gene-encoded proteins were involved in a broad range of biological pathways, including transporters, signal transduction, metabolism, transcription, protein synthesis, development, energy, etc. There proteins play important roles in regulating palnt growth and development and include zinc finger protein, molecular chaperone, mitogen-activated kinase, transcription factor IWS1, transducin, endomembrane protein, porin, cellulose synthase, cytochrome P450, glycosyltransferase, oxidoreductase and other. The results, to some extent, indicated that the tetraploid of S. grosvenorii has more resistance to stress and photosynthesis ability than its diploid relatives. It provided molecular evidences for the phenomenon of polyploids exceeding their diploid relatives based on the phenotypic and biological features.
     4. With Solexa high-throughput sequencing technology for transcriptome assembly of seeds from F049 and F050,43,891 Unigenes are obtained. There are 17593 Unigenes involving in metabolic pathway. In the DGE analysis of seeds from F049 and F050, 87350 reference tags and 41678 genes are obtained. The analysis shows that mRNA, which is less than 5.5%-5.8%of the types of mRNA, accounts for nearly 76%-77%of the total ammount, but all which accounts for 58%-62% of types, is less than 4.2%-4.5% of total amount mRNA. Statistics on the differentially expressed genes show that, in the F050/F049 genes, there are 1748 genes up-regulated, while 2037 genes are down-regulated.
     In summary, in this study we carried out preliminary studies on karyotype analysis and the molecular mechanism of mutant strain. The interesting tetraploid mutant contains changes in genome structure and gene expression compared to the diploid strain. As this is the first study on tetraploid of S. grosvenorii, which will provide solid basis for future studies on tetraploid and hybrid triploid seedless Luohanguo. The results will provide reference information and resources for molecular breeding of seedless Luohanguo.
引文
[1]李典鹏,张厚瑞.广西特产植物罗汉果的研究与应用[J].广西植物,2000,20(3):270-276.
    [2]范继善主编.实用食品添加剂[M].天津:天津科学技术出版社,1993:318.
    [3]中华人民共和国卫生部药典委员会编.中华人民共和国药典[M].北京:化学工业出版社,1977,348;1985,181;1990,184;2005,147.
    [4]广西壮族自治区卫生厅编.广西中药志第二辑[M].南宁:广西壮族自治区人民出版社.1983:195.
    [5]郗荣庭,刘孟军.中国干果[M].北京:中国林业出版社,2005:448-461.
    [6]刘爱英.永福罗汉果栽培技术[J].柑桔与亚热带果树信息,2001,17(7):29.
    [7]中国药材总公司编.中国中药资源志要[M].北京:科学出版社,1996:748
    [8]广西地道药材简介——山豆根、炉甘石、三七、罗汉果[J].广西中医药,1988,11(4):26.
    [9]C. Jeffrey. A review of the Cucurbitaceae [M]. United Kingdom:Kew Bulletin, 1979,33(3):393-394.
    [10]路安明,张志耕.中国罗汉果属植物[J].广西植物,1984,4(1):27-33.
    [11]邹琦丽.罗汉果、木鳖子、苦瓜、河南赤爬等四种植物花粉的观察[J].广西植物,1981,3:55.
    [12]李建强.罗汉果属修订及葫芦科二新属[J].植物分类学报,1993,31(1):45-55.
    [13]中国药材总公司编.中国中药资源志要[M].北京:科学出版社,1996:748.
    [14]庄伟建,林治良,郑伸坤.罗汉果染色体组型的研究[J].热带亚热带植物学报,1997,5(20):23-25.
    [15]路安民,张志耘.中国罗汉果属植物[J].广西植物,1984,4(1):27-33.
    [16]钟什强,方鼎.广西葫芦科植物中个新记录的种——翅子罗汉果[J].广西植物,14(1):23-25.
    [17]钟仕强,罗汉果的研究现状[J].广西农业科学,1992,4:164-166.
    [18]杨志德.永福:生态农业鼓起农民钱袋子[J].当代广西,2006,14:61.
    [19]李贤新.罗汉果疤叶丛枝病的发生规律及防治对策浅议[J].广西园艺,2005,3:31-32.
    [20]周良才,张碧玉,覃良,等.罗汉果品种资源调查研究和利用意见[J].广西植物,1981,(3):29-33.
    [21]孙丽霞,成蓓,王冬梅.种子、果实类中药材植物种植技术[M].北京:中国林业出版社,2001.
    [22]张碧玉.罗汉果生物学特性初步研究[J].广西植物,1981,1(20):45-49.
    [23]李锋,李典鹏,蒋水元,等.罗汉果栽培与开发利用[M].北京:中国林业出版社,2003:1-20.
    [24]周俊亚.栽培罗汉果遗传多样性的ISSR、RAPD和AFLP分析[D].桂林:广西师范大学,2005.
    [25]周良才.罗汉果栽培技术[J].广西植物,1983,3(20):117-120.
    [26]李莲珍.不同立地类型对罗汉果组培苗生长发育的影响[D].桂林:广西师范大学,2007.
    [27]李树刚,梁畴芬.广西植物资源[M].北京:北京科学技术出版社,1990.
    [28]杨秋明.龙胜县罗汉果种质资源及生产意见[J].广西园艺,2004,15(5):19-20.
    [29]孙宗喜,王有为,尤敏,等.不同罗汉果品种组培苗产量与质量性状的比较研究[J].生物技术通报,2006(增刊):521-524.
    [30]刘金磊,李典鹏,黄永林.桂北地区不同品种、不同产地鲜罗汉果中总苷、苷V含量测定[J].广西植物,2007,27(2):281-284.
    [31]马小军,莫长明,白隆华,等.罗汉果新品种“永青1号”[J].园艺学报,2008,35(12):1855.
    [32]Lee C. Intense sweetener from Lo Han Kuo (Momordica grosvenori) [J]. Experientia,1975,31(5):533-534.
    [33]徐位坤,孟丽珊等.罗汉果嫩果中一个苦味成分的分离和鉴定[J].广西植物,1992,12(2):136-138.
    [34]陈肇琰,马彦国.新型天然食品甜味剂罗汉果苷V的研究[J].中国粮油学报.1995,10(3):33-38.
    [35]斯建勇,陈迪华,常琪等.罗汉果中三萜苷的分离和结构测定[J].植物学报,1996,38(6):489-494.
    [36]刘钟栋.罗汉果苷V的精致研究[J].离子交换与吸附.1999,15(4):364-368.
    [37]余丽娟,陈全斌,义祥辉,等.高效液相色谱法制备罗汉果甜苷V标准品[J].色谱,2003,21(4):397-399.
    [38]李典鹏,陈月圆,潘争红,等.不同生长日龄罗汉果苷类成分变化研究[J].广西植物,2004,24(6):546-549.
    [39]梁成钦,苏小健,刘卫兵,等.薄层扫描法测定罗汉果糖苷(V)含量的研究[J].饮料工业,2005,8(4):44-46.
    [40]陈全斌,义祥辉,余丽娟,等.不同生长周期的罗汉果鲜果中甜苷V和总黄酮含量变化规律[J].广西植物,2005,25(3):274-277.
    [41]梁成钦,苏小健,李俊,等.薄层扫描法测定罗汉果糖苷(V)含量的研究[J].广西轻工业,2005(3):13-15.
    [42]杨秀伟,张建业,钱忠明,等.罗汉果中一新葫芦烷型三铁皂苷——光果木鳖皂苷Ⅰ[J].中草药,2005,36(9):1285-1290.
    [43]竹本常松,在原重信,中岛正,等.罗汉果成分研究(Ⅰ)[J].药学杂志(日),1983,103:1151.
    [44]竹本常松,在原重信,中岛正,等.罗汉果成分研究(Ⅱ)[J].药学杂志(日),1983,103:1155.
    [45]竹本常松,在原重信,中岛正,等.罗汉果成分研究(Ⅱ)[J].药学杂志(日),1983,103:1167.
    [46]Matsumoto K, Kasai. R, Ohtani k, et al. Minor cucurbitane glycosides from fruits of Siraitia grosvenorii (Cucurbitaceae) [J]. Chem Pharm Bull,1990,38(7):2030.
    [47]成桂仁.罗汉果甜味成分的研究概况[J].广西植物,1987,7(3):285.
    [48]王亚平,陈键裕.罗汉果化学成分的研究[J].中草药,1992,23(2):61-62.
    [49]徐位坤等.罗汉果嫩果中一个苦味成分的分离和鉴定[J].广西植物,1992,12(2):136.
    [50]王雪芬,卢文杰,陈家源,等.罗汉果根化学成分的研究(Ⅰ)[J].中草药,1996,27(9):515-517.
    [51]王雪芬,卢文杰,陈家源,等.罗汉果根化学成分的研究(Ⅱ)[J].中草药,1998,29(5):293-295.
    [52]斯建勇,陈迪华,沈连钢,等.广西特产植物罗汉果根的化学成分研究[J].药学学报,1999,34(12):918-920.
    [53]Motohiko U, Toshihiro A, Harukuni T,et al. Inhibitory effects of cucurbitane Glycosides and other Triterpenoids from the Fruit of Momordica grosvenori on Epstein-Barr Virusearly antigen induced by tumor promoter 12-O-Tetradecanoylphorbol-13-aeetate [J]. JAgrie Food Chem,2002,50:6710-6715.
    [54]李俊,黄锡山,张艳军,等.罗汉果化学成分的研究[J].中国中药杂志,2007,32(6):548-549.
    [55]廖日权,李俊,黄锡山,等.罗汉果化学成分的研究[J].西北植物学报,2008,28(6):1250-1254.
    [56]杨秀伟,张建业,钱忠明等.罗汉果中一新葫芦烷型三菇皂苷——光果木鳖皂苷Ⅰ[J].中草药,2005,36(9):1285-1290.
    [57]Li DP, El-Aasr M, Ikeda T, et al. Two new cucurbitane-type glycosides obtained from roots of Siraitia grosvenori SWINGLE [J]. Chem Pharm Bull (Tokyo),2009,57(8): 870-872.
    [58]Jia Z, Yang X. A minor sweet cucurbitane glycoside from Siraitia grosvenorii [J]. Nat Prod Commun,2009,4(6):769-772.
    [59]斯建勇,陈迪华,常琪,等.鲜罗汉果中黄酮苷的分离及结构测定[J].药学学报,1994,29(2):58-160.
    [60]陈全斌,杨建香,义祥辉,等.罗汉果叶中黄酮苷元的研究[J].广西植物,2006,26(2):217-220.
    [61]陈全斌,杨建香,程忠泉,等.罗汉果叶黄酮苷的分离与结构鉴定[J].广西科学,2006,13(1):35-42.
    [62]陈全斌,杨建香,程忠泉,等.RP-HPLC法测定罗汉果叶中总黄酮含量[J].广西科学,2005,12(1):43-45.
    [63]陈全斌,义祥辉,余丽娟,等.不同生长周期的罗汉果鲜果中甜苷V和总黄酮含量变化规律研究[J].广西植物,2005,25(3):274-277.
    [65]Zheng Y, Liu Z, Ebersole J, et al. A new antibacterial compound from Luo Han Kuo fruit extract(Siraitia grosvenori) [J]. J Asian Nat Prod Res,2009,11(8):761-765.
    [66]徐位坤等.罗汉果糖分的分析[J].广西农业科学,1980,(3):29.
    [67]李俊,陈海燕,邓胜平,等.罗汉果多糖的分离纯化及分析[J].化学世界,2005,46(5):277-280.
    [68]李俊,张艳军,黄锡山,等.两种罗汉果多糖的IR及13C NMR分析[J].化学世界,2007,48(2):81-85.
    [69]李俊,黄锡山,陈海燕,等.罗汉果多糖提取工艺及组成分析[J].广西师范大学学报(自然科学版),2007,25(1):70-73.
    [70]黄飞,梁智群.对罗汉果中多糖活性成分的分离提取及纯化研究[J].广西轻工业,2007,7:10-11.
    [71]徐位坤,孟丽珊.罗汉果蛋白质成分的研究[J].广西植物,1985,5(3):304-306.
    [72]徐位坤,孟丽珊.罗汉果蛋白质的含量测定[J].广西植物,1986,6(3):295-296.
    [73]徐位坤,孟丽珊,李仲瑶等.罗汉果中甘露醇的分离和鉴定[J].广西植物,1990, 10(3):254-255.
    [74]Hough CAM, Parker KJ, Vlitos AJ. Developments in sweeteners-1 [M]. London: Applied Science Publishers.1979.
    [75]齐一萍,唐明仪.罗汉果果实的化学成分与应用研究[J].福建医药杂志,2001,23(5):158-160.
    [76]徐拉坤,孟丽珊.罗汉果营养成分测定[J].广西植物,1981,1(2):50-52.
    [77]程菊英,罗四莲,潘于发,等.广西植物油脂的研究:Ⅰ.五十种植物种子的油脂成分[J].广西植物,1980,2:26-33.
    [78]陈肇铁,马彦国.新型天然食品甜味剂罗汉果苷(V)的研究[J].中国粮油学报,1995,9:33-38.
    [79]孟夏林等.罗汉果及其根的无机元素测定分析[J].广西中医药,1989,12(6):42.
    [80]李锋等.罗汉果果实维生素含量变化研究[J].广西植物,1985,5(3):307-310.
    [81]鞠伟,程云燕,张健.罗汉果研究概况综述[J].广西轻工业,2001,4:4-6.
    [82]王勤,李爱媛.罗汉果的药理作用研究[J].中国中药杂志,1999,24(7)::425-428.
    [83]王雯,黄志江.罗汉果甜苷的生物活性研究[J].中草药,1999,30(12):914-916.
    [84]陈瑶,范小兵,王永祥等.罗汉果甜苷的止咳祛痰作用研究[J].中国食品添加剂,2006,01:41-43.
    [85]王密,宋志军,柯美珍.不同剂量的罗汉果对大鼠免疫功能的影响[J].广西医科大学学报,1994,11(4):428-430.
    [86]王勤,王坤,戴盛明,等.罗汉果甜苷对小鼠细胞免疫功能的调节作用[J].中药材,2001,24(11):811-812.
    [87]王勤等.罗汉果的药理作用研究[J].中国中药杂志,1999,24(7):425.
    [88]Shi H, Hiramatsu M, Komatsu M, et al. Antioxidant property of fructus momordicae extract [J]. Biochemistry and Molecular Biology Institute,1996,40(6):1111-1121.
    [89]Wang X, Liu Jiankang, et al. The antioxidant and anti-stress activities of the ex tract of fructus momordica [J]. Mol Mech Health Eff,1995,71-81.
    [90]Liu JK, Wang XY, et al. Free radical scavenging and antioxidant effect of fructus momordicae [J]. Food Free Radicals,1994,1:147-150.
    [91]Eiichiro T, Hiroshi Y, Norio T, et al. Sweetelement of of Siraitia Grosvenorii inhibits oxidative modification of low-density lipoprotein [J]. Journal of Atherosclerosis and Thrombosis,2001,9(2):114-120.
    [92]张俐勤,戚向阳,陈维军,等.罗汉果提取物的抗氧化活性研究[J].食品科学,2006,27(1):213-216.
    [93]郝桂霞.罗汉果提取液对自由基的清除作用[J].江西化工,2004,22(4):89-90.
    [94]戚向阳,陈维军,宋云飞,等.罗汉果对糖尿病小鼠的降血糖作用[J].食品科学,2003,24(12):124-127.
    [95]Qi XY, Chen WJ, Liu LG, et al. Effect of a Siraitia grosvenorii extract containing mogrosides on the cellular immune system of type 1 diabetes mellirus mice [J]. Molecular Nutrition and Food Research,2006,50:732-738.
    [96]张俐勤,戚向阳,陈维军,等.罗汉果皂苷提取物对糖尿病小鼠血糖血脂及抗氧化作用的影响[J].中国药理学通报,2006,22(2):237-240.
    [97]王勤,赵一,张杰,等.罗汉果健身茶的药理实验研究[J].广西中医药.1989,12(3):133.
    [98]金春花,姜秀莲,洪铁,等.罗汉果咽喉片的药理研究[J].中药材,1997,20(11):574-577.
    [99]钟树权.罗汉果的用途[J].中药材,1985,(4):49.
    [100]木岛孝夫.罗汉果中甘味物质的抑癌作用[J].国外医学.中医中药分册,2003,25(3):174.
    [101]Takasaki M, Konoshima T, Murata Y, et al. Anticarcinogenic activity of natural sweeteners cucurbitane glycosides from Momordica grosvenori [J]. Cancer Letters,2003, 198:37-42.
    [102]王勤,李爱媛,黄荣奇,等.罗汉果保肝活性部位的研究[J].中药药理与临床,1998,14(6):31-32.
    [103]陈全斌,沈钟苏,韦正波,等.罗汉果黄酮的活血化瘀药理作用研究[J].广西科学.2005,12(4):316-319.
    [104]穆静.罗汉果浸出液对变链菌致龋作用的实验室研究[J].中华口腔医学杂志,1998,33(3):183-185.
    [105]苏小建,徐庆,梁荣感,等.罗汉果甜苷的毒性作用研究[J].食品科学,2005,26(3):221-224.
    [106]Kasai R, Matsumoto K, Nie R-lin, et al. Sweet and bitter cucurbitane glycosides from hemsleya [J]. Phytochemistry,1987,26:1371.
    [107]Hussain RA, Lin YM, Poveda LJ, et al,. Plant-derived sweetening agents: Saccharide and polyol constituents of some sweet-tasting plants [J]. JEthnopharmacol, 1990,28:103-115.
    [108]Yuan LG, Tao WY. New product development in traditional Chinese medicine [J]. People's Sanitation Press,1997,395.
    [109]Jin M, Muguruma M, Moto M, et al. Thirteen-week repeated dose toxicity of Siraitia grosvenori extract in Wistar Hannover (GALAS) rats [J]. Food Chem Toxicol, 2007,45,1231-1237.
    [110]Qin X, Xiaojian S, Ronggan L et al. Subchronic 90-day oral (gavage) toxicity study of a Luo Han Guo mogroside extract in dogs [J]. Food Chem Toxicol,2006,44, 2106-2109.
    [111]李典鹏,张厚瑞.广西特产植物罗汉果的研究与应用[J].广西植物,2000,20:270.
    [112]江西新医学院编.中药大词典[M].上海科技出版社,1986,1356.
    [113]陈馥馨.新编中成药手册[M].北京:中国医药科技出版社,1996:326.
    [114]卞珍.罗汉果[J].植物杂志,1978,(5):35.
    [115]黄家德,张厚瑞,李才华.罗汉果的开发利用[J].广西植物,1996,16(2):195-195.
    [116]欧建军.佳果良药:罗汉果[J].药膳食疗研究,2000,4.
    [117]陈全斌,义祥辉,何星存.罗汉果叶饮料的可行性研究[J].饮料工业.2005,8(4):27-30.
    [118]郭文场.罗汉果的价值与栽培[J].特种经济动植物,2005,8(7):34-35.
    [119]滕建文.罗汉果醋的研制[J].中国调味品,2002,5:22-24.
    [120]丘华,陈宇,罗立群.罗汉果、黑芝麻儿童保健复合饮料加工技术及稳定性研究[J].食品科学,2000,21(6):42-45.
    [121]滕建文.罗汉果梅汁饮料的研制[J].食品科技,2002,5:51-52.
    [122]黄发新,邓小文,李超雄.罗汉果茅根菊花清凉饮料研制[J].食品工业,2000,2:27-29.
    [123]卜春文,孙金凤.罗汉果在酸奶中的应用研究[J].食品科技,2004,2:72-74.
    [124]蒋世琼.罗汉果甜味成分的研究开发概况[J].中国食品添加剂,1999,1:12.
    [125]吴力人.罗汉果的新用途[J].中医药信息,2001,18(40):13.
    [126]肖刚,王勤.罗汉果研究进展[J].上海中医药杂志.2006,40(11):71-73.
    [127]李锋,蒋汉明,江新能.罗汉果种子繁殖及其栽培研究[J].广西植物,1990,10(3):261-267.
    [128]杭玲,陈丽娟,陈少珍,等.罗汉果茎快脱毒快繁技术[J].西南农业学报,1999,12(3):125-127.
    [129]凡永秦.永福县罗汉果品种简介及其栽培技术[J].柑桔与亚热带果树信息,2003,19(5):31.
    [130]朱保民.罗汉果平地栽培技术探讨[J].广西园艺,2004,15(3):13-14.
    [131]蒋乃芬,李业勇,梁祖珍.罗汉果连栋大棚栽培试验初报[J].广西园艺,2004,15(2):29-30.
    [132]梁一池,杨华.植物组织培养研究进展[J].福建林学院学报,2002,22(1):1-3.
    [133]杭玲,苏国秀,夏阳升,等.罗汉果组培苗栽培技术[J].广西农业科学,2003,(6):70-72.
    [134]黎天山,丘风波.罗汉果害虫名录初报[J].广西植物,1984,4(2):177-179.
    [135]周志权,廖咏梅,李锋.罗汉果果实病害观察初报[J].广西植物,1991,11(3):274-277.
    [136]蔡健和,秦碧霞,余玉冰,等.罗汉果花叶病病原病毒鉴定[J].广西科学,2001,8(1):66-69.
    [137]潘中田,袁琼琼.永福罗汉果根结线虫发生规律及其防治研究[J].中国南方果树,2001,30(5):33.
    [138]黄思良,陈作胜,晏卫红,等.罗汉果芽枯病病因及防治技术研究[J].中国农业科学,2001,34(4):385-390.
    [139]林纬,黎起秦,莫娜,等.广西罗汉果病毒病发生情况调查[J].植物保护,2003,29(4):27-30.
    [140]丘风波,黄家德.广西北部罗汉果根结线虫病研究[J].广西植物,1987,7(3):277-284.
    [141]陈廷速,韦弟,韦德宗.广西罗汉果种质资源研究利用现状及展望[J].福建果树,2003,(127):13-15.
    [142]林荣,王润珍.罗汉果组织培养获得完整植株[J].广西植物,1980,1:11.
    [143]林荣,王秀琴.罗汉果叶组织培养的研究[J].广西植物,1981,1(1):18.
    [144]桂耀林,顾淑荣.罗汉果叶组织培养的器官发生[J].植物学报,1984,26(2):120.
    [145]苏明申,林顺权,陈振光,等.罗汉果的组织培养[J].中国南方果树,2002,31(3):43.
    [146]周琦丽,林荣.罗汉果组织培养中愈伤组织和腋生枝的形成[J].广西植物,1989,9(2):103.
    [147]付长亮,马小军,白隆华,等.罗汉果脱毒苗的快速繁殖研究[J].中草药,36(8):1225-1229.
    [148]黄春梅,吴金寿,曾黎辉,等.罗汉果胚轴培养再生植株及其细胞学观[J].福建农林大学学报:自然科学版,2005,34(6):454-457.
    [149]郑晓峰,黄刚.罗汉果种苗组织培养与快繁技术[J].种子,2008,27(4):102-104.
    [150]陶莉,王跃进,尤敏,等.AFLP用于构建罗汉果DNA指纹图谱及其幼苗雌雄鉴别[J].武汉植物学研究,2005,23(1):77-80.
    [151]周俊亚,唐绍清.栽培罗汉果遗传多样性的RAPD分析[J].分子植物育种,2006,4(1):71-78.
    [152]韦弟,杨美纯,陈廷速,等.罗汉果性别的RAPD标记研究[J].中药材,2006,29(4):311-313.
    [153]韦素玲,黄姿梅,杨华,等.罗汉果性别相关RAPD标记的克隆与序列分[J].湖北农业科学,2008,47(3):251-253.
    [154]黄江,蒋慧萍,陈廷速,等.罗汉果不同种质亲缘关系的RAPD分析[J].福建果实,2006,136(1):15-17.
    [155]周俊亚,宾晓芸,彭云滔,等.罗汉果ISSR-PCR反应体系的建立[J].广西师范大学学报(自然科学版),2004,22(3):81-84.
    [156]周俊亚,唐绍清,向悟生,等.栽培罗汉果遗传多样性的ISSR分析[J].广西植物,2005,25(5):431-436.
    [157]彭云滔,唐绍清,李柏林,等.野生罗汉果遗传多样性的ISSR分析[J].生物多样性,2005,13(1):36-42.
    [158]曾黎辉,吴金寿,柯石山,等.罗汉果遗传转化受体再生体系的建立及发根农杆菌转化初探[J].中国农学通报,2005,21(12):403-406.
    [1]苏小建,刘国雄,聂晓,等.罗汉果甜甙V在各部位的含量分布[J].食品科技,2007,(5):76-78
    [2]莫海萍.利用组织培养诱导罗汉果同源四倍体[D].桂林:广西师范大学硕士研究生学位论文,2004.
    [3]陈柏君,高山林,卞云云.黄芩组织培养同源四倍体的诱导[J].植物资源与环境学报,2000,9(1):9-11.
    [4]高山林,刘峻,谢小群.高效毛细管电泳法测定黄芩多倍体株系中黄芩苷的含量[J].药物生物技术,2002,9(6):349-352.
    [5]安巍,李云翔,焦恩宁,等.三倍体无籽枸杞新品种的选育研究[J].宁夏农学院学报,1998,19(3):41-44.
    [6]刘选明,周朴华,何立珍,等.应用细胞工程技术选育四倍体龙牙百合的研究[J].生物工程学报,1996,12(增刊):197-200.
    [7]高山林,徐德然,蔡朝晖,等.丹参同源四倍体新物种的培育[J].中国药科大学学报,1992,12(4):38-42.
    [8]艾建国,高山林.丹参同源四倍体的诱导、鉴定及有效成分的含量测定[J].药物生物技术,2003,10(6):372-376.
    [9]张穗生.罗汉果多倍体诱导的研究[D].桂林:广西师范大学硕士研究生学位论文,2002.
    [10]李峰,蒋向军,蒋水元,等.无籽(少籽)罗汉果培育成功[J].广西植物,2008,28(6):727.
    [11]蒋水元,蒋向军,覃向胜,等.无籽罗汉果选育的初步研究[J].广西植物,2009,29(4):506-509.
    [12]祝海燕,郎德山,默书霞,等.植物无籽果实发生机理研究综述[J].河北林果研究,2005,22(3):259-261.
    [13]高双成,刘征,李润植.转基因技术生产无籽果实的新策略[J].植物学通报,2002,19(1):49-55.
    [14]莫长明,马小军,白隆华,等.利用雄性败育选育无籽罗汉果的研究[J].广西植物.(已投稿)
    [15]李锋,李典鹏,蒋水元,等.罗汉果栽培与开发利用[M].北京:中国林业出版社,2003.
    [16]李懋学,陈瑞阳.关于植物核型分析的标准化问题[J].武汉植物学研究,1985,3(4):291-302.
    [17]Darlington CD, Wylie AP. Chromosome Atlas of Flowering Plants [M]. London: George Allen and Vnwin Ldt.1955.
    [18]庄伟建,林治良,郑伸坤.罗汉果染色体组型的研究[J].热带亚热带植物学报,1997,5(2):23-25.
    [19]李琦,马璐,黄婧,等.西瓜、苦瓜与罗汉果染色体的rDNA定位及其核型分析[J].武汉大学学报(理学版),2007,53(4):449-456.
    [20]邹琦丽,张碧玉,谢恩福.罗汉果染色体的初步观察[J].广西植物,1980,2:24.
    [21]Stebbins CL. Chromosomal Evolution in Higher Plants [M]. New York:Edward Arnold Ltd.1971:87-89.
    [22]Grant V (1971) Plant Speciation [M]. New York:Columbia University Press.1971.
    [I]Stebbins GL. Chromosomal Evolution in Higher Plants [M]. London:Edward Arnold. 1971:216.
    [2]Grant V. Plant Speciation [M]. New York:Columbia University Press.1971.
    [3]Chen ZJ, Ni ZF. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids [J]. BioEssays,2006,28:240-52.
    [4]Gottlieb LD, Ford VS. A recently silenced, duplicate PgiC locus in Clarkia [J]. Mol BiolEvol,1997,14:125-32.
    [5]Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids [J]. Annu Rev Plant Biol,2007,58:377-406.
    [6]Yu J, Wang J, Lin W, et al. The Genomes of Oryza sativa:a history of duplications [J]. PLoS Biol,2005,3:e38.
    [7]Paterson AH. Polyploidy, evolutionary opportunity, and crop adaptation [J]. Genetica, 2005,123:191-196.
    [8]Wong S, Butler G, Wolfe KH. Gene order evolution and paleopolyploidy in hemiascomycete yeasts [J]. Proc Natl Acad Sci USA,2002,99:9272-9277.
    [9]Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes [J]. Plant Cell,2004,16:1667-1678.
    [10]Becak ML, Kobashi LS. Evolution by polyploidy and gene regulation in Anura [J]. Genet Mol Res,2004,3:195-212,
    [11]Gu Z, Cavalcanti A, Chen FC, et al. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast [J]. Mol Biol Evol,2002,19:256-262.
    [12]Christoffels A, Koh EGL, Chia J, et al. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes [J]. Mel Biol Evol,2004,21:1146-1151.
    [13]Bever JD, Felber F. The theoretical population genetics of autopolyploidy [J]. Oxf Sury Evol Biol,1992,8:185-17.
    [14]Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering Plants [J]. Annu Rev Ecol Syst,1998,29:467-501.
    [15]Sohis DE, Soltis PS. Molecular data and the dynamic nature of polyploidy [J]. Crit Rev Plant Sci,1993,12:243-73.
    [16]Soltis DE, Soltis PS. Polyploidy:recurrent formation and genome evolution [J]. Trends Eeol Evol,1999,14:348-352.
    [17]Masterson J. Stomatal size in fossil plants-evidence for polyploidy in majority of angiosperms [J]. Science,1994,264:421-424.
    [18]Leitch IJ, Bennett MD. Polyploidy in angiosperms [J]. Trends in Plant Sciences, 1997,2:470-476.
    [19]Soltis PS, Doyle JJ, Soltis DE. Molecular data and polyploidy evolution in plants Chapman and Hall [A]. In:Molecular Systematics of Plants (eds Soltis PS, Soltis DE, Doyle JJ)[M]. New York:Chapman & Hall.1992:177-201.
    [20]Stebbins GL. Variation and Evolution in Plants Columbia [M]. New York:Columbia University Press.1950.
    [21]Matsuura S. Paternal inheritance of mitoehondrial DNA in cucumber (C. sativus L) [J]. Rep Cueubit Genet Coop,1995,18:31-33.
    [22]Wendel J F. Genome evolution in polyploids [J]. Plant Mol Biol,2000,42:225-249.
    [23]Adams KL, Wendel JF. Polyploidy and genome evolution in plants [J]. Curr Opin Plant Biol,2005,8:135-141.
    [24]Adams KL, Wendel JF. Novel patterns of gene expression in polyploid plants [J]. Trends Genet,2005,21:539-543.
    [25]Hilu KW. Polyploidy and the evolution of domestieated plants [J]. Am JBot,1993, 80:1491-1499.
    [26]Helentjaris T, Weber D, Wright S. Identification of the genomic locations of duplicate nucleotide sequences in Maize by analysis of restriction fragment length polymorphisms [J]. Genetics.,1988,118:353-363.
    [27]Gaut BS, Doebley JF. DNA sequence evidence for the segmental allotetraploidorig in of maize [J]. Proc Natl Acad Sci USA,1997,4:6808-6814.
    [28]Yu J, Wang J, Lin W, et al. The genomes of Oryza sativa:A history of duplications. PLoSBiol,2005,3:e38.
    [29]Gaut BS. Patterns of chromosomal duplication in maize and their implications forccomparative maps of the grasses. Genome Res,2001,11:55-66.
    [30]Anonymous. The Arabidpsis Genome Initiative. Analysis of the genome sequence of the flowering plant, Arabidopsis thaliana [J]. Nature,2000,408:796-815.
    [31]Vision TJ, Brown DG, Tanksley SD. The origins of genomic duplications in Arabidopsis [J]. Science,2000,290:2114-2117.
    [32]Blanc G, Hokamp K, Wolfe KH. A recent polyploidy superimposed on older largescale duplications in the Arabidopsis genome. Genome Res,2003,13:137-44.
    [33]Bowers JE, Chapman BA, Rong J, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature,2003,422:433-38.
    [34]巴拉诺夫等著(鲍奎等译).植物多倍体[M].北京:北京科学出版社,1958:102-103.
    [35]Harlan JR, Dewet JNJ. Wing and a prayer:the origins of polyploidy. Bot Rev,1971, 41:361-390.
    [36]许智宏.植物体细胞的遗传变异[J].遗传,1985,7(6):37-40.
    [37]裴新树.多倍体诱导与育种[J].上海科学技术出版社,1963:35-38.
    [38]Lewis WH. Polyploidy:Biological Relevance [M]. New York:Plenum.1980: 103-104.
    [39]张汗明,许铁峰,郭美丽等.药用植物的多倍体育种[J].中草药,2002,33(7):1-2.
    [40]吴明珠,伊鸿平,冯炯鑫,等.新疆厚皮甜瓜辐射诱变育种效果的探讨[J].中国西瓜甜瓜,2005(1):1-3.
    [41]高山林.药用植物遗传育种的现状与展望[J].世界科学技术——中医药现代化,2001,3(6):58-62.
    [42]毕春侠,张存旭,郭军战,等.杜仲多倍体的诱导[J].河北林果研究,1999,14(2):148-150.
    [43]余凤英,凌绪柏,刘伟青,等.中粒种咖啡小孢子染色体加倍方法的研究[J].热带作物学报,1990,11(1):451.
    [44]Shuichi S. Differentiat ion in competitive ability and cold tolerance between diploid and tetraploid cultivars [J]. Lolium perennel Euphytica,1998,103:551.
    [45]Clalak L, Legave JM. Oryzalin combined with adventitious regeneration for an efficient chromosome doubling of trihaploid kiui fruit [J]. Plant Cell Reports,1996, 16(1):971.
    [46]Geoffrian E, Kahane R. Polyploid stability and in vitro chromosome doubling in gynogenic clone of onion [J]. Plant Science Limerick,1997,122(20):2011.
    [47]Nelson AD, Elisens WJ. Polyploid evolut ion and biogeography in chelone (Scrophulariaceae):Morphological and isozyme evidence [J]. Amer J Bot,1999,86(10): 14871.
    [48]运泓,杨治琴,张治国.化学诱变同源多倍体当归育种初报[J].中药材,1980,11(1):91.
    [49]代西梅,黄群策.植物多倍体研究进展[J].河南农业科学,2005(1):9-12.
    [50]周广芳.秋水仙素在诱导果树多倍体中的应用[J].落叶果树,1991,3:501.
    [51]陈绍潘,陈绍裘,杨英华,等.秋水仙碱诱变甜菊多倍体的研究[J].武汉植物学研究,1995,13(1):11.
    [52]吴玉香,高建平,赵晓明.黄芪多倍体的诱导与鉴定[J].中药材,2003,26(5):315-316.
    [53]王莉,郑思乡,李枝林,等.库索拉芦荟的多倍体诱导及其变异初报[J].云南植物学研究,2001,23(4):93.
    [54]吴玉香,贺润丽,高建平,等.刺果甘草多倍体诱变育种的研究[J].山西农业大学学报(自然科学版),2004(2):116-117.
    [55]张兴翠,梁国鲁,阎勇.芦荟的快速繁殖与多倍体诱导[J].中国中药杂志,2001,26(8):538-540.
    [56]郭启高,张钟灵,周虹.秋水仙碱诱导生姜多倍体的研究[J].西南农业大学学报,2000,22(5):400-403.
    [57]罗跃龙,彭菲,刘军.杭白芷的多倍体诱导与培育[J].中国中药杂志,2004,29(2):1861.
    [58]郭启高,宋明,梁国鲁.植物多倍体诱导育种研究进展[J].生物学通报,2000,35(2):81.
    [59]李贤,钟仲贤.植物离体组织细胞染色体加倍技术在育种中的应用[J].上海农业学报,1998,14(3):991.
    [60]吴清,向素琼,严勇,等.金荞麦的离体繁殖及同源四倍体的诱导[J].西南农业大学学报,2001,23(2):1081.
    [61]艾先元,石巍峻,刘雅琴.秋水仙素与二甲基亚砜混合水溶液处理枸杞茎尖培育四倍体苗研究[J].新技术应用,1991,1:261.
    [62]Gmitter FG, Ling XB, Deng XX. Induction of triploid citrus plants from endosperm calli in vitro [J]. Theor Apple Genet,1990, (80):7851.
    [63]Tamura M, Tao R, Sugiara A. Production of dodecaploid plants of Japanese persimmon by colchicines treatment of protoplasts [J]. Plant Cell Reports,1996,15(7): 4701.
    [64]连雪斌.兰州百合多倍体诱导实验报告[J].甘肃农业科技,1995,(6):141.
    [65]Chen CH, Goeden KYC. In vitro induction of t et raploid plants from colchicines treated diploid daylily callus [J]. Euphytics.,1979, (28):7051.
    [66]Heinz DJ, Mee GWP. Colchicines induced polyploids from cell suspension cultures of sugarcane [J]. Crop Sci,1970,10:6961.
    [67]高建平,赵晓明,孙世春.鬼针草(Bidens bipinnata L.)多倍体的诱变[J].山 西农业大学学报,1998,18(2):121.
    [68]张兴翠,周昌华,殷家明,等.药用百合的多倍体诱导及快速繁殖[J].西南农业大学学报,2003,25(1):141.
    [69]Nakamura C, Keller WA, Fedak G. In vitro propagation and chromosome doubling of a Triticum x Hordeum vulgare intergeneric hybrid [J]. Theor Appl Genet,1981,60(1): 891.
    [70]刘俊,卢向阳,刘选明,等.同源四倍体芦荟的诱导研究[J].湖南大学学报,2002,29(1):81.
    [71]周日宝,王朝晖.白术同源四倍体诱导[J].基层中药杂志,2001,15(6):161.
    [72]张兴翠.花叶绿萝的多倍体诱导及快速繁殖[J].西南农业大学,2004,26(1):581.
    [73]艾建国,高山林.丹参同源四倍体的诱导、鉴定及有效成分的含量测定[J].药物生物技术,2003,10(6):3721.
    [74]李敖,石荫平,束怀瑞.利用苹果花粉粒形态进行倍性鉴定[J].园艺学报,1998,25(2):133-138.
    [75]沈显生.浅析植物多倍体现象[J].生物学杂志,1995,5:8-11.
    [76]张琴.利用染色体工程培育多倍体西番莲的技术研究[D].重庆:西南农业大学.2001.
    [77]曾云中,左小明,吴雷昌,等.原生质体中电融合构建酵母多倍体的研究[J].微生物学报,1995,35(4):264.
    [78]郭文武,邓秀新,史永忠.柑桔细胞电融合参数选择及种间体细胞杂种植株再生[J].植物学报,1998,40(5):4171.
    [79]张爱民,常莉,薛建平.药用植物多倍体诱导研究进展[J].中国中药杂志,2005,30(9):645-649.
    [80]傅润明主编.果树瓜类生物工程育种[M].北京:中国农业出版社,1994:125-140.
    [81]吕柳新,林顺权.果树生殖学导论[M].北京:中国农业出版社,1995:63-70..
    [82]Jorgensen CA. The experimental formation of heteroploid plants in the genus solanum [J]. J Genet,1928,11:133-210.
    [83]王莉,陈素平.枸杞胚乳诱导和它的倍性水平[J].植物学报,1985,12(6):440.
    [84]许燕.菠萝离体快繁体系的建立和多倍体新种质的培育[D].重庆:西南大学.2006.
    [85]Kesara AJ, Thorsteinn T. High frequency of triploid birth hybrid by Betula nana seed parent [J]. Hereditas,1999,130:191-193.
    [86]王同坤,张京政,齐永顺,等.我国果树多倍体育种研究进展[J].果树学报,2004,21(6):592-597.
    [87]Watanabe S, NakanoY, Okano K, et al. Effect of cropping season on the formation of empty seeds in seedless watennelon fiuits produced by soft-irradiated [J]. Acta Hort, 2002,588:89-92.
    [88]王子欣.四倍体大白菜的选育[J].华北农学报,1992,5(3):32-35.
    [89]Ehrendorfer F. Polyploidy and distribution [A]. In polyploidy-biological relevance (Lewis WH, ed.)[M]. New York:Plenum,1980,45-60.
    [90]Levin DA. Polyploidy and novelty in flowering plants [J]. The Ameriean naturalist, 1983,122:1-25.
    [91]Ramsey J, Schemske DW. Neopolyploidy in flowering Plants [J]. Annual Review of Eoclogy and Systematies,2002, (33):589-639.
    [92]谭素英主编(全国无子西瓜科研协作组编).无子西瓜栽培与育种,北京:中国农业出版社,2001:16-26.
    [93]高山林,朱丹妮,蔡朝晖,等.丹参四倍本优良新品系61-2-2的选育与鉴[J].中国中药杂志,1995,(6):333-335.
    [94]乔传卓,吴美区,戴富宝,等.菘蓝多倍体育种的研究[J].植物学报,1989,31(9):678-683.
    [95]李世民,梁可钧,葛传吉,等.怀牛膝多倍体育种的研究[J].中药通报,1998,13(7):395.
    [96]国信.“九丰一号”金银花通过鉴定[J].西南园艺,2005,(6):18.
    [97]彭卫欣,谢晓亮.药用植物多倍体育种研究进展[J].河北农业科学,2002,6(3):47-50.
    [98]高山林.药用植物育种的思路、方法和实践[A].见:严永清.中药现代研究的思路和方法[M].北京:化学工业出版社:2006:128-134.
    [99]陈发棣,蒋甲福,房伟民.秋水仙素诱导菊花脑多倍体的研究[J].上海农业学报,2002,18(1):46-50.
    [100]段英姿,牛应泽,刘玉贞,等.南丹参离体快速繁殖与多倍体诱导[J].植物生理学通讯,2003,39(3):201-205.
    [101]柴兴容,童莉,王欣,等.甜瓜四倍体育种及其生产利用研究[J].中国西瓜甜瓜,1998,14(3):16-19.
    [102]关博夫.桑属细胞学研究[J].日本信洲大学纤维学部纪要20号.1959,30.
    [103]刘文革,阎志红,王鸣.不同染色体倍性西瓜植株光合色素的研究[J].中国西瓜甜瓜,2003,(1):1-3.
    [104]Micheal E, Compton D, Gray J, et al. Identification of tetraploid regenerants from cotyledons of diploid watermelon cultured in vitro. Euphytica,1996,87:165-172.
    [105]余茂德,韩厚春,刘地英.不同倍数体桑树叶片气孔的观察比较[J].蚕业科学,1989,15(1):238-241.
    [106]李爱华,何立珍.同源四倍体黄花菜减数分裂行为及其育性的探讨[J].湖南农业大学学报,1998,24(1):14-17.
    [107]邹道谦,申书兴.四倍体番茄低稔性胚胎学研究[J].华北农学报,1990,5(1):10-16.
    [108]谭素英,黄贞光,刘文革,等.同源四倍体西瓜的胚胎发育研究[J].中国西瓜甜瓜,1998(1):2-5.
    [109]刘学崛,申书兴,孙日飞,等.大白菜二倍体与四倍体杂交后代倍性及胚胎学观察[J].园艺学报,1996,23(3):309-311.
    [110]胡金良,徐汉卿,刘惠吉.二倍体和四倍体小白菜的胚胎学研究[J].南京农业大学学报,1996,19(4):15-18.
    [111]Malepszys, Sarreb DA. Triploids in cueumber:I. Factors influencing embryoreseue effieieney. II. Characterization of embryo rescue plants [J]. Plant Breeding Abstacts, 1998,68:12.
    [112]张成合,张书玲,申书兴,等.“青露”菜薹三倍体的获得及其胚胎学观察[J].园艺学报,2001,28(4):317-322.
    [113]余茂德.桑树染色体倍数性的研究[J].四川蚕业,1988,3:10-12.
    [114]Olimpienko GS, Pavlova NA. Characterist ics of the distant of gamma irradiation of seeds for diploid and polyploidy plants [J]. Radia Bioa Radioa,1995,35(4):5181.
    [115]乔传卓,崔熙.药用植物多倍体的应用[J].中药材科技,1981,4(4):40.
    [116]张建军,殷丽青,张伟萍,等.莳菜四倍体的特征及田间耐热性[J].上海农业学报,1998,14(2):35-40.
    [117]刘惠吉,杨振兴.二倍体、四倍体白菜体细胞得质壁分离状况与抗性关系的研究[A].上海:上海科学技术出版社,1998:67-69.
    [118]刘文革,阎志红,张红梅,等.不同倍性西瓜发芽种子成苗过程中的耐盐性研究[J].中国西瓜甜瓜,2002,(3):1-3.
    [119]刘选明,周朴华,何立珍.四倍体黄花菜花蕾性状和营养成分分析[J].园艺学报,1995,22(2):191-192.
    [120]朱英,来平凡、L.石营蒲的研究近况[J].浙江中医学院学报,2001,25(3):80-81.
    [121]吕世民,粱可钧,葛传吉,等.怀牛膝多倍体育种的研究[J].中药通报,1988,13(7):395-398.
    [122]高山林,徐德然,蔡朝晖,等.丹参同源四倍体新物种的培育[J].中国药科大学学报,1992,23(4):224-228.
    [123]彭菲,张胜,刘塔斯,等.四倍体白芷药材中欧前胡素的含量测定[J].中国中药杂志,2002,27(6):426-427,459.
    [124]程心文,高山林,卞云云.白术同源四倍体的诱导和鉴定及与二倍体过氧化物每的比较[J].植物资源与环境学报,2003,12(1):20.
    [125]Soltis DE, Soltis PS. Polyloidy:recurrent formration and genome evolution [J]. Trends in Ecology & Evolution,1999,14(9):348-352.
    [126]张旺凡,汪友蓉.多倍体育种技术在药用植物领域应用进展[J].中医药导报,2006,12(2):83-85.
    [127]张汗明,许铁峰,郭美丽,等.药用植物的多倍体育种[J].中草药,2002,33(7):1-2.
    [128]张兴翠,周昌华,殷家明,等.药用百合的多倍体诱导及快速繁殖[J].西南农业大学学报,2003,25(1):14-17.
    [129]胡雄贵.石刁柏多倍体诱导与辐射诱变的分子鉴定[D].长沙:湖南农业大学,2005.
    [130]Kenton A, Parokonny AS, Gleba YY, et al. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics [J]. Mol Gen Genet,1993,240:159-169.
    [131]Jellen EN, Gill BS, Cox TS. Genomic in situ bybridization differentiates between A/D-and C-genome chromatin and detects intergenomic translocations in polyploidy oat species (Genus Avena) [J]. Genome,1994,37:613-618.
    [132]Chen Q, Armstrong K. Genomic in situ hybridization in Avena sativa [J]. Genome, 1994,37:607-612.
    [133]Shoemaker R, Olson T, Kanazin V. Soybean genome organization:evolution of a legume genome, in Genomes of Plants and Animals:21st Stadler Genetics Symposium (Gustafson JP & Flavell RB eds) [M]. New York:Plenum Press,1996:139-150.
    [134]Jiang J, Gill BS. Different species-specific chromosome translocations in Triticum timopheevii and T.turgidum support the diphyletic origin of polyploidy wheats [J]. Cromosome Res,1994,2:59-64.
    [135]Devos KM, Millan T, Gale MD. Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley [J]. Theor Appl Genet,1993,85: 784-792.
    [136]Devos KM, Dubcovsky J, Dvorak CN, et al. Structural evolution of wheat chromosomes 4A,5A and 7B and its impact on recombination [J]. Theor Appl Genet, 1995,91:282-288.
    [137]Gill BS. Nucleocytoplasmic interaction (NCI) hypothesis of genome evolution and speciation in polyploidy plants[A]. In:Sasakuma T & Kinoshita T. Proceedings of the Kihara Memorial International Symposium on Cytoplasmic Engineering in Wheat [M]. Japan:Yokohama,1991:48-53.
    [138]Song K, Lu P, Tang K, et al. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution [J]. Proc Natl Acad Sci USA,1995, 92:7719-7723.
    [139]Axelsson T, Bowman C, Sharpe AG, et al. Amphidiploid Brassica juncea contains conserved progenitor genomes [J]. Genome,2000,43:679-688.
    [140]Feldman M, Liu B, Segal G, et al. Rapid elimination of low-copy DNA sequences in polyploidy wheat:a possible mechanism for differentiation of homoeologous chromosomes [J]. Genetics,1997,147:1381-1387.
    [141]Ozkan H, Levy AA, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group [J]. Plant Cell,2001,13:1735-1747.
    [142]Shaked H, Kashkush K, Ozkan H, et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat [J]. Plant Cell,2001,13:1749-1759.
    [143]Han F, Fedak G, Guo W, et al. Rapid and repeatable elimination of a parental genome-specific DNA repeat (Gc1R-1a) in newly synthesized wheat allopolyploids [J]. Genetics,2005,170:1239-1245.
    [144]Liu ZL, Dong YZ, Liu B. Characterization of two groups of low-copy and specific DNA sequences isolated from chromosome 7B of common wheat [J]. Acta Botanica Sinica,2002,44(8):946-950.
    [145]Rieseberg LH,Van FC, Desrochers AM. Hybrids speciation accompanied by genomic reorganization in wild sunflowers [J]. Nature,1995,375:313-316.
    [146]Nathalie C, Salse J, Sabot F, et al. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops) [J]. The Plant Cell,2005,17:1033-1045.
    [147]Han FP, Liu B, Fedak G, et al. Genomic constitution and variation in five partial amphiploids of wheat-thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis [J]. Theoretical and Applied Genetics,2004,109(5): 1070-1076.
    [148]Ozkan H, M.Tuna M, Arumuganathan K, et al. Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) Group [J]. Journal of Heredity,2003,94:260-264.
    [149]Pontes O, Neves N, Silva M, et al. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome [J]. Proc Natl Acad Sci USA,2004,101:18240-18245.
    [150]Wang YM, Dong ZY, Zhang ZJ, et al. Extensive de novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.) [J]. Genetics,2005, 170:1945-1956.
    [151]Joshua AU, Pablo AQ, Thomas C. Osborn.Detection of Chromosomal Rearrangements Derived From Homeologous Recombination in Four Mapping Populations of Brassica napus L [J]. Genetics,2005,169:967-979.
    [152]McClintock B. The significance of responses of the genome to challenge [J]. Science,1984,226:792-801.
    [153]Feldman M, Liu B, Segal G, et al. Rapidelimination of low-copy DNA sequences in polyploidy wheat:a possible mechanism for differentiation of homoeologous chromosomes [J]. Genetics,1997,147:1381-1387.
    [154]Kashkush K, Feldman M, Levy AA. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid [J]. Genetics,2002,160:1651-1659.
    [155]Comai, L. Genetic and epigenetic interactions in allopolyploid plants [J]. Plant Mol Biol,2000,43:387-399.
    [156]Lee HS, Chen ZJ. Protein-codinggenes are epigenetically regulated in Arabidopsis polyploids [J]. Proc Natl Acad Sci USA,2001,98:6753-6758.
    [157]Adams KL, Percifield R, Wendel JF. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid [J]. Genetics,2004,168:2217-2226.
    [158]Adams, KL, Wendel JF. Exploring the genomic mysteries of polyploidy in cotton [J]. Biol J Linn Soc,2004,82:573-581.
    [159]He P, Friebe BR, Gill BS. Allopolyploidy alters gene expression in the highly stable hexaploid wheat [J]. Plant Mol Biol,2003,52:401-414.
    [160]Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat [J]. Nat Genet,2003,33,102-106.
    [161]Comai L, Tyagi AP, Winter K, et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids [J]. Plant Cell,2000,12: 1551-1567.
    [162]Comai L, Madlung A, Josefsson C, et al. Do the different parental'heteromes' cause genomic shock in newly formed allopolyploids? [J]. Philos Trans Royal Soc,2003, 358:1149-1155.
    [163]Madlung A, Tyagi AP, Watson B, et al. Genomic changes in synthetic Arabidopsis polyploids [J]. Plant J,2005,41:221-230.
    [164]Keuoikdtm N. Towards an undetstanding of the molecular mechanisms regulating gene expression during diploidization in phylogenetically polyploidy lower vertebrates [J]. Genet,1983,65:11-18.
    [165]Ohno S. Evolution by Gene Duplication [M]. New York:Springer-Verlag. 1970:160.
    [166]Henikoff S, Matzke MA. Exploring and explaining epigenetic effects [J]. Trend Genet,1997,13:293.
    [167]Pikaard CS. Nucleolar dominance and silencing of transcription [J]. Trends Genet, 1999,4:478-483.
    [168]Matzke MA, Primig M, Trnovsky J, et al. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants [J]. EMBO J,1989,8: 643-649.
    [169]Napoli CC. Lemieux, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans [J]. Plant Cell,1990,2:279-289.
    [170]Elkind Y, Edwards R, Mavandad M, et al. Abnormal-plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene [J]. Proc Natl Acad Sci USA,1990,87: 9057-9061.
    [171]Scheid OM, Jakovleva L, Afsar K, et al. A change of ploidy can modify epigenetic silencing [J]. Proc Natl Acad Sci USA,1996,93:7114-7119.
    [172]Galitski T, Saldanha AJ, Styles CA, et al. Ploidy regulation of gene expression [J]. Science,1999,285:251-254.
    [173]Galili G., Feldman M. Intergenomic suppression of endosperm protein genes in common wheat [J]. Can J Genet Cytol,1984,26:651-656.
    [174]Galili G, Levy AA, Feldman M. Gene-dosage compensation of endosperm proteins in hexaploid wheat Triticum aestivum [J]. Proc Natl Acad Sci USA,1986,83:6524-6528.
    [175]Hotchkiss RD. The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography [J]. J Biol Chem,1948,175:315.
    [176]Richards EJ. DNA methylation and plant development [J]. Trend Genet,1997,13: 319.
    [177]Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and ecology of intragenomic parasites [J]. Trend Genet,1997,13:335.
    [178]Reinisch KM, Chen L, Verdine GL, et al. The crystal structure of Haelllmethyltransferase covalently complexed to DNA:an extrahelical cytosine and rearranged base pairing [J]. Cell,1995,82:143.
    [179]Pfeifer GP, Steigerwald SD, Hansen RS, et al. Polymerase-chain reaction aided genomic sequencing of an X chromosome linked CpG island:methylation patterns suggest clonal inheritance, CpG sites autonomy, and an explanation of activity stability [J]. Proc Natl Acad Sci USA,1990,87:8252.
    [180]Gonzalgo ML, Jones PA. Mutagenic and epigenetic effects of DNA methylation [J]. Mutat Res,1997,386:107.
    [181]Osborn TC, Pires JC, Birchler JA, et al. Understanding mechanisms of novel gene expression inpolyploids [J]. Trends Genet,2003,19:141-147.
    [182]Guo M, Davis D, Birchler JA. Dosage effect on gene expression in a maize ploidy series [J]. Genetics,1996,142:1349-1355.
    [183]Guillaume B, Kenneth HW. Functional divergence of duplicated genes fromed by polyploidy during Arabidopsis evolution [J]. The Plant Cell,2004,16:1679-1691.
    [184]Sarah P. Otto in polyploids, one plus one does not equal two [J]. Trends in Ecology and Evolution,2003,18:431-433.
    [189]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet,2001,103:455-461.
    [190]Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers [J]. Genetic Resources and Crop Evolution,2003,50(3):227-238.
    [191]Lin X, Kaul S, Rounsley S, et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana [J]. Nature,1999,402:761-768.
    [192]Copenhaver GP, Nikel K, Kuromori T, et al. Genetic definition and sequence analysis of Arabidopsis centromeres [J]. Science,1999,286:2486-2474.
    [193]EU Arabidopsis Genome Sequencing Consortium and Cold Spring Harbor. Louis, and the PE Bio-systems Arabidopsis Sequencing Consortium Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana [J]. Nature,1999,291: 484-488.
    [194]林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679.
    [195]潘俊松,王刚,李效尊,等.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位[J].自然科学通报,2005,15(2):167-172.
    [196]王建设,姚建春,刘玲,等.利用中国香瓜与哈密瓜的F2群体构建SRAP连锁遗传图谱[J].园艺学报,2007,34(1):135-140.
    [197]Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbitapepo using SRAP and AFLP markers [J]. Theor Appl Genet,2003,107: 271-282.
    [198]LI Y, ZHANG CQ. A molecular marker-SRAP technique optimization and application analysis [J]. Chinese Agricultural Science Bulletin,2005,21(5):108-112.
    [199]陶莉,王跃进,尤敏,等.AFLP用于构建罗汉果DNA指纹图谱及其幼苗雌雄鉴别[J].武汉植物学研究,2005,23(1):77-80.
    [200]秦新民,黄夕洋,蒋水元.罗汉果性别相关的RAPD标记[J].广西师范大学学报:自然科学版,2007,25(3):109-112.
    [201]周俊亚,唐绍清.栽培罗汉果遗传多样性的RAPD分析[J].分子植物育种,2006,4(1):71-78.
    [202]彭云滔,唐绍清,李伯林,等.野生罗汉果遗传多样性的ISSR分析[J].生物多样性,2005,13(1):36-42.
    [203]周俊亚,唐绍清,向悟生,等.栽培罗汉果遗传多样性的ISSR分析[J].广西植物,2005,25(5):431-436.
    [204]Sterward C N Jr, Via L E. A rapid CTAB DNA isolation technique used for RAPD fingerprinting and other PCR application [J]. Bio Techniques,1993,14:748-751.
    [205]Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103(2-3):455-461.
    [206]Adams KL, Cronn R, Percifield R, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA,2003,100:4649-4654.
    [207]Kovarik A, Matyasek R, Lim KY, et al. Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc,2004,82:615-625.
    [208]Salmon A, Ainouche ML, Wendel JF. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol,2005,14: 1163-1175.
    [209]Ma XF, Gustafson JP. Timing and rate of genome variation in triticale following allopolyploidization. Genome,2006,49:950-958.
    [210]Tate JA, Ni ZF, Scheen AC, et al. Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics,2006,173:1599-1611.
    [211]Gaeta RT, Pires JC, Iniguez-Luy F, et al. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotypic variation. Plant Cell, 2007,19:3403-3417.
    [212]He P, Friebe BR, Gill B, et al. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Molecular Biology,2003,52:401-414
    [213]Gaeta RT, Yoo SY, Pires JC, et al. Analysis of Gene Expression in Resynthesized Brassicanapus Allopolyploids Using Arabidopsis 70mer Oligo Microarrays. PLoS ONE, 2009,4(3):e4760.
    [214]Pires JC, Zhao J, Schranz ME, et al. Flowering time divergence and genomic rearrangements in resynthesized polyploids(Brassica). Biol J Linn Soc,2004,82: 675-688.
    [215]Pignatta D, Dilkes BP, Yoo SY, et al. Differential sensitivity of"the Arabidopsis thaliana transcriptome and enhancers to the effects of genome doubling. New Phytologist, 2010,186:194-206.
    [216]Albertin W, Brabant P, Catrice O, et al. Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. Proteomics,2005, 5(8):2131-9.
    [217]Weiss H, Maluszynska J. Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas.,2000,133(3):255-61.
    [218]Hegarty MJ, Jones JM, Wilson ID, et al.2005. Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome during hybrid speciation. MolEcol,2005,14:2493-2510.
    [219]Adams KL. Evolution of duplicate gene expression in polyploid and hybrid plants. J Hered,2007,98:136-141.
    [220]Luca Comai. The advantages and disadvantages of being polyploid. Nature Publishing Group.2005,6:836-846.
    [221]Storchova Z, Breneman A, Cande J, et al. Genome-wide genetic analysis of polyploidy in yeast. Nature,2006,443:541-547.
    [222]Sheri A. Church, Emma J, et al. Gene Expression in a Wild Autopolyploid Sunflower Series. Journal of Heredity,2009,100(4):491-495.
    [223]焦锋,楼程富,张有做,等.桑树变异株系基因组DNA扩增多态性(RAPD)研究[J].蚕业科学,2001,27(3):165-169.
    [224]张有做,楼程富,周金妹,等.不同倍性桑品种基因组DNA多态性比较[J].浙江农业大学学报,1998,24(1):79-81.
    [225]王卓伟,余茂德,鲁成.桑树二倍体及人工诱导的同源四倍体遗传差异的AFLP分析[J].植物学通报,2002,19(2):194-200.
    [226]陈锦华,周力,高和平,等.秋水仙素诱导辣椒染色体结构变异初探[J].湖北农业科学,1995,(6):53-55.
    [227]马国斌.西瓜甜瓜体细胞无性系的发生、变异与遗传转化研究[J].西安:西北农业大学博士学位论文,1997.
    [228]李严,张春庆.西瓜杂交种遗传多态性的SRAP标记分析[J].园艺学报,2005,32(4):643-647.
    [229]李晓慧,田朝阳,王从彦.SRAP分子标记分析西瓜遗传多样性[J].生物技术,2007,17(3):23-26.
    [230]林忠旭,张献龙,聂以春.新型分子标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析[J].遗传学报,2004,31(6):622-626.
    [231]任羽,王得元,张银东,等.辣椒SRAP-PCR反应体系得建立与优化[J].分子植物育种,2004,2(5):689-693.
    [232]Kaoru TY. cDNA cloning of regeneration-specific genes in rice by differential screening of randomly amplified cDNA using RAPD primers [J]. Plant Cell Physiol, 1994,35:1003-1007.
    [233]Bachem CWB, Domen RJFJ, Visser RGF. Transcript imaging with cDNA-AFLP: A step-by-step protocol [J]. Plant Mol Biol Rep,1998,16:157-73.
    [234]Song KM, Osborn TC. A method for examining expression of homologous genes in plant polyploid [J]. Plant Molecular Biology.1994,26:1065-1071.
    [235]Guo M, DavisD, Birehler JA. Dosage effects on gene expression in a maize ploidy series [J]. Geneties,1996,142(4):1349-1355.
    [236]Lee SJ, Shin JS, Park KW, et al. Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanatus (Thunb.) Mansf.] germplasm [J]. Theor Appl Genet,1996,92:719-725.
    [237]Riddle NC, Kato A, Birchler JA. Genetic variation for the response to ploidy change in Zea mays L. Theor Appl Genet,2006,114:101-111.
    [238]Lu B, Pan X, Zhang L, et al. A genome-wide comparison of genes responsive to autopolyploidy in Isatis indigotica using Arabidopsis thaliana affymetrix chips. Plant Mol Biol Rep,2006,24:197-204.
    [1]Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase [J]. J Mol Biol,1975,94 (3):441-448.
    [2]Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain terminating inhibitors [J]. Proc Natl Acad Sci USA,1977,74 (12):5463-5467.
    [3]Maxam AM, Gilbert W. A new method for sequencing DNA [J]. Proc Natl Acad Sci USA,1977,74(2):560-564.
    [4]Maxam AM, GilbertW. Sequencing end-labeled DNA with base specific chemical cleavages [J]. Methods Enzymol,1980,65(1):499-560
    [5]Smith LM, Fung S, Hunkapiller MW, et al. The synthesis of oligonucleotides containing an aliphatic amino group at the 5'terminus:synthesis of fluorescent DNA primers for use in DNA sequence analysis [J]. Nucleic Acids Res,1985,13(7): 2399-2412.
    [6]Jorgenson JW, Lukacs KD. Free-zone electrophoresis in glass capillaries [J]. Clin Chem,1981,27(9):1551-1553.
    [7]Jorgenson JW, Lukacs KD. Capillary zone electrophoresis [J]. Science,1983, 222(4621):266-272.
    [8]Huang XC, QuesadaMA, Mathies RA. DNA sequencing using capillary array electrophoresis [J]. Anal Chem,1992,64(18):2149-2154.
    [9]Woolley AT, Mathies RA. Ultra-high-speed DNA sequencing using capillary electrophoresis chips [J]. Anal Chem,1995,67(20):3676-3680.
    [10]Drmanac R, Labat I, Brukner I, et al. Sequencing of megabase plus DNA by hybridization:theory of the method [J]. Genomics,1989,4(2):114-128.
    [11]邱超,孙含丽,宋超.DNA测序技术发展历程及国际最新动态[J].硅谷, 2008(17):127-129.
    [12]Margulies M, Egholm M, Altman WE, et al. Genome sequencing in micro fabricated high-density picolitre reactors [J]. Nature,2005,437:376-380.
    [13]Schuster SC. Next-generation sequencing transforms todayps biology [J]. NatMethods,2008,5(1):16-18.
    [14]于亮.放眼未来,看新一代测序[J].生物通,2009,68:224.
    [15]Margulies M, Egholm M, Altman WE, et al. Genome sequencing in micro fabricated high-density picolitre reactors [J]. Nature,2005,437(7057):376-380.
    [16]Margulies, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature,2005,437:376-380.
    [17]Li Y, Luo HM, Sun C, et al. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis [J]. BMC Genomics,2010,11:268.
    [18]Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis [J]. BMC Genomics,2010,11:262.
    [19]Bentley DR. Whole-genomere-sequencing [J]. Curr Opin Genet,2006,16(6): 545-552.
    [20]Fields S. Molecular biology site-seeing by sequencing [J]. Science,2007,316(5830): 1441-1442.
    [21]Macevicz SC. DNA sequencing by parallel oligonucleotide extensions. US patent 5750341,1998.
    [22]吴佳妍,肖景发,张若思,等.DNA测序技术引领中国基因组科学走向未来[J].中国科学,2010,40(12):1169-1172.
    [23]Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus×domestica Borkh) [J]. Nat Genet,2010,42:833-839
    [24]Warren WC, Clayton DF, Ellegren H, et al. The genome of a songbird [J]. Nature, 2010,464:757-762.
    [25]Li R, Zhu H, Ruan J, et al. The sequence and de novo assembly of the giant panda genome [J]. Nature,2010,463:311-317.
    [26]Huang S, Li R, Zhang Z, et al. The genome of the cucumber Cucumis sativus L.[J]. Nat Genet,2009,41:1275-1281.
    [27]Schnable PS, Ware D, Fulton RS, et al. The B73 maize genome:complexity, diversity, and dynamics [J]. Science,2009,326:1112-1115.
    [28]Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome [J]. Nature,2010,463(7279):311-317.
    [29]Huang S, Li R, Zhang Z, et al. The genome of the cucumber Cucumis sativus L.[J]. Nature Genetics,2009,41(12):1275-1281.
    [30]Fullwood MJ, Wei CL, Liu ET, et al. Next generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses [J]. Genome Research, 2009,19(4):521-532.
    [31]http://www.1000genomes.org/page. php.
    [32]Feuk L, Carson AR, Scherer SW. Structural variation in the human genome [J]. Nature Reviews Genetics,2006,7(2):85-97.
    [33]Trick M, Long Y, Meng J, et al. Single nucleotide polyn or phism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing [J]. Plant Biotechnology Journal,2009,7(4):334-346.
    [34]Morozova O, Hirst M, Marra MA. Applications of new sequencing technologies for transcrip tome analysis [J]. Annu Rev Genomics Hum Genet,2009,10:135-151.
    [35]Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods,2008,5(7):621-628.
    [36]Sugarbaker DJ, Richards WG, Gordon GJ, et al. Transcriptome sequencing of malignant pleuralmesothelioma tumors [J]. Proc Natl Acad Sci USA,2008,105(9): 3521-3526.
    [37]滕晓坤,肖华胜.基因芯片与高通量DNA测序技术前景分析[J].中国科学,2008,38(10):891-899.
    [38]Huttenhofer A, Schattner P, Polacek N. Non-coding RNAs:hope or hype? [J]. Trends Genet,2005,21(5):289-297.
    [39]Lu J, Shen Y, Wu Q, et al. The birth and death of micro RNA genes in Drosophila [J]. Nature Genetics,2008,40(3):351-355.
    [40]Morin RD, Oconnor MD, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stemcells [J]. Genome Research,2008,18(4):610-621.
    [41]Morin RD, O'Connor MD, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells [J]. Genome Res,2008,18 (4):610-621.
    [42]Ouyang Z, Zhou Q, Wong WH. ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells [J]. Proc Natl Acad Sci USA, 2009,106(51):21521-21526.
    [43]Robertson G, Hirst M, Bainbridge M, et al. Genome wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing [J]. Nature Methods,2007,4(8):651-657.
    [44]Taylor KH, Kramer RS, Davis JW, et al. Ultra deep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing [J]. Cancer Research,2007,67(18):8511-8518.
    [45]Barski A, Cuddapah S, Cui K, et al. High resolution profiling of histone methylations in the human genome [J]. Cell,2007,129(4):823-837.
    [46]Harris TD, Buzby PR, Babcock H, et al. Single-molecule DNA sequencing of a viral genome [J]. Science,2008,320 (5872):106-109.
    [47]http://www. helicosbio.com/.
    [48]http://www. pacificbiosciences. com/.
    [49]http://www. nanoporetech. com/.
    [50]Rusk N. Cheap third-generation sequencing [J]. Nature,2009,6(4):244-245.
    [51]孙海汐,王秀杰.DNA测序技术发展及其展望[J].e-Science技术,2009,6:24-26.
    [52]Pushkarev D, Neff NF, Quake SR. Single-molecule sequencing of an individual human genome [J]. Nat Biotechnol,2009,27(9):847-852.
    [53]解增言,林俊华,谭军,等.DNA测序技术的发展历史与最新进展[J].生物技术通报,2010,8:64-70.
    [54]Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively parallel short read sequencing [J]. Genome Res,2010,20(2):265-272.
    [55]Iseli C, Jongeneel CV, Bucher P. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences [J]. Proc Int Conf Intell Syst Mol Biol,1999:138-148.
    [56]Conesa, A, Gotz S, et al. Blast-GO:a universal tool for annotation, visualization and analysis in functional genomics research [J]. Bioinformatics,2005,21(18):3674-3676.
    [57]Ye J, Fang L, Zheng H, et al. WEGO:a web tool for plotting GO annotations. Nucleic Acids Res (Web Server issue),2006,34:W293-297.
    [58]Kanehisa M, Goto S. KEGG:kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res,2000,28(1):27-30.
    [59]Iseli, C, Jongeneel CV, et al. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences [J]. Proc Int Conf Intell Syst MolBiol,1999:138-48.
    [60]Hoen PAC, Ariyurek Y, Thygesen HH, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms [J]. Nucleic Acids Res,2008,36(21):1-11.
    [61]Morrissy AS, Morin RD, Delaney A, et al. Next-generation tag sequencing for cancer gene expression profiling [J]. Genome Res,2009,19(10):1825-1835.
    [62]Audic S, Claverie JM. The significance of digital gene expression profiles [J]. Genome Res,1997,7(10):986-995.
    [63]Wang T, Zhang NH, Du LF. Isolation of RNA of high quality and yield from Ginkgo biloba leaves [J].Biotechnology Letters,2005,27:629-633.
    [64]王昆,王颖,鲍永利,等.提取高质量人参RNA的方法研究[J].生物化学与生物物理进展,2006,33(1):95-99.
    [65]Provost GL, Herrera R, Paiva JA, et al. A micromethod for high throughput RNA extraction in forest trees [J]. Biol Res,2007,40:291-297.
    [66]张志刚,李栒,官春云,等.改良提取水稻胚乳和拟南芥花柱中DNA和RNA的SDS法[J].植物生理学通讯,2006,42(3):493-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700