用户名: 密码: 验证码:
Rho-kinase和PARP在心肌缺血/再灌注损伤中对心肌细胞凋亡的影响及作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     冠心病已成为我国城乡居民致死的主要原因之一,每年大约70万人死于冠心病,约占全部心血管病死亡的四分之一。再灌注疗法,即尽快恢复心肌缺血区的血供,已成为治疗急性缺血性心脏病的主要方法,然而,Braunwald和Kloner指出再灌注是一把“双刃剑”,因为再灌注本身不仅可能加速心肌损伤,并能引起新的心肌损伤,这也就是我们所说的心脏缺血再灌注(Myocardial ischemia-reperfusion,I/R)损伤。器官移植功能障碍、中风、心肌梗死、休克等都可以导致缺血再灌注损伤。再灌注过程伴随着心肌的生化、结构和功能的变化,决定着心肌细胞的存活和死亡。再灌注能使心脏收缩功能减弱,导致心律失常的发作。有实验证据表明,再灌注引起的心肌细胞不可逆性损伤可导致心肌细胞坏死和凋亡。在缺血再灌注治疗中,如何改善心功能、降低心律失常发生、延迟坏死发作和减少梗死面积,具有十分重要的临床意义。因此,缺血再灌注损伤的研究越来越受到学者们的重视。
     近年来,Rho激酶(Rho-kinase,ROCK)和多ADP核糖聚合酶(poly(ADP-ribose) polymerase,PARP)在心脏缺血再灌注所致心肌细胞凋亡中的研究越来越多。
     ROCK是一类分子量为160KD的丝-苏氨酸蛋白激酶家族,是小G蛋白Rho的下游效应物。Rho激酶由氨基末端激酶催化结构域、卷曲螺旋结构域、羧基末端PH结构域和半氨酸富集结构域组成。ROCK有两种亚型,即ROCKI和ROCKⅡ。ROCK可以介导下游一系列蛋白的磷酸化/脱磷酸化反应,目前已经发现数十个ROCK蛋白底物,如肌球蛋白轻链磷酸酶(MLCP)、肌球蛋白磷酸酶(MYPT-1)、LIM和PTEN等,其中最具特称意义的ROCK的下游底物是MLCP和MYPT-1。ROCK广泛参与多种生命活动,如调节细胞收缩、生长、分化、代谢、迁移、凋亡和基因表达。近期研究表明,ROCK与多种疾病如冠心病、动脉粥样硬化、高血压、肺动脉高压、心力衰竭、糖尿病、中风及恶性肿瘤等的发生发展密切相关。应用ROCK抑制剂Y-27632、法舒地尔和他汀类药物的临床研究都表明,ROCK是多种疾病的一个潜在治疗靶点。
     多ADP核糖聚合酶是存在于真核细胞生物中细胞传导通路中的一个家族酶,现已证明其具有18个超家族,包括PARP-1、PARP-2、PARP-3等等,其中PARP-1的表达谱最广。多ADP核糖聚合酶不仅参与很多重要的细胞通路,还有助于维持染色体结构和基因组的稳定性,检测和修复损伤DNA。DNA修复,基因重组,氧化应激,与DNA结合药物以及蛋白与蛋白的相互作用都能引起多ADP核糖聚合酶活化。然而,多ADP核糖聚合酶过度激活导致NAD+耗竭,减慢糖酵解、电子转移和ATP形成,最终导致细胞功能障碍或者死亡。研究表明,多ADP核糖聚合酶在心脏缺血再灌注损伤、心肌炎、心力衰竭、休克及动脉粥样硬化等多种疾病中起重要作用。
     我们的前期研究发现,ROCK和PARP在大鼠心脏缺血再灌注损伤中都发挥了重要作用,我们还对它们各自的作用机制做了进一步探讨,发现ROCK/JNK/AIF信号通路和PARP/JNK/AIF信号通路都是介导大鼠心脏I/R损伤的重要的通路,但是ROCK和PARP之间是否具有相互作用呢?它们之间的相互作用机制又是什么?这些问题构成了本研究的研究目的。
     在本研究中,我们拟通过建立心肌细胞I/R模型和大鼠心脏I/R模型,从体外试验和体内试验二方面进行深入研究,旨在明确ROCK和PARP在心脏I/R损伤中的是否存在相互作用?如果二者之间存在相互作用,那么,具体作用如何?二者之间通过何种信号通路发挥作用?希望藉此研究,明确ROCK和PARP在心脏I/R损伤中的相互作用及其机制,从而为缺血性心脏病提供新的治疗途径。本研究共分三部分进行:
     第一部分体外试验:ROCK和PARP在心肌细胞缺血再灌注损伤中的关系及其对心肌细胞凋亡的影响;
     第二部分体外试验:ROCK和PARP在心肌细胞缺血再灌注损伤中的相互作用及其机制。
     第三部分体内试验:ROCK和PARP在大鼠心脏缺血再灌注损伤中的相互作用及其机制。
     第一部分体外试验:ROCK和PARP在心肌细胞缺血再灌注损伤中的关系及其对心肌细胞凋亡的影响
     研究目的
     本研究拟培养大鼠乳鼠原代心肌细胞,体外模拟I/R模型,应用Y27632和3-aminobenzamide(3-AB)分别抑制ROCK和PARP的活性,测定心肌细胞的凋亡,明确ROCK和PARP在心肌细胞缺血再灌注损伤中的相互作用。
     研究方法
     1.原代培养心肌细胞:wistar大鼠乳鼠(2日龄),取心脏,并把心脏剪成1mm3的碎块,胰蛋白酶和Ⅱ型胶原酶分次消化,收集细胞,差速贴壁去除成纤维细胞后将未贴壁的心肌细胞种板,37度孵箱中培养。
     2.心肌细胞模拟I/R模型的建立和分组:以无糖缺血盐缓冲液置换培养液,置于37度密闭的孵箱中培养,再给95% N2和5% CO2的混合气体以2L/min的流速通气置换空气。缺氧、缺血孵化后更换新鲜培养基继续孵化造成心肌细胞模拟缺血/再灌注损伤模型。分为以下四组:对照组、I/R组+DMSO组、I/R+Y27632组和I/R+3-AB组。
     3. ROCK和PARP表达的检测:通过Western检测p-MYPT-1和PARP的表达。MYPT-1是ROCK的特异性底物,MYPT-1的磷酸化水平可以表示ROCK的活性。
     4.心肌细胞凋亡的检测:采用末端脱氧核苷酸转移酶介导的末端标记技术(TUNEL)试剂盒检测心肌细胞的凋亡。
     研究结果
     1.ROCK和PARP均参与了I/R损伤,二者之间存在相互作用:在I/R模型中,p-MYPT-1(磷酸化的MYPT-1)和PARP表达明显增高;应用ROCK抑制剂Y27632后,p-MYPT-1和PARP表达均降低;
     应用PARP抑制剂3-AB后,PARP表达降低,而p-MYPT-1表达无明显变化。证明ROCK和PARP均参与了I/R损伤,并且说明PARP是ROCK的下游分子。
     2.抑制ROCK和PARP的活性均可减少心肌细胞凋亡率:
     在对照组中,TUNEL染色阴性。
     在I/R+DMSO组中,TUNEL染色阳性细胞占全部细胞的46.5±1.2%。
     在I/R+ Y27632组中,TUNEL染色阳性细胞占全部细胞的16±0.5%,与I/R+DMSO组相比差异有显著性(P<0.05),说明在I/R大鼠中抑制ROCK活性能显著减少心肌细胞凋亡率。
     在I/R+3-AB组中,TUNEL染色阳性细胞占全部细胞的20±0.3%,与I/R+DMSO组相比相比差异有显著性(P<0.05),说明在I/R中抑制PARP能显著减少心肌细胞凋亡率。
     证明ROCK和PARP在缺血/再灌注损伤中发挥重要作用,抑制ROCK和PARP活性,均可显著降低缺血/再灌注损伤所致的心肌细胞凋亡。
     结论
     1.体外模拟心肌细胞I/R模型中,ROCK和PARP活性明显增加,心肌细胞凋亡率明显升高。
     2.体外模拟心肌细胞I/R模型中,抑制ROCK和PARP活性均可减少心肌细胞的凋亡率。
     3.体外模拟心肌细胞I/R模型中,ROCK和PARP之间具有相互作用,ROCK可能通过调节PARP活性而参与I/R损伤中细胞凋亡的发生。
     第二部分体外试验:ROCK和PARP在心肌细胞缺血再灌注损伤中的相互作用及其机制
     研究目的
     利用乳鼠原代心肌细胞体外建立心肌细胞模拟I/R模型,应用抑制剂Y27632、、LY294002、Ac-DEVD-CHO、3-AB分别抑制ROCK、Akt、caspase-3和PARP活性,测定心肌细胞的凋亡,探讨ROCK和PARP在缺血再灌注中的作用及其作用机制。
     研究方法
     1.心肌细胞原代培养:wistar大鼠乳鼠(2日龄),取心脏,并把心脏剪成1mm3的碎块,胰酶和Ⅱ型胶原酶分次消化,收集细胞,差速贴壁去除成纤维细胞后将未贴壁的心肌细胞中板,37度孵箱中培养。
     2.体外建立心肌细胞模拟I/R模型:以无糖缺血盐缓冲液置换培养液,置于37度密闭的孵箱中培养,再给95% N2和5% CO2的混合气体以2L/min的流速通气置换空气。缺氧、缺血孵化后更换新鲜培养基继续孵化造成心肌细胞模拟缺血/再灌注损伤模型。分为以下六组:对照组、I/R+DMSO组、I/R+Y27632组、I/R+LY294002组、I/R+Ac-DEVD-CHO组和I/R+3-AB组。
     3. ROCK、Akt、caspase-3和PARP活性的检测:ROCK的活性通过Western检测其特异性底物MYPT-1的磷酸化水平来表示。Western检测Akt、p-Akt、cleaved-Caspase-3和PARP的表达。
     4.心肌细胞凋亡的检测:采用末端脱氧核苷酸转移酶介导的末端标记技术(TUNEL)试剂盒检测各组心肌细胞的凋亡。
     研究结果
     1.与对照组相比,心肌细胞I/R损伤中p-MYPT-1、cleaved-Caspase-3、PARP表达增加,p-Akt水平降低。
     证明心肌细胞I/R损伤可增加ROCK、Caspase-3、PARP活性,而降低Akt的磷酸化水平。
     2. I/R+DMSO组心肌细胞凋亡率为60±1.68%;
     I/R+Y27632组心肌细胞凋亡减少至24±0.52%,与I/R+DMSO组相比差异有显著性(P<0.05);
     I/R+Ac-DEVD-CHO组心肌细胞凋亡减少至32±1.24%,与I/R+DMSO组相比差异有显著性(P<0.05);
     I/R+3-AB组心肌细胞凋亡减少至36±0.65%,与I/R+DMSO组相比差异有显著性(P<0.05)。
     证明在I/R中抑制ROCK、Caspase-3和PARP活性能显著减少心肌细胞凋亡。
     3.在I/R+DMSO组p-MYPT-1表达增加,磷酸化Akt表达下降,应用ROCK抑制剂Y27632后磷酸化Akt的表达增高,而应用Akt抑制剂LY294002后,p-MYPT-1表达无明显变化。
     证明磷酸化Akt的表达与ROCK有关,Akt是ROCK的下游分子。
     4.在I/R+DMSO组p-MYPT-1和cleaved-Caspase-3表达增多,应用ROCK抑制剂Y27632,cleaved-Caspase-3表达减少,而应用Caspase-3抑制剂Ac-DEVD-CHO后,p-MYPT-1的表达无明显变化。
     证明Caspase-3是ROCK的下游分子。
     5.在I/R+DMSO组磷酸化Akt的表达降低,cleaved-Caspase-3表达增多,抑制Akt活性后cleaved-Caspase-3表达明显增多,而抑制Caspase-3后,磷酸化Akt的表达无明显变化。
     证明Caspase-3是Akt的下游分子。
     6.在I/R+DMSO组cleaved-Caspase-3和PARP表达增多,PARP的裂解片段(24KD)也明显增多。抑制Caspase-3后,PARP活性降低,PARP的裂解片段减少,而抑制PARP后,cleaved-Caspase-3的表达无明显变化。
     证明PARP是Caspase-3的下游分子。
     结论
     1.心肌细胞模拟I/R模型中,ROCK.Caspase-3和PARP活性增加,而Akt的磷酸化水平降低。抑制ROCK.Caspase-3和PARP活性,能降低心肌细胞凋亡率。
     2.ROCK/Akt/caspase-3/PARP信号通路是介导心肌细胞I/R损伤的一条重要的信号通路。
     第三部分体内试验:ROCK和PARP在大鼠心脏缺血再灌注损伤中的相互作用及其机制
     研究目的
     利用wistar大鼠I/R模型,应用抑制剂fasudil.LY294002.Ac-DEVD-CHO.3-AB分别抑制ROCK.Akt.caspase-3和PARP活性,测定心肌梗死面积和心肌细胞的凋亡,探讨ROCK和PARP在缺血再灌注中的作用及其作用机制。进一步验证体外试验得出的结论。
     研究方法
     1.大鼠心脏I/R模型的建立和分组:采用开胸结扎和松开冠状动脉的方法建立大鼠心脏I/R型。分为以下六组:对照组、I/R+DMSO组、I/R+fasudil组、I/R+ LY294002组、I/R+Ac-DEVD-CHO组和I/R+3-AB组。每组各15只大鼠。
     2. ROCK、Akt、caspase-3和PARP活性的检测:ROCK的活性通过Western检测其特异性底物MYPT-1的磷酸化水平来表示。Western检测Akt、p-Akt、cleaved-Caspase-3和PARP的表达。
     3.心肌梗死面积检测:采用伊文思蓝染色鉴别非缺血区与缺血危险区(AAR),硝基四氮唑蓝(NBT)染色鉴别梗死心肌与非梗死心肌。以称重法计算心肌缺血危险区(伊文思蓝未染区),梗死区(NBT未染区)的重量,心肌梗死范围的大小以梗死区重量占缺血危险区重量的百分比表示。公式为:心肌梗死范围=NBT未染区/伊文思蓝未染区×100%
     4.心肌细胞凋亡的检测:采用末端脱氧核苷酸转移酶介导的末端标记技术(TUNEL)试剂盒检测各组大鼠心肌细胞的凋亡。
     研究结果
     1.与对照组相比,心脏I/R损伤中p-MYPT-1、cleaved-Caspase-3、PARP表达增加,p-Akt水平降低。
     说明心脏I/R损伤可增加ROCK、Caspase-3、PARP活性,而降低Akt的磷酸化水平。
     2.抑制ROCK、Caspase-3和PARP后能减少大鼠心肌梗死面积:
     I/R+DMSO组大鼠的心肌梗死面积占整个左心室面积的60.22±1%,
     I/R+fasudil组大鼠的心肌梗死面积占整个左心室面积的30.5±1.2%,与I/R+DMSO组相比差异有显著性(P<0.05);
     I/R+Ac-DEVD-CHO组大鼠的心肌梗死面积占整个左心室面积的24.9±0.8%,与I/R+DMSO组相比差异有显著性(P<0.05);
     I/R+3-AB组大鼠的心肌梗死面积占整个左心室面积的29.1±0.5%,与I/R+DMSO组相比差异有显著性(P<0.05)。
     证明在I/R中分别抑制ROCK、Caspase-3和PARP活性均能显著减少心肌梗死面积。
     3.在I/R+DMSO组p-MYPT-1表达增加,磷酸化Akt表达下降,应用ROCK抑制剂fasudil后磷酸化Akt的表达增高,而应用Akt抑制剂LY294002后,p-MYPT-1表达无明显变化。
     证明磷酸化Akt的表达与ROCK有关,Akt是ROCK的下游分子。
     4.在I/R+DMSO组p-MYPT-1和cleaved-Caspase-3表达增多,应用ROCK抑制剂fasudil,cleaved-Caspase-3表达减少。而应用Caspase-3抑制剂Ac-DEVD-CHO后,p-MYPT-1的表达无明显变化。
     证明Caspase-3是ROCK的下游分子。
     5.在I/R+DMSO组磷酸化Akt的表达降低,cleaved-Caspase-3表达增多,抑制Akt活性后cleaved-Caspase-3表达明显增多,而抑制Caspase-3后,磷酸化Akt的表达无明显变化。
     证明Caspase-3是Akt的下游分子。
     6.在(?)[/R+DMSO组cleaved-Caspase-3和PARP表达增多,PARP的裂解片段(24KD)也明显增多。抑制Caspase-3后,PARP活性降低,PARP的裂解片段减少,而抑制PARP后,cleaved-Caspase-3的表达无明显变化。
     证明PARP是Caspase-3的下游分子。
     结论:体内试验得出了与体外试验相同的结论:
     1.大鼠心脏I/R损伤模型中,ROCK、Caspase-3和PARP活性增加,而Akt的磷酸化水平降低。抑制ROCK、Caspase-3和PARP活性,能显著减少大鼠心肌梗死面积。
     2. Rho-kinase/Akt/caspase-3/PARP信号通路是介导大鼠心肌细胞I/R损伤的一条重要的信号通路。
     创新性及局限性
     1.创新点
     (1)提出并证实了ROCK和PARP在心脏缺血再灌注造成的心肌细胞凋亡中具有相互作用。
     (2)提出并证实了ROCK/Akt/caspase-3/PARP信号通路是介导心肌细胞I/R损伤的一条重要的信号通路。
     2.局限性
     (1)由于时间及条件的限制,未能应用基因敲除和RNA干扰等技术在组织及细胞水平上研究。
     (2)由于时间及条件的限制,未能过表达Akt,以研究其在组织及细胞水平上的保护性效应。
Background
     Coronary heart disease has been one major cause of disability and death in our country, approximately 700000 people die of coronary heart disease every year, accounting for about one quarter of all death caused by cardiovascular diseases. Reperfusion therapy, which can make the return of blood supply as soon as possible to the ischemic region of the myocardium, has been the chief treatment of acute myocardial ischemia. However, Braunwald and Kloner point out that reperfusion is a "double edged sword", because reperfusion itself can accelerate myocardial damage and can produce additional myocardial injury, which we called the Ischemia/reperfusion (I/R) injury. Ischemia/reperfusion (I/R) injury can be induced by organ transplant dysfunction, stroke, myocardial infarction, shock and so on. Reperfusion is followed by myocardial biochemical, structural, and functional changes and may determine myocardial cell survival and death. Reperfusion can lead to diminished cardiac contractile function and arrhythmia. There is experimental evidence that irreversible myocardial cell injury originated by reperfusion can result in cell necrosis and apoptosis. How to improve myocardial function, decrease the arrhythmogenesis, delay the episode of necrosis, and decrease the infarction size during ischemia/reperfusion injury is of great clinical significance. Therefore, increasingly importance has been attached to ischemia/reperfusion injury.
     Recently, the research of Rho-kinase and poly (ADP-ribose) polymerase in myocardial cell apoptosis caused by ischemia/reperfusion injury has been more and more popular. Rho-kinases (ROCKs) are serine/threonine kinases with a molecular weight of 160 KD and are downstream effectors of the small GTPase Rho. ROCKs consist of an amino-terminal kinase domain, a mid-coiled-coil-forming lesion, the Pleckstrin homology (PH) motif and a carboxy-terminal cysteine-rich domain. There are two isoforms of ROCK:ROCK1 and ROCK2. ROCKs implicated in many kinds of vital movement, including the regulation of cellular contraction, growth, division, metabolism, migration apoptosis and gene expression. According to scientific survey, Rho-kinase is closely related to the development of a wide range of diseases such as coronary heart disease, atherosclerosis, hypertension, pulmonary hypertension, heart failure, diabetes, stroke, cancer and so on. Rho-kinase can mediate a series of Phosphorylation/phosphorylation reaction, dozens of substrates of ROCK have been identified, including:the myosin phosphatase-targeting subunit 1(MYPT1) and the myosin-binding subunit of myosin light chain phosphatase (MLCP), LIM, PTEN, and so on. The first characterized targets of ROCK are MLC and MYPT1. Evidence from clinical use of ROCK inhibitors, such asY-27632, fasudil and statins, supports the hypothesis that ROCK is a potential therapeutic target.
     Poly (ADP-ribose) polymerases are resided in eukaryotes, and they are a family of cell signaling enzymes. There are 18 superfamily, including PARP-1、PARP-2、PARP-3, etc. PARP-1 is the most abundant subtype of poly (ADP-ribose) polymerases. Poly (ADP-ribose) polymerase (PARP) is involved in many important cellular pathways, and it can contribute to chromosomal structure and genomic stability, detects and repairs the damage of DNA. DNA repair, gene rearrangements, oxidative stress, DNA binding drugs and protein-protein interactions can cause the activation of Poly (ADP-ribose) polymerase. However, poly (ADP-ribose) polymerase overactivation can exhausts NAD+, steps down the rate of glycolysis, electron transport, and ATP formation, finally leads to functional impairment or death of cells. Clinical data indicates that, poly (ADP-ribose) polymerase plays an important role in many diseases such as myocardial ischemia/reperfusion injury, myocarditis, heart failure, shock, atherosclerosis and so on.
     In our previous study, we found that both Rho-kinase and PARP play an important role in rat myocardial ischemia/reperfusion injury, and we further study the mechanism of them. We found that both ROCK/JNK/AIF pathway and PARP /JNK/AIF pathway are new pathways of cardiac myocyte injury. But whether there are interactions between Rho-kinase and PARP, what are the mechanisms of their interaction. In our study, we establish myocardial cell I/R model and the rat heart I/R model, investigate the interaction of Rho-kinase and PARP, identify the signaling pathway between them, so that we can provide a new therapeutic approach for ischemic heart disease.
     This study includes there parts:
     PartⅠIn vitro:The relationship and effect of Rho-kinase and PARP on cell apoptosis in the primary myocardial cell model of I/R
     PartⅡIn vitro: The interaction and mechanism of Rho-kinase and PARP on the I/R model of primary cultured myocardial cell
     PartⅢIn vivo:The interaction and mechanism of Rho-kinase and PARP on the rat I/R injury model
     PartⅠIn vitro:The relationship and effect of Rho-kinase and PARP on cell apoptosis in the primary myocardial cell model of I/R
     Objective
     To investigate the interaction of Rho-kinase and PARP on I/R
     Methods
     1. Primary cultures of myocardial cells:obtain the heart of neonatal wistar rat, shred to 1mm3, and then digest with trypsin and collagenaseⅡ. After differential adhesion, put the myocardial cells in incubator.
     2. Establish the hypoxia-reoxygenation injury model of myocardial cell, The following experimental groups were studied. (1) control group; (2) I/R+DMSOgroup; (3) I/R+Y27632group; (4) I/R+3-AB group.
     3. Detect the activity of Rho-kinase and PARP:Rho-kinase activity was assessed by examining phosphorylation of MYPT-1, a well established Rho-kinase specific substrate. Western blot analysis was performed to evaluate Rho-kinase and PARP activity.
     4. Evaluate the apoptotis of myocardial cells, the TUNEL technique was used.
     Results
     1. Rho-kinase and PARP both play an important role in I/R injury, there are interaction between them:Phospho-MYPT-1 and PARP increased during the hypoxia-reoxygenation injury model. Administration of inhibitors of Rho-kinase can depress the expression of Phospho-MYPT-1 and PARP. Administration of inhibitors of PARP can depress the expression of PARP, but do not effect the expression of Phospho-MYPT-1.This indicate that Rho-kinase and PARP both play an important role in I/R injury, and PARP is the downstream molecules of Rho-kinase.
     2. The inhibition of Rho-kinase and PARP can both decrease the apoptosis of myocardial cells:The apoptosis ratio of myocardial cells was 46.5±1.2% in I/R +DMSO group. Administration of Y27632, the apoptosis ratio was 16±0.5%(P<0.05 vs I/R+DMSO group); Administration of 3-AB, the apoptosis ratio was 20±0.3%(P <0.05 vs I/R+DMSO group), demonstrating that inhibition of Rho-kinase and PARP activity reduces myocardial cells apoptosis in rat heart I/R injury.
     Conclusion
     1. Rho-kinase and PARP activities increased in the hypoxia-reoxygenation injury model, they can aggravate the apoptosis of myocardial cells.
     2. Rho-kinase and PARP inhibition in the hypoxia-reoxygenation injury can both reduce the apoptosis of myocardial cells.
     3. There are interactions between Rho-kinase and PARP in the hypoxia-reoxygenation injury. By regulation the activity of PARP and Rho-kinase can reduce the apoptosis of myocardial cells.
     Part II In vitro:The interaction and mechanism of Rho-kinase and PARP on the I/R model of primary cultured myocardial cells
     Objective
     To investigate the effect of Rho-kinase, Akt, caspase-3 and PARP in I/R
     Methods
     1. Primary cultures of myocardial cells from the neonatal wistar rat
     2. Establish the hypoxia-reoxygenation injury model of myocardial cell. The following experimental groups were studied. (1) control group; (2) I/R+DMSO group; (3) I/R+Y27632 group; (4) I/R+LY294002 group; (5) I/R+Ac-DEVD-CHO group; (6) I/R+3-AB group.
     3. Detect the activity of Rho-kinase, Akt, caspase-3 and PARP:Rho-kinase activity was assessed by examining phosphorylation of MYPT-1. Caspase-3 activity was assessed by examining the cleaved-Caspase-3. Western blot analysis was performed to evaluate Akt, p-Akt, cleaved-caspase-3 and PARP activity.
     4. Evaluate the apoptosis of myocardial cells, the TUNEL technique was used.
     Results
     1. The expression of p-MYPT-1.. cleaved-Caspase-3 and PARP were increased in myocardial cell I/R model, but the expression of p-Akt was degraded. This shows that the activity of Rho-kinase、Caspase-3 and PARP increased in myocardial cell I/R model, phosphorylation of Akt was degraded.
     2. The apoptosis ratio of myocardial cell is 60±1.68% I/R+DMSO group. The apoptosis ratio of myocardial cell is significantly reduced to 24±0.52% in I/R+ Y27632 group (P<0.05 vs I/R+DMSO group). The apoptosis ratio of myocardial cell is reduced to 32±1.24% in I/R+LY294002 group (P<0.05 vs I/R+DMSO group). The apoptosis ratio of myocardial cell is reduced to 36±0.65% in I/R+3-AB group (P <0.05 vs I/R+DMSO group). This suggests that inhibition of Rho-kinase, Caspase-3 and PARP activity reduces cell apoptosis.
     3. The expression of p-MYPT-1 increased in I/R+DMSO group, but Phospho-Akt decreased in I/R+DMSO group. After administration of Y27632, the expression of Phospho-Akt was increased. After administration Akt inhibitor, the expression of p-MYPT-1 did not change significantly. This indicates Akt is the downstream molecules of Rho-kinase.
     4. The expression of p-MYPT-1 and cleaved-Caspase-3 were increased in I/R +DMSO group. After administration of Rho-kinase inhibitor, the expression of cleaved-Caspase-3 was decreased. After administration of Caspase-3inhibitor, the expression of p-MYPT-1 did not change significantly. This indicates that Caspase-3 is the downstream molecules of Rho-kinase.
     5. The expression of p-Akt was decreased in I/R+DMSO group, and the expression of cleaved-Caspase-3 were increased. After administration of Akt inhibitor, the expression of cleaved-Caspase-3 was increased. After administration of Caspase-3 inhibitor, the expression of p-Akt did not change significantly. This indicates that Caspase-3 is the downstream molecules of Akt.
     6. The expression of PARP and cleaved-Caspase-3 were increased in I/R+ DMSO group, and the Cleavage fragments (24KD) of PARP was increased too. After administration of Caspase-3-inhibitor, the activity of PARP was decreased, the Cleavage fragments (24KD) of PARP were decreased. After administration of PARP inhibitor, the expression of cleaved-Caspase-3 did not change significantly. This indicates that PARP is the downstream molecules of Caspase-3.
     Conclusion
     1. In I/R model, the activity of Rho-kinase、Caspase-3 and PARP were increased, but phosphorylation of Akt was degraded. Inhibition the activity of Rho-kinase、Caspase-3 and PARP can reduce myocardial infarct size and the ratio of myocardial cell apoptosis.
     2. Rho-kinase/Akt/caspase-3/PARP pathway may be a new pathway of heart I/R injury.
     PartⅢIn vivo:The interaction and mechanism of Rho-kinase and PARP on the rat I/R injury model
     Objective
     To investigate the effect of Rho-kinase, Akt, caspase-3 and PARP in I/R
     Methods
     1. The rat model of I/R:The left anterior descending branch (LAD) of the left coronary artery was occluded and loosened to establish rat heart I/R model. The following experimental groups were studied:(1) control group (n=20) (2) I/R+DMSO group (n=20); (3) I/R+fasudil group (n=20); (4) I/R+LY294002 group (n=20); (5) I/R+Ac-DEVD-CHO group (n=20); (6) I/R+3-AB (n=20).
     2. Detect the activity of Rho-kinase, Akt, caspase-3 and PARP:Rho-kinase activity was assessed by examining phosphorylation of MYPT-1. Caspase-3 activity was assessed by examining the cleaved-Caspase-3. Western blot analysis was performed to evaluate Akt, p-Akt and PARP activity.
     3. Determination of myocardial infarct size:Evans blue and Nitro blue tetrazolium was used to evaluate the infracted and noninfarcted areas. Infarct size was expressed as the percentage of the area at risk (AAR).
     4. Evaluate the apoptosis of myocardial cells, the TUNEL technique was used.
     Results
     1. The expression of p-MYPT-1、cleaved-Caspase-3 and PARP were increased in the I/R model, but the expression of p-Akt was degraded. This shows that the activity of Rho-kinase、Caspase-3 and PARP increased in I/R model, phosphorylation of Akt was degraded.
     2. Inhibition of Rho-kinase, Caspase-3 and PARP activity reduced myocardial infarct size. The infarct sizes of the heart were 60.22±1% in I/R+DMSO group, 30.5±1.2% in I/R+fasudil group,24.9±0.8% in I/R+LY294002 group and 29.1±0.5% in I/R+3-AB group(P<0.05 vs I/R+DMSO group). This indicates that inhibition of Rho-kinase, Caspase-3 and PARP can reduce myocardial infarct size.
     3. The expression of p-MYPT-1 increased in I/R+DMSO group, but Phospho-Akt decreased in I/R+DMSO group. After administration of Y27632, the expression of Phospho-Akt was increased. After administration Akt inhibitor, the expression of p-MYPT-1 did not change significantly. This indicates Akt is the downstream molecules of Rho-kinase.
     4. The expression of p-MYPT-1 and cleaved-Caspase-3 were increased in I/R +DMSO group. After administration of Rho-kinase inhibitor, the expression of cleaved-Caspase-3 was decreased. After administration of Caspase-3 inhibitor, the expression of p-MYPT-1 did not change significantly. This indicates that Caspase-3 is the downstream molecules of Rho-kinase.
     5. The expression of p-Akt was decreased in I/R+DMSO group, and the expression of cleaved-Caspase-3 were increased. After administration of Akt inhibitor, the expression of cleaved-Caspase-3 was increased. After administration of Caspase-3 inhibitor, the expression of p-Akt did not change significantly. This indicates that Caspase-3 is the downstream molecules of Akt.
     6. The expression of PARP and cleaved-Caspase-3 were increased in I/R+DMSO group, and the Cleavage fragments (24KD) of PARP was increased too. After administration of Caspase-3 inhibitor, the activity of PARP was decreased, the Cleavage fragments (24KD) of PARP were decreased. After administration of PARP inhibitor, the expression of cleaved-Caspase-3 did not change significantly. This indicates that PARP is the downstream molecules of Caspase-3.
     Conclusion
     1. In rat I/R model, the activity of Rho-kinase ^ Caspase-3 and PARP were increased, but phosphorylation of Akt was degraded. Inhibition the activity of Rho-kinase-. Caspase-3 and PARP can reduce myocardial infarct size.
     2. Rho-kinase/Akt/caspase-3 /PARP pathway may be a new pathway of rat heart I/R injury.
引文
[I] EUGENE BRAUNWALD, MD, AND ROBERT A. KLONER, MD, PHD.The Stunned Myocardium: Prolonged, Postischemic Ventricular Dysfunction,Circulation 66, No. 6, 1982.
    [2] Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosisinduced by temporary occlusion of a coronary artery in the dog. Arch Pathol1960,70:68-78.
    [3] KobayashiN, HorinakaS, MitaSi etal. Critical role of Rho-kinase pathwayfor cardiac performance and remodeling in failing rat hearts [J]. Cardiovase Res,2002, 55(4): 757_767.
    [4] Shimokawa, H. et al. (2005) Rho-kinase is an important therapeutic target incardiovascular medicine. Arterioscler Thromb Vase Biol. 25,1767-1775
    [5] LoirandG, GuerinP, PacaudP. Rho kinases in cardiovascular physiologyAnd pathophysiology. CircRes, 2006, 98: 322—334.
    [6] Boettner B, Van Aelst L. The role of Rho GTPases in diseasedevelopment. Gene,2002. 286: 155—174.
    [7] Yada, T. et al. Beneficial effect of hydroxyfasudil, a specific Rho-kinase inhibitor,on ischemia/reperfusion injury in canine coronary microcirculation in vivo. J. Am.Coll. Cardiol. 2005,45:599-607
    [8] Hamid, S.A. et al. Rho kinase activation plays a major role as a mediator ofirreversible injury in reperfused myocardium. Am. J. Physiol. Heart Circ. Physiol.2007,292, H2598-H2606
    [9] Rikitake, Y. et al. Inhibition of Rho kinase (ROCK) leads to increased cerebralblood flow and stroke protection.Stroke,2005,36:2251-2257
    [10] Del Re DP, Miyamoto S, Brown JH. RhoA / Rho kinase up-regulate Bax toactivate a mitochondrial death pathway and induce cardiomyocyte apoptosis [J]. JBiolChem, 2007, 282(11): 8069 8078.[II] Norna K, Oyama N, Liao JK. Physiological role of ROCKs in the cardiovascular system[J]. Am J Physiol Cell Physiol, 2006, 290(3): C661-C668.
    [12] DemiryiJrek S, Kara AF, Celik A, et al. Effects of y-27632, a selectiveRho-kinase inhibitor, on myocardial preconditioning in anesthetized rats[J]. BiochemPharmacol, 2005, 69(1): 49—58.
    [13] ShimokawaH, TakeshitaA. Rho—kinase is an important therapeutic target incardiovascular medicine[J]. Arterioscler Thromb Vase Biol, 2005 , 25(9):1767—1775.
    [14]NohriaA , GrunertME, RikitakeY , etal. Rho kinase inhibition improvesend—othelial function in human subjects with coronary artery disease[J]. Circ Res,2006, 99(12): 1426 14732.
    [15]YadaT, ShimokawaH, KajiyaF. Cardioprotective effect of hydroxyfasudil asa specific Rho—kinase inhibitor, on ischemia-reperfusion injury in canine coronarymicrovessels in vivo [J]. Clin Hemorheo 1 Micrcirc, 2006, 34(1—2).- 177—183.
    [16] Bao, W. et al. (2004) Inhibition of Rho-kinase protects the heart againstischemia/reperfusion injury. Cardiovasc Res. 61,548-558
    [17] Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Tanaka E, et al.Beneficial effect of hydroxyfasudil, a specific Rho-kinase inhibitor, onischemia/reperfusion injury in canine coronary microcirculation in vivo. J Am CollCardiol 2005,45:599-607.
    [18] Yada T, Shimokawa H, Kajiya F. Cardioprotective effect of hydroxyfasudil as aspecific Rho-kinase inhibitor, on ischemia-reperfusion injury in canine coronarymicrovessels in vivo. Clin Hemorheol Microcirc 2006,34:177-183.
    [19]Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as amediator of irreversible injury in reperfused myocardium. Am J Physiol Heart CircPhysiol 2007,292:H2598-2606.
    [20]Demiryurek S, Kara AF, Celik A, Tarakcioglu M, Bagci C, Demiryurek AT.Effects of Y-27632, a selective Rho-kinase inhibitor, on myocardial preconditioningin anesthetized rats. Biochem Pharmacol 2005,69:49-58.
    [21] Mark R Cooson, Paul G. Ince, Philip A Usher, Pamela J Shaw. Poly (ADP-ribose)polymerase is found in both the nucleus and cytoplasm of human CNS BrainResearch, 1999, 834: 182—185.
    [22]Sagimura T, Miwa M. Poly(ADP—ribose): historical perspective. Mol Cell Biochem, 1994, 138(1/2): 5-12.
    [23]Kameshita I, MatsudaZ, Tanignchi T, etal. Poly(ADP-Ribose) synthetase,Separation an d identification of three proteolytic fragments as the substrate—bindingdomain, the DNA—binding domain, and the automodification domain. J BiolChem, 1984, 25, 259(8): 4770. 4776.
    [24]Nguewa PA, Fuertes MA, Valladares B, Alonso C, Perez JM. Poly(ADP-ribose)polymerases: homology, structural domains and functions. Novel therapeuticalapplications. Prog Biophys Mol Biol. 2005,88(1): 143-72.
    [25] De Murcia G, Menissier - de Murcia J . Poly(ADP - ribose) polymerase : amolecular nick - sensor . Trends Biochem Sci, 1994, 19(4): 172-176.
    [26] Ivana Seovassi A, Diederich M. Modulation of poly (ADPfibosylafion) inapoptoticcells[J]. Biochem Pharmacol, 2004, 15, 68(6): 1041—1047.
    [27] Decker P, Muller S. Modulating poly (ADP-fibose)pdymerase Activity: potentialfor the prevention and therapy of pathogenic situations involving DNA damage andoxidative stress. CurtPharmBiotechnol, 2002, 3(3): 275—283.
    [28]Pieper AA, VermaA, Zhang J. Poly (ADP-ribose) polymerase, nitric oxideand cell death. Trends Pharmacol Sci. 1999, 20(4): 171. 181.
    [29] Tentofi L, Portamna 1, Graziani G. Potential clinical applications Ofpoly(ADP-ribose) polymerase(PARP)inhibitors. Pharmacol Res, 2002, 45 (2):73—85.
    [30] Anjan Sen, Joseph C. Miller, Rolland Reynolds, James T. Willerson, L.Maximilian Buja, and Kenneth R. Chien. Inhibition of the Release of ArachidonicAcid Prevents the Development of Sarcolemmal Membrane Defects in Cultured RatMyocardial Cells during Adenosine Triphosphate Depletion J. Clin. Invest.October, 1988.Volume 82,1333-1338
    [31] Satoaki Matoba, Tetsuya Tatsumi, Natsuya Keira, Akira Kawahara, KazukoAkashi,Miyuki Kobara, Jun Asayama and Masao Nakagawa. Cardioprotective Effectof Angiotensin-Converting Enzyme Inhibition Against Injuryin Cultured Rat Cardiac Myocytes. Circulation 1999,99:817-822
    [32] BRAUNWALD E, KLONER R A. Myocardial reperfusion: a double edged sword [J] J Clin Invest, 1985, 76(5): 1713 1719.
    [33] Cannon CP, Gibson CM, Lambrew CT, et al. Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. Journal of the AmericanMedical Association, 2000; 283(22):2941-2947.
    [34] Eefting F, Rensing B, Wigman J, et al. Role of apoptosis in reperfusion injury.Cardiovascular Research, 2004; 61(3):414-426.
    [35] Yellon DM, Hausenloy DJ, Myocardial reperfusion injury, The New England Journal of Medicine. 2007; 357(11):1121-1135.
    [36] Gustafsson AB, Gottlieb RA. Heart mitochondria: gates of life and death.Cardiovascular Research, 2008; 77(2):334-343.
    [37] Inserte J, Barrabes JA, Hernando V, Garcia-Dorado D. Orphan targets fo rreperfusion injury. Cardiovascular Research, 2009; 83(2): 169-178.
    [38] Lopaschuk G. Regulation of carbohydrate metabolism in ischemia and reperfusion [J] . AmHeartJ, 2000, I39(2Pt3): S115-S119.
    [39] Kim JK, Pedram A, Raz andi M, et al. Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation ofp38 kinase isoforms [ J ]. J Biol Chem, 2006,281( 10) : 6760 6767.
    [40] Zhao ZQ. Oxidative stress elicited myocardial apoptosis during reperfusion [J].Curr Opin Pharmacology, 2004,4(2), 159-165.
    4l[l徐新春.钙超载与心肌缺血再灌注损伤[J].心血管病学进展,2000,12(4):227.
    [42] MADAULE P, AXEL R. A novel ras-related gene family[J]. Cell, 1985, 41(1):31-40
    [43]MATSUIT, AMANOM, YAMAMOTOT, etal. Rho-associated kinase, anovel serine / threon ine kinase. as a putative target for small GTP binding proteinRho[J]. EMBOJ, 1996, 2208-2216.
    [44] KobayashiN, HorinakaS, MitaS, etal. Critical role of Rho—kinase pathway for cardiac performance and remodeling in failing rat hearts [J]. Cardiovase Res,2002, 55(4): 757-767.
    [45]RientoK, Ridley AJ. Rocks: multifunctional kinases in cell behaviour [J]. Nat Rev Mol Cell Biol, 2003, 4(6); 446-456.
    [46]MarkRCooson, PaulGInce, Philip A Usher, etal. Poly(ADP—ribose) polymerase in found in both the nucleus and cytoplasm of human CNS neurons[J]. Brain Research, 1999, 834: 182—185
    [47]SugimuraT, MiwaM. Poly(ADP—ribose): historical perspective[J]. Mol Cell Biochem, 1994, 138(1/2): 5-12.
    [48] Kameshita I, Matsuda Z, Tanignchi T, et al . Poly (ADP-Ribose) synthetase . Separation and identification of three proteolytic fragments as the substrate—binding domain, the DNA—binding domain, and the automodification domain[J]. JBiolChem, 1984, 25, 259(8): 4770. 4776.
    [49] James D,McCully, Hidetaka Wakiyama,et al. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury [J].Am J Physiol Heart Circ Physiol, 2004,286: 1923-1935
    [50] Murcia JM, Niedcrgang C, Tmcco c , et al . Requirement of poly (ADP-ribose)polymerase in recovery from DNA damage in mice and cells[J]. Proc NaltAcadSciUSA, 1997, 94: 7303-7307
    [51]AbdelkarimGE, GertzK, Harms C, etal. Protective effects of PJ34, a novel,potent inhibitor of poly(ADP-ribose)polymerase(PARP)in in vitro and in vivo modelsofstroke[J]. IntJMolMed, 2001, 7(3): 255-260
    [52] Kerr JF, Wyllie AH, Currie AR.Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug,26(4):239-57.
    [53] Wyllie AH, Kerr JF, Currie AR.Cell death: the significance of apoptosis. Int Rev Cytol. 1980,68:251-306.
    [54] Hendrickx JF,De Wolf A. Special aspects of pharmacokinetics of inhalation anesthesia [J] .HandbExpPharmacol,2008,(182):159-186.
    [55] Alnemri ES, Livings ton DJ, Nicholson DW, et al. Human ICE/CED-3 proteasenomenclature. Cell, 1996, 87(2): 171
    [56] Huo JX, Metz SA, Li GD. p53-independent induction of p21 (wafl/cipl) contributes to the activation of caspases in GTP-depletion-induced apoptosis of insulin-secreting cells. Cell Death Differ,2004,l 1(1): 99-109
    [57] Pendergraft WF 3rd,Rudolph EH,Falk RJ , et al. Proteinase 3 sidesteps caspases and cleaves p21(Wafl/Cipl/Sdil) to induce endothelial cell apoptosis . Kidney Int,2004,65(l):75-84
    [58] ESKES R, DESAGHER S, ANTONSSON B, et al. Bid induces the oligomerlzation and insertion of Bax into the outermitec hondrial embrane [J] . Mol Cell Bid, 2000, 20 (3) : 929-935.
    [59] ROULSTON A, PEINHARDC, AMIRIP, etal. Early activation of c-JunN —terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor—a [J] . Biol Chem, 1998, 273: 10232-10237.
    [60] RAN R V, HERMEL E, CASTRO-OBREGON S, et al. Coupling endoplasmic retieulum stress to the cell death program. Mechanism of caspase activation [J]. BiolChem, 2001, 276 (36) : 33869-33874.
    [61] Engler R L.Gottlieb A R,Burlesin K O. Myocyte cell death by apoptosis during reperfusion. Circulation,1993,88:l-5.
    [62] Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL.. Reperfiision injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994Oct,94(4):1621-8.
    [63] Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium [J].Circ Res, 1996, 79 (5): 949 - 956.
    [64] Maulik N, Yoshida T, Engelman RM, et al. Ischemic preconditioning attenuates apoptotic cell death associated with ischemia /reperfusion [ J]. Mol CellBiochem, 1998, 186( 112) : 139-145.
    [65] Samuil R. Umansky, John P. Shapiro, Grace M. Cuenco,Matthew W.Foehr, Ian C. Bathurst and L.David Tomei. Prevention of rat neonatal cardiomyocyte apoptosisinduced by simulated in vitro ischemia and . Cell Death and Differentiation (1997) 4, 608 - 616.
    [66] Paul A Townsend, Ramsey I. Cutress, Christopher J. Carroll, Kevin M. Lawrence,Tiziano M. Scarabelli, Graham Packham, Anastasis Stephanou, and David S. Latchman. BAG-1 Proteins Protect Cardiac Myocytes from Simulated Ischemia/Reperfusion-induced Apoptosis via an Alternate Mechanism of Cell Survival Independent of the Proteasome. THE JOURNAL OF BIOLOGICAL CHEMISTRY. 2004,279(20), 20723-20728.
    [I] Cantrell DA. Phosphoinositide 3-kinase signalling pathways[J].J Cell Sci, 2001, 114(6): 1439-1445.
    [2] Vivanco I, Sawyers CL.The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2002,2(7): 489-501.
    [3] Ward SG, Finan P. Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agent. Curr Opin Pharmacol, 2003, 3(4): 426-434.
    [4] SCHULZ R. A new paradigm: cross talk of protein kinases during reperfusion saves life [J] . Am J Physiol Heart Circ Physiol, 2005, 288( 1): 1-2.
    [5] Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: The role in control of cell growth, survival, and malignant transformation.Biochemistry (Mosc),2000,65(1): 59-67.
    [6] Henshall DC, Araki T, Schindler CK, et al. Activation of bcl-2 associated death protein and counter-response of Akt within cell populations during serzure-induced neuronal death. J Neurosci, 2002,22(19): 8458-8465.
    [7] Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorlation. J Biol Chem, 2005,280(11): 10781-10789.
    [8] Rssig L, Jadidi AS, Urbich C, et al. Akt dependent Phosphorylation of p 21Cipl regulates PCNA binding and proliferation of endothelial cells[ J]. Mol cell Biol, 2001,21(16): 5644-5657.
    [9] Zhou BP, Liao Y, Xia W, et al. Cytoplasmic localization of p 21Cipl/WAFl by Akt_induced phosphorylation in HER2/ neuoverexpressing cells [J]. Nat Cell Bio,2001,3(3): 245-252.
    [10] Liang J, Zubovitz J, Petrocelli T, et al. PKB/Akt phosphorylates p27,impairs nuclear import of p27 and opposes p27_mediated Gl arrestf J] .Nat Med, 2002,8(10): 1153-1160.[II] Shin I, Yakes FM, Rojo F, et al. PKB/ Akt mediates cellcycle progression by phosphorylation of p27( Kipl) at threonine 157 and modulation of its cellular localization J]. Nat Med, 2002, 8(10):
    [12] Medema RH, Kops GJ, Bos JL, et al. AFX_ like Forkhead transcription factors mediate cell_cycle regulation by Ras and PKB through p27kipl[ J] . Natuer, 2000,404(6779): 782- 787.
    [13] Manning BD, Cantley LC. AKT/ PKB signaling: navigating downstream [J]. Cell,2007, 129(7): 1261-1274.
    [14] HYLDEN JLK, WILCOX GL. Intrathecal morphine in mice: A new technique[J]. European Journal of Pharmacology, 1980, 67: 313-316.
    [15] Stepien A, Izdebska M, Grzanka A. The types of cell death [J].Postepy Hig Med Dosw(Online),2007,61:420- 428.
    [16] Faube 1 S, Ede lstein CL. Caspases as drug targets in ischemic organ injury [J].Curr Drug Targets Immune Endocr Metabol Disord, 2005, 5(3): 269- 287
    [17] Wellington CL, Hayden MR. Caspases and neumdegeneration: On the cutting edge of new the rapeutic approaches [J]. Clin Genet, 2000, 57(1): 1- 5
    [18] Yuste VJ, Sanchez-Lopez I, Sole C, Moubarak RS, Bayascas JR, Dolcet X,Encinas M, Susin SA, Cornelia JX.The contribution of apoptosis-inducing factor,caspase-activated DNase, and inhibitor of caspase-activated DNase to the nuclear phenotype and DNA degradation during apoptosis. J Biol Chem. 2005 Oct21,280(42):35670-83. Epub 2005 Jul 27.
    [19] M. Thirunavukkarasu, S. V. Penumathsa, S. Koneru et al.,"Resveratrol alleviates cardiac dysfunction in streptozotocininduced diabetes: role of nitric oxide, thioredoxin,and hemeoxygenase," Free Radical Biology and Medicine, vol. 43, no. 5,pp. 720-729,2007.
    [20] S. V. Penumathsa, M. Thirunavukkarasu, S. M. Samuel et al., "Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interactionvia Akt, MAPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury," Biochimica et Biophysica Ada, vol. 1792, no. 1,pp. 39-48,2009.
    [21] Y.-M. Kim, T.-H. Kim, D.-W. Seol, R. V. Talanian, and T. R. Billiar, "Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release," Journal of Biological Chemistry, . 273,no. 47,pp. 31437-31441, 1998.
    [22] C. S. Boyd and E. Cadenas, "Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis," Biological Chemistry, vol. 383, no. 3-4, pp.411-423,2002.
    [23] Fumarola C, Guidotti GGStress-induced apoptosisrtoward a symmetry with receptor-mediated cell death. Apoptosis. 2004 Jan,9(l):77-82.
    [24] Visconti R, DAdamio L. Functional cloning of genes regulating apoptosis in neuronal cells [J].Methods Mol Biol, 2007, 399:125- 131.
    [25] Kuribayashi K, Mayes P A, El- Deiry W S. What are caspases 3 and 7 doing upstream of the mitochondria [J]. Cancer Biol Ther, 2006, 5(7):763- 765.
    [26] Lockshin R A. Programmed cell death: history and future of a Concept [J]. J Soc Biol,2005,199(3): 169- 173.
    [27] MAEDA T, HAMABE W, GAO Y, et al. Morphine has an antinociceptive effec tthrough activation of the okadaic-acid-sensitive Ser/Thr protein phosphatases PP2A and PP5 estimated by tail-pinch test in mice [J]. Brain Res, 2005,1056(2): 191-199.
    [28] Abe H, ShibataMA, OtsukiY. Caspase cascade of Fas-mediated apoptosis in human normal endometrium and endometrial carcinoma cells [ J] . Mol Hum Reprod,2006, 12 (9) :535-541.
    [29] Thornberry N A, Lazebnik Y L.Caspase:Enemics within[J].Science, 1998,281:1312-1316.
    [30] McDonald TE, Grinman MN, Carthy CM, Walley KR.Endotoxin infusion in rats induces apoptotic and survival pathways in hearts. Am J Physiol Heart Circ Physiol.2000 Nov,279(5):H2053-61.
    [31] RUDCING Y, AL-GHAZALI R, WENWU L, et al. Pretreatment with probucol attenuates cardiomyocyte apoptosis in a rabbit model of ischemia/reperfusion [J].Scandinavian Journal of Clinical and Laboratory Investigation, 2006,66(7): 549-558.
    [32] Holly T A, Drincic A, Byun Y, et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfiision in vivo. J Mol Cell Cardiol,1999, 31 (9) : 1709-1715.
    [33] Williams DL, Ozment-Skelton T, Li C. Modulation of the phosphoinositide3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury. Shock 2006; 25:432-439.
    [34] Cantley LC.The phosphoinositide 3-kinase pathway. Science 2002; 296:1655-1657.
    [35] Shibata M, Yamawaki T, Sasaki T, Hattori H, Hamada J,Fukuuchi Y, et al.Upregulation of Akt phosphorylation at the early stage of middle cerebral artery occlusion in mice. Brain Res 2002; 942:1-10.
    [36] Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, et al.Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo.Circulation 2001; 104:330-335.
    [37] Izuishi K, Fujiwara M, Hossain MA, Usuki H, Maeta H.Significance of phosphoinositide 3-kinase pathway on ischemic preconditioning followed by ischemia reperfusion in mice liver. Transplant Proc 2003; 35: 132-133. [38] Kwon DS, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK.Signal transduction of MEK/ERK and PI3K/Akt activation by hypoxia/reoxygenation in renal epithelial cells. Eur J Cell Biol 2006; 85: 1189-1199.
    [39] Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E.Salmon M, Lord JM.Serine/threonine protein kinases and apoptosis. Exp Cell Res 2000; 256: 34-41.
    [40] Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell2007; 129:1261-1274.
    [41] Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001,114(Pt 16): 2903-2910.
    [42] Roviezzo F, Cuzzocrea S, Di Lorenzo A, Brancaleone V,Mazzon E, Di Paola R,et al. Protective role of PI3-kinase-Akt-eNOS signalling pathway in intestinal injuryassociated with splanchnic artery occlusion shock. Br J Pharmacol 2007; 151:377-383.
    [43] M. Thirunavukkarasu, S. V. Penumathsa, S, Koneru et al."Resveratrol alleviates cardiac dysfunction in streptozotocininduced diabetes: role of nitric oxide, thioredoxin,and hemeoxygenase," Free Radical Biology and Medicine, vol. 43, no. 5,pp. 2007.
    [44] S. V. Penumathsa, M. Thirunavukkarasu, S. M. Samuel et al., "Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, MAPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury," Biochimica et Biophysica Acta, vol. 1792, no. 1,pp. 39-48,2009.
    [45] Y.-M. Kim, T.-H. Kim, D.-W. Seol, R. V. Talanian, and T. R. Billiar, "Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release," Journal of Biological Chemistry, vol. 273,no. 47,pp. 31437-31441,1998.
    [46] C. S. Boyd and E. Cadenas, "Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis," Biological Chemistry, vol. 383, no. 3-4, pp.411-423,2002.
    [47] Fang Y, Hu J.Toll-like receptor and its roles in myocardial ischemic/reperfusion injury.Med Sci Monit. 2011 Apr l;17(4):RA100-109.
    [48] Ha T, Liu L, Kelley J, Kao RL, Williams D, Li C. Toll-Like Receptors: New Players in Myocardial Ischemia/Reperfusion Injury. Antioxid Redox Signal.2010 Nov21.
    [49]Matthew J. Lovella, Mohammed Yasinb, et al. Bone marrow mononuclear cells reduce myocardial reperfusion injury by activating the PI3K/Akt survival pathway.Atherosclerosis 213(2010)67-76.
    [50] Eldadah, B.A., Faden, A.I., 20O0.Caspase pathways, neuronal apoptosis, andCNS injury. J. Neurotrauma 17,811-829
    [51] Fujimura, M., Morita-Fujimura, Y., Murakami, K., Kawase, M.,Chan, P.H.,1998.Cytosolic redistribution of cytochrome c after transient focal cerebral ischemiain rats. J. Cereb. Blood Flow Metab. 18,1239-1247.
    [52] Deiss, L.P., Galinka, H., Berissi, H., Cohen, O., Kimchi, A., 1996.Cathepsin D protease mediates programmed cell death induced by interferongamma, Fas/APO-1and TNF-alpha.EMBO J. 15, 3861-3870.
    [53] Nakamura, K., Bossy-Wetze, E., Burns, K., Fadel,M.P., Lozyk, M.,Goping, I.S.,Opas, M., Bleackley, R.C., Green, D.R.,Michalak, M.Changes in endoplasmicreticulum luminal environment affect cell sensitivity to apoptosis. J. Cell Biol.2000.150,731-740.
    [54] Arduino, D.M., Esteves, A.R., Cardoso, S.M., Oliveira, C.R., 2009. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson's disease.Neurochem. Int. 55, 341-348
    [55] Chen, L.,Gao, X., 2002. Neuronal apoptosis induced by endoplasmic reticulum stress.Neurochem. Res. 27, 891-898.
    [56] Gao,X.,Zhang,H.,Takahashi,T.,Hsieh, J.,Liao, J.,Steinberg,G.K.,Zhao,H., 2008.The Akt signaling pathway contributes to postconditioning's protection against stroke;the protection is associated with the MAPK and PK.C pathways. J. Neurochem. 105,943-955.
    [57] Marchi, S., Rimessi, A., Giorgi, C, Baldini, C, Ferroni, L., Rizzuto, R.,Pinton,P., 2008. Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli.Biochem.Biophys. Res. Commun.4,501-505.
    [58] Hu, P., Han, Z., Couvillon, A.D., Exton, J.H., 2OO4.Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem. 279,49420-49429.
    [59] Shimoke, K., Utsumi, T., Kishi, S., Nishimura, M., Sasaya, H., Kudo,M., Ikeuchi,T., 2004. Prevention of endoplasmic reticulum stress-induced cell death by brain-derived neurotrophic factor in cultured cerebral cortical neurons. Brain Res.1028,105-111.
    [60] Hyoda,K., Hosoi,T.,Horie,N., Okuma,Y.,Ozawa,K., Nomura,Y., 2OO6.PI3K-Akt inactivation induced CHOP expression in endoplasmic reticulum-stressed cells.Biochem Biophys Res. 340,286-290.
    [61]Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995,376:37-43.
    [62] Hartmut Ruetten, Cornel Badorff, Christian Ihling, Andreas M. Zeiher, Stefanie Dimmeler.Inhibition of Caspase-3 Improves Contractile Recovery of Stunned Myocardium,Independent of Apoptosis-Inhibitory Effects.JACC 2001 38:2063-70
    [63] Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia /reperfusion injury in rats by a caspase inhibitor. Circulation 1998,97:276-281.
    [64] Gottlieb RA, Gruol DL, Zhu JY, Engler RL.Preconditioning in rabbit cardiomyocytes.Role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest1996,97:2391-2398.
    [65] Jurg Grunenfelder, Douglas N. Miniati, Seiichiro Murata, Volkmar Falk,E.GrantHoyt, Murray Kown, Mark L. Koransky and Robert C. Robbins. Upregulation of Bcl-2 Through Caspase-3 Inhibition Ameliorates Ischemia/Reperfusion Injury in Rat Cardiac Allografts. Circulation 2001,104;I-202-I-206
    [66] FAUVEL H, MARCHETTI P, CHOPIN C, FORMSTECHER P,NEVIERE R.Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am J Physiol 2001; 280:H1608-H1614.
    [67] Juan L. Contreras, Mario Vilatoba, Christopher Eckstein, Guadalupe Bilbao, J.Anthony Thompson, and Devin E. Eckhoff, Birmingham, Ala. Caspase-8 and caspase-3 small interfering RNA decreases ischemia/reperfusion injury to the liver in mice. Surgery 2004,136:390-400.
    [68] OHNO M, TAKEMURA G, OHNO A, MISAO J, HAYAKAWAY,MINATOGUCHI S, FUJIWARA T, FUJIWARA H. "Apoptotic" myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation.Circulation 1998,98: 1422-1430.
    [69] OTANI H, UCHIYAMA T, YAMAMURA T, NAKAO Y, HATTORI R,NINOMIYA H, KIDO M, KAWAGUCHI H, OSAKO MJMAMURA H. Effects of the Na+/H+ exchange inhibitor cariporide (HOE 642) on cardiac function and cardiomyocyte cell death in rat ischaemic-reperfused heart. Clin Exp Pharmacol Physiol 2000; 27: 387-393
    [70] HOLLY TA, DRINCIC A, BYUN Y, NAKAMURA S, HARRIS K,KLOCKEFJ, CRYNS VL. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 1999,31:1709-1715.
    [71] MOCANU MM, BAXTER GF, YELLON DM. Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury. Br Pharmacol2000: 130: 197-200.
    [72] HUANG JO, RADINOVIC S, REZAIEFAR P, BLACK SC.In vivo myocardial infarct size reduction by caspase inhibitor administration after the onset of ischemia.Eur J Pharmacol 2000,402:139-142.
    [73] YAOITA H, OGAWA K, KAEHARA K, MARUYAMA Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998, 97:276-281.
    [74] OKAMURA T, MIURA T, TAKEMURA G, FUJIWARA H, IWAMOTO H,KAWAMURA S, KIMURA M, IKEDA YJWATATE M, MATSUZAKI M. Effect of caspase inhibitors on myocardial infarct size and myocyte DNA fragmentation in the ischemia-reperfused rat heart. Cardiovasc Res 2000; 45: 642-650
    [75] VIRAG L,SCOTTGS,CUZZOCREAS,MARMERD,SALZMANAL,SZABO C.Peroxynitrite-induced thymocyte apoptosis:the role of caspase and poly (ADP-ribose)synthetase (PARS) activation. Immunology ,1998, 94: 345-355.
    [76] Tewari M, Quan LT, O'Rourke K et al. Yama/CPP32b, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 1995,81:801-809.
    [77] Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994,371:346-347.
    [78] Gu Y, Sarnecki C, Aldape RA, Livingston DJ, Su MS. Cleavage of poly(ADP-ribose) polymerase by interleukin-1-b-converting enzyme and its homologsTX andNedd-2. J Biol Chem 1995,270:18715-18718.
    [79] Takamichi Uchiyama, Hajime Otani, Takayuki Okada, Hideki Ninomiya,Masakuni Kido, Hiroji Imamura, Shunji Nogi and Yonosuke Kobayashi Nitric Oxide Induces Caspase-dependent Apoptosis and Necrosis in Neonatal Rat CardiomyocytesJ Mol Cell
    [1]Stepien A, Izdebska M, Grzanka A. The types of cell death [J].Postepy Hig Med Dosw(Online),2007,61:420-428.
    [2]Faube 1 S, Ede Istein CL. Caspases as drug targets in ischemic organ in jury [J]. Curr Drug Targets Immune Endocr Metabol Disord,2005,5(3):269-287
    [3]Wellington CL, Hayden MR. Caspases and neumdegeneration:On the cutting edge of new the rapeutic approaches [J]. Clin Genet,2000,57(1):1-5
    [4]Yuste VJ, Sanchez-Lopez I, Sole C, Moubarak RS, Bayascas JR, Dolcet X, Encinas M, Susin SA, Comella JX.The contribution of apoptosis-inducing factor, caspase-activated DNase, and inhibitor of caspase-activated DNase to the nuclear phenotype and DNA degradation during apoptosis. J Biol Chem.2005 Oct 21,280(42):35670-83. Epub 2005 Jul 27.
    [5]M. Thirunavukkarasu, S. V. Penumathsa, S. Koneru et al.,"Resveratrol alleviates cardiac dysfunction in streptozotocininduced diabetes:role of nitric oxide, thioredoxin, and hemeoxygenase," Free Radical Biology and Medicine, vol.43, no.5,pp.720-729, 2007.
    [6]S. V. Penumathsa, M. Thirunavukkarasu, S. M. Samuel et al., "Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, MAPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury," Biochimica et Biophysica Acta, vol.1792, no.1, pp.39-48,2009.
    [7]Y.-M. Kim, T.-H. Kim, D.-W. Seol, R. V. Talanian, and T. R. Billiar, "Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release," Journal of Biological Chemistry, vol.273,no.47, pp.31437-31441,1998.
    [8]C. S. Boyd and E. Cadenas, "Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis," Biological Chemistry, vol.383, no.3-4, pp. 411-423,2002.
    [9]Cantrell DA. Phosphoinositide 3-kinase signalling pathways[J].J Cell Sci,2001,114(6):1439-1445.
    [10]Vivanco I, Sawyers CL.The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer,2002,2(7):489-501.
    [11]Ward SG, Finan P. Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agent. Curr Opin Pharmacol,2003,3(4):426-434.
    [12]SCHULZ R. A new paradigm:cross talk of protein kinases during reperfusion saves life [J]. Am J Physiol Heart Circ Physiol,2005,288(1):1-2.
    [13]Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways:The role in control of cell growth, survival, and malignant transformation.Biochemistry (Mosc), 2000,65(1):59-67.
    [14]Henshall DC, Araki T, Schindler CK, et al. Activation of bcl-2 associated death protein and counter-response of Akt within cell populations during serzure-induced neuronal death. J Neurosci,2002,22(19):8458-8465.
    [15]Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorlation. J Biol Chem,2005,280(11):10781-10789.
    [16]Rssig L, Jadidi AS, Urbich C, et al. Akt dependent Phosphorylation of p 21 Cipl regulates PCNA binding and proliferation of endothelial cells[J]. Mol cell Biol,2001, 21(16):5644-5657.
    [17]Zhou BP, Liao Y, Xia W, et al. Cytoplasmic localization of p 21Cipl/WAFl by Akt_induced phosphorylation in HER_2/neu_overexpressing cells [J]. Nat Cell Bio, 2001,3(3):245-252.
    [18]Liang J, Zubovitz J, Petrocelli T, et al. PKB/Akt phosphorylates p27,impairs nuclear import of p27 and opposes p27_mediated Gl arrest[J].Nat Med,2002, 8(10):1153-1160.
    [19]Shin I, Yakes FM, Rojo F, et al. PKB/Akt mediates cell_cycle progression by phosphorylation of p27(Kipl) at threonine 157 and modulation of its cellular localization J]. Nat Med,2002,8(10):1145-1152.
    [20]Medema RH, Kops GJ, Bos JL, et al. AFX_ like Forkhead transcription factors mediate cell_cycle regulation by Ras and PKB through p27kipl[J]. Natuer,2000, 404(6779):782-787.
    [21]Manning BD, Cantley LC. AKT/PKB signaling:navigating downstream [J]. Cell, 2007,129(7):1261-1274.
    [22]HYLDEN JLK, WILCOX GL. Intrathecal morphine in mice:A new technique [J]. European Journal of Pharmacology,1980,67:313-316.
    [23]Fumarola C, Guidotti GG.Stress-induced apoptosis:toward a symmetry with receptor-mediated cell death.Apoptosis.2004 Jan,9(1):77-82.
    [24]Visconti R, DAdamio L. Functional cloning of genes regulating apoptosis in neuronal cells [J].Methods Mol Biol,2007,399:125-131.
    [25]Kuribayashi K, Mayes P A, El-Deiry W S. What are caspases 3 and 7 doing upstream of the mitochondria [J]. Cancer Biol Ther,2006,5(7):763-765.
    [26]Lockshin R A. Programmed cell death:history and future of a Concept [J]. J Soc Biol,2005,199(3):169-173.
    [27]MAEDA T, HAM ABE W, GAO Y, et al. Morphine has an antinociceptive effect through activation of the okadaic-acid-sensitive Ser/Thr protein phosphatases PP2A and PP5 estimated by tail-pinch test in mice [J]. Brain Res,2005,1056(2):191-199.
    [28]Abe H, Shibata MA, Otsuki Y. Caspase cascade of Fas-mediated apoptosis in human normal endometrium and endometrial carcinoma cells [J]. Mol Hum Reprod, 2006,12 (9):535-541.
    [29]Thornberry N A, Lazebnik Y L.Caspase:Enemics within[J].Science,1998, 281:1312-1316.
    [30]McDonald TE, Grinman MN, Carthy CM, Walley KR.Endotoxin infusion in rats induces apoptotic and survival pathways in hearts. Am J Physiol Heart Circ Physiol. 2000 Nov,279(5):H2053-61.
    [31]RUIXING Y, AL-GHAZALI R, WENWU L, et al. Pretreatment with probucol attenuates cardiomyocyte apoptosis in a rabbit model of ischemia/reperfusion [J]. Scandinavian Journal of Clinical and Laboratory Investigation,2006,66(7):549-558.
    [32]Holly T A, Drincic A, Byun Y, et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol, 1999,31 (9):1709-1715.
    [33]Williams DL, Ozment-Skelton T, Li C. Modulation of the phosphoinositide3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury. Shock 2006; 25:432-439.
    [34]Cantley LC.The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655-1657.
    [35]Shibata M, Yamawaki T, Sasaki T, Hattori H, Hamada J,Fukuuchi Y, et al. Upregulation of Akt phosphorylation at the early stage of middle cerebral artery occlusion in mice. Brain Res 2002; 942:1-10.
    [36]Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, et al.Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 2001; 104:330-335.
    [37]Izuishi K, Fujiwara M, Hossain MA, Usuki H, Maeta H.Significance of phosphoinositide 3-kinase pathway on ischemic preconditioning followed by ischemia reperfusion in mice liver. Transplant Proc 2003; 35:132-133. [38] Kwon DS, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK.Signal transduction of MEK/ERK and PI3K/Akt activation by hypoxia/reoxygenation in renal epithelial cells. Eur J Cell Biol 2006; 85:1189-1199.
    [39]Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E,Salmon M, Lord JM.Serine/threonine protein kinases and apoptosis. Exp Cell Res 2000; 256:34-41.
    [40]Manning BD, Cantley LC. AKT/PKB signaling:navigating downstream. Cell 2007; 129:1261-1274.
    [41]Lawlor MA, Alessi DR. PKB/Akt:a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001,114(Pt 16):2903-2910.
    [42]Roviezzo F, Cuzzocrea S, Di Lorenzo A, Brancaleone V,Mazzon E, Di Paola R, et al. Protective role of PI3-kinase-Akt-eNOS signalling pathway in intestinal injury associated with splanchnic artery occlusion shock. Br J Pharmacol 2007; 151: 377-383.
    [43]M. Thirunavukkarasu, S. V. Penumathsa, S. Koneru et al."Resveratrol alleviates cardiac dysfunction in streptozotocininduced diabetes:role of nitric oxide, thioredoxin, and hemeoxygenase," Free Radical Biology and Medicine, vol.43, no.5,pp.720-729, 2007.
    [44]S. V. Penumathsa, M. Thirunavukkarasu, S. M. Samuel et al., "Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, MAPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury," Biochimica et Biophysica Acta, vol.1792, no.1, pp.39-48,2009.
    [45]Y.-M. Kim, T.-H. Kim, D.-W. Seol, R. V. Talanian, and T. R. Billiar, "Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release," Journal of Biological Chemistry, vol.273,no.47, pp.31437-31441,1998.
    [46]C. S. Boyd and E. Cadenas, "Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis," Biological Chemistry, vol.383, no.3-4, pp. 411-423,2002.
    [47]Fang Y, Hu J.Toll-like receptor and its roles in myocardial ischemic/reperfusion injury.Med Sci Monit.2011 Apr 1;17(4):RA100-109.
    [48]Ha T, Liu L, Kelley J, Kao RL, Williams D, Li C. Toll-Like Receptors:New Players in Myocardial Ischemia/Reperfusion Injury. Antioxid Redox Signal.2010 Nov 21.
    [49]Matthew J. Lovella, Mohammed Yasinb, et al. Bone marrow mononuclear cells reduce myocardial reperfusion injury by activating the PI3K/Akt survival pathway.Atherosclerosis 213(2010)67-76.
    [50]Eldadah, B.A., Faden, A.I.,2000.Caspase pathways, neuronal apoptosis, and CNS injury. J. Neurotrauma 17,811-829
    [51]Fujimura, M., Morita-Fujimura, Y., Murakami, K., Kawase, M.,Chan, P.H.,1998.Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats.J.Cereb.Blood Flow Metab.18,1239-1247.
    [52]Deiss, L.P., Galinka, H., Berissi, H., Cohen, O., Kimchi, A.,1996.Cathepsin D protease mediates programmed cell death induced by interferongamma, Fas/APO-1 and TNF-alpha.EMBO J.15,3861-3870.
    [53]Nakamura, K., Bossy-Wetze, E., Burns, K., Fadel,M.P., Lozyk, M.,Goping, I.S., Opas, M., Bleackley, R.C., Green, D.R.,Michalak, M.Changes in endoplasmicreticulum luminal environment affect cell sensitivity to apoptosis. J. Cell Biol. 2000.150,731-740.
    [54]Arduino, D.M., Esteves, A.R., Cardoso, S.M., Oliveira, C.R.,2009. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death:relevance to Parkinson's disease.Neurochem. Int.55,341-348
    [55]Chen, L.,Gao, X.,2002. Neuronal apoptosis induced by endoplasmic reticulum stress.Neurochem. Res.27,891-898.
    [56]Gao,X.,Zhang,H.,Takahashi,T.,Hsieh, J.,Liao, J.,Steinberg,G.K.,Zhao,H.,2008. The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. J. Neurochem.105, 943-955.
    [57]Marchi, S., Rimessi, A., Giorgi, C., Baldini, C., Ferroni, L., Rizzuto, R.Pinton, P., 2008. Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochem.Biophys. Res. Commun.4,501-505.
    [58]Hu, P., Han, Z., Couvillon, A.D., Exton, J.H.,2004.Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem.279,49420-49429.
    [59]Shimoke, K., Utsumi, T., Kishi, S., Nishimura, M., Sasaya, H., Kudo,M., Ikeuchi, T.,2004. Prevention of endoplasmic reticulum stress-induced cell death by brain-derived neurotrophic factor in cultured cerebral cortical neurons. Brain Res. 1028,105-111.
    [60]Hyoda,K., Hosoi,T.,Horie,N., Okuma,Y.,Ozawa,K., Nomura,Y.,2006.PI3K-Akt inactivation induced CHOP expression in endoplasmic reticulum-stressed cells. Biochem Biophys Res.340,286-290.
    [61]Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995,376:37-43.
    [62]Hartmut Ruetten, Cornel Badorff, Christian Ihling, Andreas M. Zeiher, Stefanie Dimmeler.Inhibition of Caspase-3 Improves Contractile Recovery of Stunned Myocardium,Independent of Apoptosis-Inhibitory Effects. JACC 2001 38(7):2063-70
    [63]Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/ reperfusion injury in rats by a caspase inhibitor. Circulation 1998,97:276-281.
    [64]Gottlieb RA, Gruol DL, Zhu JY, Engler RL.Preconditioning in rabbit cardiomyocytes.Role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 1996,97:2391-2398.
    [65]Jurg Griinenfelder, Douglas N. Miniati, Seiichiro Murata, Volkmar Falk, E.GrantHoyt, Murray Kown, Mark L. Koransky and Robert C. Robbins. Upregulation of Bcl-2 Through Caspase-3 Inhibition Ameliorates Ischemia/Reperfusion Injury in Rat Cardiac Allografts. Circulation 2001,104;I-202-I-206
    [66]FAUVEL H, MARCHETTI P, CHOPIN C, FORMSTECHER P,NEVIERE R. Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am J Physiol 2001; 280:H1608-H1614.
    [67]Juan L. Contreras, Mario Vilatoba, Christopher Eckstein, Guadalupe Bilbao, J. Anthony Thompson, and Devin E. Eckhoff, Birmingham, Ala. Caspase-8 and caspase-3 small interfering RNA decreases ischemia/reperfusion injury to the liver in mice. Surgery 2004,136:390-400.
    [68]OHNO M, TAKEMURA G, OHNO A, MISAO J, HAYAKAWA Y,MINATOGUCHI S, FUJIWARA T, FUJIWARA H. "Apoptotic" myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation. Circulation 1998,98:1422-1430.
    [69]OTANI H, UCHIYAMA T, YAMAMURA T, NAKAO Y, HATTORI R, NINOMIYA H, KIDO M, KAWAGUCHI H, OSAKO M,IMAMURA H. Effects of the Na+/H+ exchange inhibitor cariporide (HOE 642) on cardiac function and cardiomyocyte cell death in rat ischaemic-reperfused heart. Clin Exp Pharmacol Physiol 2000; 27:387-393
    [70]HOLLY TA, DRINCIC A, BYUN Y, NAKAMURA S, HARRIS K,KLOCKE FJ, CRYNS VL. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 1999,31:1709-1715.
    [71]MOCANU MM, BAXTER GF, YELLON DM. Caspase inhibition and limitationof myocardial infarct size:protection against lethal reperfusion injury. Br J Pharmacol 2000; 130:197-200.
    [72]HUANG JO, RADINOVIC S, REZAIEFAR P, BLACK SC.In vivo myocardial infarct size reduction by caspase inhibitor administration after the onset of ischemia. Eur J Pharmacol 2000,402:139-142.
    [73]YAOITA H, OGAWA K, KAEHARA K, MARUYAMA Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998,97: 276-281.
    [74]OKAMURA T, MIURA T, TAKEMURA G, FUJIWARA H, IWAMOTO H, KAWAMURA S, KIMURA M, IKEDA Y,IWATATE M, MATSUZAKI M. Effect of caspase inhibitors on myocardial infarct size and myocyte DNA fragmentation in the ischemia-reperfused rat heart. Cardiovasc Res 2000; 45:642-650
    [75]VIRAG L,SCOTTGS,CUZZOCREAS,MARMERD,SALZMANAL,SZABO C. Peroxynitrite-induced thymocyte apoptosis:the role of caspase and poly (ADP-ribose) synthetase (PARS) activation.Immunology,1998,94:345-355.
    [76]Tewari M, Quan LT, O'Rourke K et al. Yama/CPP32b, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase.Cell 1995,81:801-809.
    [77]Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994,371:346-347.
    [78]Gu Y, Sarnecki C, Aldape RA, Livingston DJ, Su MS. Cleavage of poly(ADP-ribose) polymerase by interleukin-1-b-converting enzyme and its homologs TX and Nedd-2. J Biol Chem1995,270:18715-18718.
    [79]Takamichi Uchiyama, Hajime Otani, Takayuki Okada, Hideki Ninomiya,Masakuni Kido, Hiroji Imamura, Shunji Nogi and Yonosuke Kobayashi Nitric Oxide Induces Caspase-dependent Apoptosis and Necrosis in Neonatal Rat Cardiomyocytes.J Mol Cell Cardiol,2002,34,1049-1061.
    1. Amano M, et al. (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science.275:1308-1311.
    2. Yasui Y, et al. (1998) Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol.143:1249-1258.
    3. Loirand G, Guerin P, Pacaud P. (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res.98:322-334.
    4. Bao W, et al. (2004) Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res.61:548-558.
    5. Zhang J, et al. (2009) Inhibition of the activity of Rho-kinase reduces cardiomyocyte apoptosis in heart ischemia/reperfusion via suppressing JNK-mediated AIF translocation. Clin Chim Acta.401:76-80.
    6. Murry CE, Jennings RB, Reimer KA. (1986) Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation.74:1124-1136.
    7. An J, Varadarajan SG, Novalija E, Stowe DF. (2001) Ischemic and anesthetic preconditioning reduces cytosolic [Ca2+] and improves Ca(2+) responses in intact hearts. Am J Physiol Heart Circ Physiol.281:H1508-1523.
    8. Sanada S, et al. (2004) Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation.110:51-57.
    9. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem.270:27489-27494.
    10. Demiryurek S, et al. (2005) Effects of fasudil, a Rho-kinase inhibitor, on myocardial preconditioning in anesthetized rats. Eur J Pharmacol.527:129-140.
    11. Ji ES, Yue H, Wu YM, He RR. (2004) Effects of phytoestrogen genistein on myocardial ischemia/reperfusion injury and apoptosis in rabbits. Acta Pharmacol Sin. 25:306-312.
    12. Mohanty I, Arya DS, Gupta SK. (2006) Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury. BMC Complement Altern Med.6:3.
    13. Chomczynski P. (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques.15:532-534, 536-537.
    14. Erwig LP, et al. (2006) Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci USA.103:12825-12830.
    15. Tosello-Trampont AC, Nakada-Tsukui K, Ravichandran KS. (2003) Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J Biol Chem. 278:49911-49919.
    16. Song ZF, et al. (2008) Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translation. J Cell Mol Med.12:1220-1228.
    17. Matsui T, et al. (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J.15:2208-2216.
    18. Coleman ML, et al. (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol.3:339-345.
    19. Sahai E, Olson MF, Marshall CJ. (2001) Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBOJ.20:755-766.
    20. Piazzolla D, Meissl K, Kucerova L, Rubiolo C, Baccarini M. (2005) Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling. J Cell Biol.171: 1013-1022.
    21. Manapov F, Muller P, Rychly J. (2005) Translocation of p21(Cipl/WAFl) from the nucleus to the cytoplasm correlates with pancreatic myofibroblast to fibroblast cellconversion. Gut.54:814-822.
    22. Vial E, Sahai E, Marshall CJ. (2003) ERK-MAPK signaling coordinately regulates activity of Racl and RhoA for tumor cell motility. Cancer Cell.4:67-79.
    23. Mavria G, et al. (2006) ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell.9:33-44.
    24. Boulton TG, et al. (1990) An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science.249:64-67.
    25. Torii S, Nakayama K, Yamamoto T, Nishida E. (2004) Regulatory mechanisms and function of ERK MAP kinases. JBiochem.136:557-561.
    26. Sugden PH, Clerk A. (2006) Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal.8:2111-2124.
    27. Bueno OF, Molkentin JD. (2002) Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res.91:776-781.
    28. Lips DJ, et al. (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation.109:1938-1941.
    29. Harris IS, et al. (2004) Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation.110:718-723.
    30. Yamaguchi O, et al. (2004) Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. JClin Invest.114:937-943.
    31. Yue TL, et al. (2000) Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res.86:692-699.
    32. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol.288:H971-976.
    33. Mocanu MM, Bell RM, Yellon DM. (2002) PI3 kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning. J Mol Cell Cardiol.34:661-668.
    34. Hausenloy DJ, Yellon DM. (2004) New directions for protecting the heart against ischaemia-reperfusion injury:targeting the Reperfusion Injury Salvage Kinase(RISK)-pathway. Cardiovasc Res.61:448-460.
    
    [1]Amano M, Chihara K, Kimura K, et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 1997; 275:1308-1311.
    [2]Yasui Y, Amano M, Nagata K, et al. Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol 1998; 143:1249-1258.
    [3]Bao W, Hu E, Tao L, et al. Inhibition of Rho-kinase protects the heart against I/R injury. Cardiovasc Res 2004; 61(3):548-558.
    [4]Daugas E, Nochy D, Ravaqnan L, et al. Apoptosis-inducing factor (AIF):aubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS LETT 2000; 476(3):118-123.
    [5]Lipton SA, Bossy-Wetzel E. Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 2002; 111(2):147-150.
    [6]Susin SA, Lorenzo HK, Zamzami N. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397(6718)441-446.
    [7]Xiao CY, Chen M, Zsengeller Z, et al. Poly(ADP-Ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J Pharmacol Exp Ther 2005; 312(3):891-898.
    [8]Kim GT, Chun YS, Park JW, et al. Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion. Biochem Biophys Res Commun 2003; 309(3): 619-624.
    [9]Demiryurek S, Kara AF, Celik A, et al. Effects of fasudil, a Rho-kinase inhibitor, on myocardial preconditioning in anesthetized rats. Eur J Pharmacol 2005; 527:129-140.
    [10]Ji ES, Yue H, Wu YM, et al. Effects of phytoestrogen genistein on myocardial I/R injury and apoptosis in rabbits. Acta Pharmacol Sin 2004; 25(3):306-312.
    [11]Mohanty I, Arya DS, Gupta SK. Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury. BMC Complement Altern Med 2006; 6:3.
    [12]Erwig L P, McPhilips KA, Wynes MW, et al. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci USA 2006; 103:12825-12830.
    [13]Tosello-Trampont AC, Nakada-Tsukui K, Ravichandran KS. Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J Biol Chem 2003; 278:49911-49919.
    [14]Zhao ZQ, Vinten-Johansen J. Myocardial apoptosis and ischemia preconditioning. Cardiovasc Res 2002; 55:438-455.
    [15]Song ZF, Ji XP, Li XX, et al. Inhibition of the activity of Poly(ADP-Ribose) Polymerase reduces heart ischemia/reperfusion injury via suppressing JNK mediated AIF translation. J Cell Mol Med 2008; 12(4):1220-1228.
    [16]Parone, PA., James D, Martinou JC. Mitochondria:regulating the inevitable. Biochimie 2002; 84:105-111.
    [17]Marinissen MJ, Chiariello M, Tanos T, et al. The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell 2004; 14(1):29-41.
    [18]Jaffe AB, Hall A, Schmidt A. Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Curr Biol 2005;15(5):405-412.
    [19]Ventura JJ, Cogswell P, Flavell RA, et al. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 2004; 18:2905-2915.
    [20]Ferrandi C, Ballerio R, Gaillard P, et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol 2004; 142:953-960.
    [21]Omura T, Yoshiyama M, Shimada T, et al. Activation of mitogen-activated protein kinases in vivo ischemia/reperfused myocardium in rats. J Mol Cell Cardiol 1999;31(6):1269-1279.
    [22]Kaiser RA, Liang Q, Bueno O, et al. Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia-reperfusion-induced cell death in vivo. J Biol Chem 2005; 280(38):32602-32608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700