用户名: 密码: 验证码:
股骨头坏死早期的关节软骨改变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨早期股骨头坏死关节软骨的改变,为深入了解股骨头坏死的病理机制及制定合理治疗提供实验与临床依据。
     材料和方法:本研究分为三部分。(1)建立股骨头软骨下骨缺损动物模型,在不同时间点对实验动物股骨头软骨进行组织学及组织化学分析。18只杂种成年犬一侧股骨头制造骨缺损模型,对侧作为对照。分别于4、12、24周各处死6只动物取材。取材前行股骨头X线检查,大体标本检查。应用HE染色、天狼星红染色及甲苯胺蓝染色方法行关节软骨组织学检查,应用氨基酸分析仪及分光光度计行关节软骨组织化学定量检测并行统计学分析。(2)采用软骨延迟增强核磁成像(delayedgadolinium-enhanced magnetic resonance imaging of cartilage-dGEMRIC)技术,对Ⅱ、Ⅲ期成人股骨头坏死的关节软骨进行检测。20髋激素性股骨头坏死患者中,以国际骨坏死与循环协会(ARCO)分期标准,股骨头坏死Ⅱ期患者为11髋,股骨头坏死Ⅲ期患者为9髋,5名健康志愿者作测试为对照组。对每名受试者进行钆增强延迟核磁共振(1.5T)扫描,分别获得T1Gd数据,应用Matlab和mrimapper软件对每位受试者的影像数据进行分析。(3)软骨生物标记物测定:分别收集10名患者和5名健康志愿者空腹静脉血,保存在-20℃冰箱中,于1000xg离心20分钟,取上清液进行血清软骨寡聚基质蛋白(Cartilage oligomeric matrix protein—COMP),硫酸角质素(Keratan sulfate—KS)检测。
     结果:(1)造模术后12周,可见到骨缺损上部邻近软骨细胞减少,细胞核变小,软骨基质染色变浅。术后24周,可见到细胞排列不整齐,呈细胞簇状。紧邻骨缺损开口处软骨浅表层出现裂隙及纤维化改变。潮线模糊、中断,部分切片出现软骨血管形成改变,可见血管突破潮线现象。邻近骨缺损处软骨糖胺聚糖(glycosaminoglycan,GAG)减少。(2)股骨头坏死Ⅱ期患者的MRIT1Gd值(441.13±41.32)与健康志愿者的T1Gd值(544.2±27.83)有显著差别(P<0.001)。股骨头坏死Ⅲ期患者的T1Gd值(363.11±56.39)与健康志愿者的T1Gd值也有显著差别(P<0.001)。股骨头坏死Ⅲ期与股骨头坏死Ⅱ期患者的T1Gd值比较下降17.7%,两者有显著性差别(P<0.05)。(3)患者血清中KS浓度(123.28ng╱ml±17.93,N=10)与健康对照者血清中KS浓度(105.3ng╱ml±14.97,N=5)差异无统计学意义(P>0.05)及患者血清中软骨寡聚基质蛋白浓度(588.44 ng╱ml±99.68,N=10)与健康对照者血清中COMP浓度(542.5 ng╱ml±28.29,N=5)未见显著差别(P>0.05),差别无统计学意义。实验组血清中硫酸角质素及软骨寡聚基质蛋白的含量与对照组比较,虽有上升趋势,但差别无统计学意义。
     结论:股骨头坏死早期患者的关节软骨已经开始发生代谢变化,表现为关节软骨内的糖胺聚糖(GAG)丢失,说明骨坏死早期可以影响软骨的代谢和功能,并随着坏死程度加重而加大。
Objective:To detect the articular cartilage changes of the hip joint at early stage of the osteonecrosis of femoral head(ONFH),and provide theoretic evidence for understanding the pathomechanism of ONFH and performing rational therapy.
     Methods:This study was divided into three parts,(1) The animal model of subchondral bone detect of femoral head was established,articular cartilage changes of femoral head were evaluated by histological and histochemical assay at various time point.18 adult hybrid dogs were applied for bone defect model of femoral head.Of the femoral heads, the left was applied for bone defect model,the right for shame-operation.5,5,and 8 animals were sacreficed respectively at 4,12 and 24 weeks after operation and the femoral heads were received for examinations.The X-rays films were taken just before the animals were sacreficed.After the cartilage specimens were decalcified,dehydrated and embedded,6 u thick sections were made.They were stained with hematoxylin-eosin, sirius-red and toilude blue.The biochemical assay were performed.(2) the articular cartilage changes of stageⅡ、Ⅲof ONFH were determined by delayed gadolinium-enhanced magnetic resonance imaging of cartilage(dGEMRIC).5 asymptomatic volunteers and 20 patients with ONFH participated in the test.According to ARCO classification of ONFH,stageⅡin 11 cases,stageⅢin 9 cases,they were all steroid type.All participants underwent the tests by dGEMRIC(1.5 T),and the data of T1Gd were collected and analyzed by means of Matlab and mrimapper software.(3) The biological markers of cartilage were analyzed to determine the cartilage metabolic changes of ONFH.Serum levels of Cartilage oligomeric matrix protein(COMP) and Keratan sulfate(KS) were quantified with a sandwich-ELISA for ten cases of ONFH and five asymptomatic volunteers respectively.
     Results:(1) At 12 and 24 weeks after operation for bone defect,cartilage histology and biochemistry demonstrated the signs of articular cartilage pathological changes.The arrangement of chondrocytes was in disorder.The number of chondrocytes decreased. The cartilage surface lost its smoothness,and these changes were more severe seen in the area next to the bone defect.Fibrosis and vasiformation were found.Tidemark had the changes of discontinuation and veil.Glycosaminoglycans decreased.(2) The values of T1Gd obtained from the patients with stageⅡ,ⅢONFH,and the healthy volunteers were 441.13±41.32,363.11±56.39,and 544.2±27.83 respectively.The values of T1 Gd in the patients of stageⅡ,ⅢONFH were lower than in volunteers,there was a significant difference in T1Gd between the patients of stageⅡorⅢand the healthy volunteers (P<0.001).The values of T1Gd of the patients of stageⅢwas 17.7%lower than the patients of stageⅡ,and the difference between two stages was significant statistically (P<0.05).(3) The serum level of KS was 123.28ng/ml±17.93,105.3ng/ml±14.97 in patients and volunteers respectively;and serum level of COMP was 588.44 ng/ml±99.68, 542.5 ng/ml±28.29 in patients and volunteers respectively.Compared with the volunteer group,there was an increase tendency in the serum level of both KS and COMP,but without statistic significant difference.
     Conclusion:At early satge of ONFH,articular cartilage of the femoral head appears abnormal metabolic changes,represented by the loss of GAG in the articular cartilage, and aggravated as worsening of ONFH.This demonstrates the metabolism and function of the articular cartilage can be influenced at early stages of ONFH,but the mechanism is not clear and further study is needed.
引文
1.Magnussen RA,Guilak F,Vail TP.Articular cartilage degeneration in post-collapse osteonecrosis of the femoral head.Radiographic staging,macroscopic grading,and histologic changes.J Bone Joint Surg Am.2005 Jun;87(6):1
    2.Mankin HJ,Thrasher AZ,Hall D.Biochemical and metabolic characteristics of articular cartilage from osteonecrotic human femoral heads.J Bone Joint Surg Am.1977Sep;59(6):724-8.
    3.Mont MA,Jones LC,Elias JJ,Inoue N,Yoon TR,Chao EY,Hungerford DS.Strut-autografting with and without osteogenic protein-1:a preliminary study of a canine femoral head defect model.J Bone Joint Surg Am.2001 Jul;83-A(7):1013-22.
    4.顾迁,戴克戎,裘世静等.异常高应力导致关节软骨退变机理的形态学研究.中华外科杂志,1995,33(10):597-600;
    5.Radin EL,Martin RB,Burr DB et al.Effects of mechanical loading on the tissues of the rabbit knee.J Orthop Res,1984,2:221-234
    6.Ogata K,Whiteside LA,Lesker PA.Subchondral route for nutrition to articular cartilage in the rabbit.Measurement of diffusion with hydrogen gas in vivo.J Bone Joint Surg Am.1978 Oct;60(7):905-10.
    7.Simank HG,Graf J,Fromm B,Niethard FU.What is the effect of para-articular fractures on hyaline joint cartilage? Experimental electron optic studies of the rabbit on post-traumatic subchondral vascularization disorders.Unfallchirurg.1992Jun;95(6):280-3.
    8.Connelly JT,Wilson CG,Levenston ME.Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs.Osteoarthritis Cartilage.2008 Feb[Epub ahead of print]
    9.Bashir A,Gray ML,Burstein D.Gd-DTPA2-as a measure of cartilage degradation.Magn Reson Med 1996;36:665-673.
    10.Bashir A,Gray ML,Hartke J,Burstein D.Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI.Magn Reson Med 1999;41:857-865.
    11. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML. Protocol issues for Delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001;45:36-41.
    12. Tiderius CJ, Olsson LE, de Verdier H, Leander P, Ekberg O, Dahlberg L. Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose response study in healthy volunteers. Magn Reson Med 2001 ;46:1067-1071.
    13.Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001;45:36-41.
    14. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999, 41: 857-865.
    15. Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation [published erratum appears in Magn Reson Med 1996;36: 964]. Magn Reson Med 1996;36:665-673.
    16.Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)— enhanced MR imaging. Radiology 1997;205:551-558.
    
    17.Allen RG, Burstein D, Gray ML. Monitoring glycosaminoglycan replenishment in cartilage explants with gadolinium-enhanced magnetic resonance imaging. J Orthop Res 1999; 17:430-436.
    
    18. Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 1996;36:665-673.
    19. Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)— enhanced MR imaging. Radiology 1997;205:551-558.
    20. Allen RG, Burstein D, Gray ML. Monitoring glycosaminoglycan replenishment in cartilage explants with gadolinium-enhanced magnetic resonance imaging. J Orthop Res 1999; 17:430-436.
    21. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 1999;41:857-865.
    22. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 1999;41:857-865.
    23. Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, Imhof H. MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging 1999; 17:577-583.
    24. Boesen M, Jensen KE, Qvistgaard E. Delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) of hip joint cartilage: better cartilage delineation after intra-articular than intravenous gadolinium injection. Acta Radiol. 2006, 47: 391-396.
    25. Kimelman T, Storey P, McKenzie C. Three-Dimensional T1 Mapping for dGEMRIC at 3.0 T, Using the Look Locker Method. Investigative Radiology, 2006, 41: 198-203.
    26.Blumberg TJ, Natoli RM, Athanasiou KA. Effects of doxycycline on articular cartilage GAG release and mechanical properties following impact. Biotechnol Bioeng 2008;8:[Epub ahead of print].
    27. Williams A, Oppenheimer RA, Gray ML, Burstein D. Differential recovery of glycosaminoglycan after IL-1-induced degradation of bovine articular cartilage depends on degree of degradation. Arthritis Res Ther 2003;5:97-105.
    28. Maroudas A, Venn M. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis 1977;36:399-406.
    29. Tiderius CJ, Olsson LE, Nyquist F, Dahlberg L. Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum, 2005, Jan; 52: 120-127.
    30. Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003, 85: 1987-1992.
    
    31. Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim YJ. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am. 2006, 88: 1540-1548.
    
    32. Rush DC, Koman LA, Sekiya J et al. The role of hip arthroscopy in the evaluation of avascular necrosis. Orthopedics. 2001; 24: 339 — 343
    
    33. Edwards DJ, Lomas D,Villar RN.Diagnosis of the painful hip by magnetic resonance imaging and arthroscopy. JBJS(Br.)1995; 77: 374-376.
    
    34. McCathy J, Puri L, Barsoum W, et al.Articular cartilage changes in avascular necrosis: An arthroscopic evaluation. Clin.Orthop.Relat. Res.2003;406:64-67.
    
    35.Samosky JT, Burstein D, Eric-Grimson W, Howe R, Martin S, Gray ML. Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J-Orthop-Res. 2005;23:93-101.
    
    36.Katta J, Stapleton T, Ingham E, Jin ZM, Fisher J. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage. Proc Inst Mech Eng 2008;222:1-11.
    
    37. Kelly DJ, Crawford A, Dickinson SC, Sims TJ, Mundy J, Hollander AP, Prendergast PJ, Hatton PV. Biochemical markers of the mechanical quality of engineered hyaline cartilage. J Mater Sci Mater Med 2007; 18:273-281.
    
    38.Williams FM, Andrew T, Saxne T, Heinegard D, Spector TD, MacGregor AJ. The heritable determinants of cartilage oligomeric matrix protein. Arthritis Rheum. 2006;54:2147-2151.
    
    39. Paulsson M, Heinegard D. Purification and structural characterization of a cartilage matrix protein. Biochem J 1981 ;197:367-375.
    
    40.Fife RS. Identification of cartilage matrix glycoprotein in synovial fluid in human osteoarthritis. Arthritis Rheum 1988;31:553-556.
    
    41.Di Cesare PE, Morgelin M, Carlson CS, Pasumarti S, Paulsson M. Cartilage oligomeric matrix protein: isolation and characterization from human articular cartilage. J Orthop Res 1995;13:422-428.
    
    42.Smith RK, Zunino L, Webbon PM, Heinegard D. The distribution of cartilage oligomeric matrix protein (COMP) in tendon and its variation with tendon site, age, and load. Matrix Biol 1997; 16:255-271.
    
    43.Glant, T. T., K. Mikecz, P. J. Roughley, E. Buzas, and A. R. Poole. Age related changes in protein related epitopes of human articular cartilage proteoglycans. Biochem. J 1986;236:71-75.
    
    44. Jordan JM, Luta G, Stabler T, Renner JB, Dragomir AD, Vilim V, et al. Ethnic and sex differences in serum levels of cartilage oligomatrix protein: the Johnston County Osteoarthritis Project. Arthritis Rheum 2003;48:675-681.
    
    45. Garnero P, Piperno M, Gineyts E, Christgau S, Delmas PD, Vignon E. Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis 2001 ;60:619-626.
    
    46. Sharif M, Kirwan JR, Elson CJ, Granell R, Clarke. Suggestion of nonlinear or phasic progression of knee osteoarthritis based on measurements of serum cartilage oligomeric matrix protein levels over five years. Arthritis Rheum 2004;50:2479-2488.
    
    47. Vilim V, Olejarova M, Machacek S, Gatterova J, Kraus VB, Pavelka K. Serum levels of cartilage oligomeric matrix protein (COMP) correlate with radiographic progression of knee osteoarthritis. Osteoarthritis Cartilage 2002; 10:7-13.
    
    48. Bleasel JF, Poole AR, Heineg?rd D, Saxne T, Holderbaum D, Ionescu M, Jones P, Moskowitz RW. Changes in serum cartilage marker levels indicate altered cartilage metabolism in families with the osteoarthritis-related type II collagen gene COL2A1 mutation. Arthritis Rheum 1999;42:39-45.
    
    49.Sweet MBE, Coelho A, Schnitzer CM, et al. Serum keratan sulfate levels in osteoarthritis patients. Arthritis Rheum 1988;31: 648-652.
    
    50. Thonar EJ, Lenz ME, Klintworth GK, et al. Quantification of keratan sulfate in blood as a marker of cartilage catabolism. Arthritis Rheum 1985;28:1367—1376.
    51.Wakitani S, Nawata M, Kawaguchi A, Okabe T, Takaoka K, Tsuchiya T, Nakaoka R, Masuda H, Miyazaki K. Serum keratan sulfate is a promising marker of early articular cartilage breakdown. Rheumatology 2007;46:1652-1656.
    1. McCarthy J, Puri L, Barsoum W, et al. Articular Cartilage Changes in Avascular Necrosis: An Arthroscopic Evaluation. Clinical Orthopaedics & Related Research, 2003, 406(1):64-70.
    2. Van Sasse J, van Romunde L, Cats A. Epidemiology of osteoarthritis: Zoetermeer survey. Ann Rheum Dis 1989, 48: 271-280.
    3. Imhof H, Breitenseher MJ, Kainberger F, et al. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging 1999, 10: 180-192.
    4. Brandt KD, Doherty M, Lohmander LS. Osteoarthritis, London, UK: Oxford University Press, 1998.
    5. Crock HV. An atlas of vascular anatomy of the skeleton and spinal cord. London, UK: M. Dunitz, 1996.
    6. Clark JM, Huber JD. The structure of the human subchondral plate. J Bone Joint Surg 1990, 72B: 866-873.
    7. Holmdahl DE, Ingelmark BE. The contact between the articular cartilage and the medullary cavities of the bone. Acta Orthop Scand 1950, 20: 156-165.
    8. Recht MP, Piraino DW, Paletta GA, et al. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR-imaging in the detection of patello-femoral articular cartilage abnormalities. Radiology 1996, 1998: 209-212.
    9. Milz S, Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat 1994, 185: 103-110.
    10. Lane LB, Villacin A, Bullough PG. The vascularity and remodelling of subchondral bone and calcified cartilage in adult human femoral and humeral heads. J Bone Joint Surg 1977, 59B: 272-278.
    11. Eckstein F, Muller-Gerbe M, Putz, R. Distribution of subchondral bone density and cartilage thickness in the human patella. J Anat 1992, 180: 425-433. NSTL
    12. Brown TD, Radin EL, Martin RB, et al. Finite element studies of some iuxta-articular stress changes due to localized subchondral stiffening. J Biomech 1984, 17: 11-14.
    13.Hoshino A,Wallace WA.Impact-absorbing properties of the human knee.J Bone Joint Surg 1987,69B:807-811.
    14.Radin EL,Paul IL,Lowy M.A comparison of the dynamic force transmitting properties of the subchondral bone and articular cartilage.J Bone Joint Surg 1970,52A:444-456.
    15.Radin EL,Rose RM.Role of subchondral bone in the initiation and progression of cartilage damage.Clin Orthop Rel Res 1986,213:34-40.
    16.Brown TD,Vrahas MS.The apparent elastic modulus of the iuxta-articular subchondral bone of the femoral head.J Orthop Res 1984,2:32-38.
    17.Maroudas A.Balance between swelling pressure and collagen tension in normal and degenerated cartilage.Nature 1976,260:1089-1095.
    18.张德志,胡蕴玉,费正奇等.激素性骨坏死关节软骨下皮质骨病理改变的实验研究.中国矫形外科杂志,2006,14(10):769-771.
    19.Lieberman JR,Berry DJ,Mont MA,et al.Osteonecrosis of the hip:management in the twentyfirst century.J Bone Joint Surg(Am),2002,84(5);834-854.
    20.Kawcak CE,McIlwraith CW,Norrdin RW,et al.The role of subchondral bone in joint disease:a review.Equine Vet J,2001,33(2):120-126.
    21.Clark JM.The structure of vascular channels in the subchondral plate.J Anat,1990,171:105-115.
    22.Gupta HS,Schratter S,Tesch W,et al.Two different correlations between nanoindentation modulus and mineral content in the bonecartilage interface.J Struct Biol,2005,149(2):138-148.
    23.Wei HW,Sun SS,Jao SH,et al.The influence of mechanical properties of subchondral plate,femoral head and neck on dynamic stress distribution of the articular cartilage.Med Eng Phys,2005,27(4):295-304.
    24.Imhof H,Sulzbacher I,Grampp S,et al.Subchondral bone and cartilage disease:a rediscovered functional unit.Invest Radiol,2000,35(10):581-588.
    25.郭万首,李子荣,成立明等。犬股骨头软骨下骨缺损对关节软骨结构与代谢 的影响。中华医学杂志,2008,39期 待发表。
    26.Mont MA,Jones LC,Elias JJ,Inoue N,Yoon TR,Chao EY,Hungerford DS.Strut-autografting with and without osteogenic protein-1:a preliminary study of a canine femoral head defect model.J Bone Joint Surg Am.2001,83-A(7):1013-22.
    27.顾迁,戴克戎,裘世静等.异常高应力导致关节软骨退变机理的形态学研究.中化外科杂志,1995,33(10):597-600.
    28.Radin EL,Martin RB,Burr DB et al.Effects of mechanical loading on the tissues of the rabbit knee.J Orthop Res,1984,2:221-234.
    29.Ogata K,Whiteside LA,Lesker PA.Subchondral route for nutrition to articular cartilage in the rabbit.Measurement of diffusion with hydrogen gas in vivo.J Bone Joint Surg Am.1978,60(7):905-10.
    30.Simank HG,Graf J,Fromm B,et al.What is the effect of para-articular fractures on hyaline joint cartilage? Experimental electron optic studies of the rabbit on post-traumatic subchondral vascularization disorders.Unfallchirurg.1992,95(6):280-3.
    31.赵伦华,程少华,汤显斌,等.兔激素性股骨头缺血性坏死血管变化及对关节软骨的影响.陕西医学杂志,2008,(03):276-277.
    32.Mankin HJ,Thrasher AZ,Hall D.Biochemical and metabolic characteristics of articular cartilage from osteonecrotic human femoral heads.J Bone Joint Surg Am,1977,59(6):724-8.
    33.Magnussen RA,Guilak F,Vail TP.Articular cartilage degeneration in post-collapse osteonecrosis of the femoral head.Radiographic staging,macroscopic grading,and histologic changes.J Bone Joint Surg Am,2005,87(6):1
    34.MARVIN E,STEINBERG,ARTURO CORCES A,Acetabular Involvement in Osteonecrosis of the Femoral Head.J Bone Joint Surg Am,1999,81:60-65.
    35.P.Kloen,M.Leunig,R.Ganz.Early lesions of the labrum and acetabular cartilage in osteonecrosis of the femoral head.J Bone Joint Surg Br,2002,84-B:66-9.
    36.Mont MA,Hungerford DS.Non-traumatic avascular necrosis of the femoral head.J Bone Joint Surg Am,1995,77-A:459-74.
    37.Marcus ND,Enneking WF,Massam RA.The silent hip in idiopathic aseptic necrosis:treatment by bone grafting.J Bone Joint Surg Am,1973,55-A:1351-66.
    38.Ito H,Kaneda K,Matsuno T.Osteonecrosis of the femoral head:simple varus intertrochanteric osteotomy.J Bone Joint Surg Br,1999,81-B:969-74.
    39.Kern O,Klockner,Weber U.Femur head preserving therapy,using vascular pedicled iliac bone graft,in segmental femoral head necrosis.Orthopade 1998,27:482-90.
    40.Kerboul M,Thomine J,Postel M,et al.The conservative surgical treatment of idiopathic aseptic necrosis of the femoral head.J Bone Joint Surg Br,1974,56-B:291-6.
    41.Saito S,Ohzono K,Ono K.Joint-preserving operations for idiopathic avascular necrosis of the femoral head:results of core decompression,grafting,and osteotomy.J Bone Joint Surg Br 1988,70-B:78-84.
    42.Wagner H,Baur W,Wagner M.Joint-preserving osteotomy in segmental femur head necrosis.Orthopade,1990,19:208-18.
    43.王禹基;孙俊英;瞿玉兴等.早期预测股骨头坏死累及髋臼软骨的临床意义.江苏医药,2005,31(8):583-585.
    44.McCarthy J,Puri L,Barsoum W,et al.Articular Cartilage Changes in Avascular Necrosis:An Arthroscopic Evaluation.Clinical Orthopaedics & Related Research.406(1):64-70,2003.
    45.Magnussen RA,Guilak F,Thomas P.et al.Articular Cartilage Degeneration in Post-Collapse Osteonecrosis of the Femoral Head.Radiographic Staging,Macroscopic Grading,and Histologic Changes.J Bone Joint Surg Am,2005,87:1272-1277.
    46.Ruch DS,Sekiya J,Dickson Schaefer W,et al.The role of hip arthroscopy in the evaluation of avascular necrosis.Orthopedics,2001,24:339-43.
    47.Sekiya JK,Ruch DS,Hunter DM,et al.Hip arthroscopy in staging avascular necrosis of the femoral head.J South Orthop Assoc,2000,9:254-61.
    48.Im GI,Kim DY,Shin JH,et al.Degeneration of the acetabular cartilage in osteonecrosis of the femoral head:histopathologic examination of 15 hips.Acta Orthop Scand,2000,71:28-30.
    49.Steinberg ME,Corces A,Fallon M.Acetabular involvement in osteonecrosis of the femoral head.J Bone Joint Surg Am,1999,81:60-5.
    50.CATTO,M.:Pathology of Aseptic Bone Necrosis.In Aseptic Necrosis of Bone,pp.1-100.Edited by J.K.Davidson.New York,American Elsevier,1976.
    51.DOLMAN CL,BELL HM,The Pathology of Legg-Calvel-Perthes Disease:A Case Report.J Bone and Joint Surg,1973,55-A:184-188.
    52.JAFFE HL.Metabolic,Degenerative,and Inflammatory Diseases of Bones and Joints.Philadelphia,Lea and Febiger,1972.
    53.TRUETA J.Studies of the Development and Decay of the Human Frame.Philadelphia,W.B.Saunders,1968.
    54.Mankin HJ,Thrasher AZ,D Hall D.Biochemical and metabolic characteristics of articular cartilage from osteonecrotic human femoral heads.J Bone Joint Surg Am,1977,59:724-728.
    55.李保林,周正新,何伟,等.股骨头坏死关节软骨金属蛋白酶的表达.实用性科杂志,2004,10(3):224-226.
    56.陈启明.骨科基础科学.北京:人民卫生出版社,2002.382-389.
    57.Martin JA,Heiner AD,Brown KD,et.al.Mechanical stress induces proMMP-3protein expression in human articular cartilage[J].Trans Orthop Res Soc,1999,24:624.
    58.Bluteau G,Gouttenoire J,Conrozier T,et al.Differential gene expression analysis in a rabbit model of osteoarthritis induced by anterior cruciate ligament(ACL) section[J].Biorheology,2002,39:247-258.
    59.Jakobsen RB,Engebretsen L,Slauterbeck JR.J Bone Joint Surg Am,2005;52(10):3125-3131.
    60.Mohr A,Priebe M,Taouli B,et al.Eur Radiol,2003;13(4):686-689.
    61.Haah BB,Dunham M.J,Brown PO,Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions.Genome Biol,2001,2:RESEARCH0004.
    62.MacBeath G,Schreiber SL.Printing proteins as microarrays for high-throughput function determination. Science, 2000, 289: 1760-1763.
    63. Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science, 2001, 293: 2101-2105.
    
    64. 常祺,黄昌林. 应用蛋白芯片技术诊断早期关节软骨损伤的展望. 中华创伤骨科杂志, 2006, 8: 73-78.
    
    65. Mansson B, Carey D, Alini M, et al. Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest, 1995, 95: 1071-1077.
    66. Dahlberg L, Ryd L, Heinegard D, et al. Proteoglycan fragments in joint fluid. Influence of arthrosis and inflammation. Acta Orthop Scand, 1992, 63: 417-423.
    67. Harvey S, Weisman M, O'Dell J, el al. Chondrex: new marker of joint disease. Clin Chem, 1998,44:509-516.
    68. Rizkalla G, Reiner A, Bogoch E, et al. Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J Clin Invest, 1992, 90: 2268-2277.
    69. Carlson CS, Guilak F, Vail TP, et al. Synovial fluid biomarker levels predict articular cartilage damage following complete medial meniscectomy in the canine knee. J Orthop Res, 2002, 20: 92-100.
    70. Lohmander LS, Neame PJ, Sandy JD. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum, 1993, 36: 1214-1222.
    71. Salisbury C, Sharif M. Relations between synovial fluid and serum concentrations of osteocalcin and other markers of joint tissue turnover in the knee joint compared with peripheral blood. Ann Rheum Dis, 1997, 56: 558-561.
    72. Poole AR, Webber C, Reiner A, et al. Studies of a monoclonal antibody to skeletal keratan sulphate. Importance of antibody valency. Biochem J, 1989, 260: 849-856.
    73. Okumura M, Kim GH, Tagammi M, et al. Serum keratan sulphate as a cartilage metabolic marker in horses: the effect of exercise. J Vet Med A Physiol Pathol Clin Med, 2002,49: 195-197.
    74. Ratcliffe A, Billingham ME, Saed-Nejad F, et al. Increased release of matrix components from articular cartilage in experimental canine osteoarthritis. J Orthop Res, 1992, 10: 350-358.
    75. Nelson F, Dahlberg L, Laverty S, et al. Evidence for altered synthesis of type II collagen in patients with osteoarthritis. J Clin Invest, 1998, 102: 2115-2125.
    76. Robion FC, Doize B, Boure L, et al. Use of synovial fluid markers of cartilage synthesis and turnover to study effects of repeated intra-articular administration of methylprednisolone acetate on articular cartilage in vivo. J Orthop Res, 2001, 19: 250-258.
    77. Kobayashi T, Yoshihara Y, Yamada H, et al. Procollagen IIC-peptide as a marker for assessing mechanical risk factors of knee osteoarthritis: effect of obesity and varus alignment. Ann Rheum Dis, 2000, 59: 982-984.
    78. Rousseau JC, Zhu Y, Miossec P, et al. Serum levels of type IIA procollagen amino terminal propeptide (PIIANP) are decreased in patients wish knee osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage, 2004, 12: 440-447.
    79. Garnero P, Delmas PD. Biomarkers in osteoarthritis. Curr Opin Rheumatol. 2003, 15: 641-646.
    80. Muller A, Hein G, Franke S, et al. Quantitative analysis of pyridinium crosslinks of collagen in the synovial fluid of patients with rheumatoid arthritis using high-performance liquid chromatography. Rheumatol Int, 1996, 16: 23-28.
    81. Billinghurst RC, Dahlberg L, Ionescu M, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest, 1997, 99: 1534-1545.
    82. Christgau S, Garnero P, Fledelius C, et al. Collagen type II C-telopeptide fragments as an index of cartilage degradation. Bone, 2001, 29 : 209-215.
    83. Garnero P, Piperno M, Gineyts E, et al. Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis, 2001, 60: 619-626.
    84. Christgau S, Henrotin Y, Tanko LB, et al. Osteoarthritic patients with high cartilage turnover show increased responsiveness to the cartilage protecting effects of glucosamine sulphate. Clin Exp Rheumatol, 2004, 22: 36-42.
    85. Schmidt-Rohlfing B, Gavenis K, Kippels M, et al. New potential markers for cartilage degradation of the knee joint. Scand J Rheumatol, 2002, 31: 151-157.
    86. Jain A, Nanchahal J, Troeberg L, et al. Production of cytokines, vascular endothelial growth factor, matrix metalloproteinases, and tissue inhibitor of metalloproteinases 1 by tenosynovium demonstrates its potential for tendon destruction in rheumatoid arthritis. Arthritis Rheum, 2001, 44: 1754-1760.
    87. Catrina AI, Lampa J, Ernestam S, et al. Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford), 2002, 41: 484-489.
    88. Fearon U, Reece R, Smith J, et al. Synovial cytokine and growth factor regulation of MMPs/TIMPs: implications for erosions and angiogenesis in early rheumatoid and psoriatic arthritis patients. Ann N Y Acad Sci, 1999, 878: 619-621.
    89. Kubota T, Kubota E, Matsumoto A, et al. Identification of matrix metalloproteinases (MMPs) in synovial fluid from patients with temporomandibular disorder. Eur J Oral Sci, 1998, 106:992-998.
    90. Lesperance LM, Gray ML, Burstein D. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J. Orthop. Res. 1992, 10: 1-13.
    91. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999, 41: 857-865.
    92. Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 1996;36:665-673.
    93. Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)— enhanced MR imaging. Radiology 1997;205:551-558.
    94. Allen RG, Burstein D, Gray ML. Monitoring glycosaminoglycan replenishment in cartilage explants with gadolinium-enhanced magnetic resonance imaging. J Orthop Res 1999; 17:430-436.
    95. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 1999;41:857—865.
    96. Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med, 2001, 45: 36-41.
    97. Boesen M, Jensen KE, Qvistgaard E. Delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) of hip joint cartilage: better cartilage delineation after intra-articular than intravenous gadolinium injection. Acta Radiol. 2006, 47: 391-396.
    98. Kimelman T, Storey P, McKenzie C. Three-Dimensional T1 Mapping for dGEMRIC at 3.0 T, Using the Look Locker Method. Investigative Radiology, 2006, 41: 198-203.
    99. Tiderius CJ, Olsson LE, Nyquist F, Dahlberg L. Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum, 2005, Jan; 52: 120-127.
    100. Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003, 85: 1987-1992.
    101. Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim YJ. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am. 2006, 88: 1540-1548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700