用户名: 密码: 验证码:
活动性结核病血清标志物的鉴定及诊断模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用蛋白质谱技术研究活动性肺结核病患者的血清诊断标志物,建立诊断模型早期诊断活动性肺结核;了解潜在标志物的特性及其在肺外结核病血清中的表达情况。方法:应用表面加强激光解吸电离飞行时间质谱技术(SELDI/TOF-MS)和蛋白芯片技术检测下列346例人血清:129例活动性肺结核患者、69例其他呼吸疾病患者、57例结核性胸膜炎患者、4例非结核性胸膜炎患者、19例结核脑膜炎患者、2例非结核脑膜炎患者和66例正常人血清;应用Ciphergen蛋白芯片3.1.1软件比较、分析血清蛋白峰,筛选疾病相关生物标志物;应用Biomarker Pattern 5.0软件建立活动性肺结核的诊断模型。通过反相高效液相色谱(RP-HPLC)分离纯化潜在的生物标志物蛋白,应用基质辅助激光解吸附电离飞行时间质谱技术(MALDI-TOF-MS)分析分离所得的蛋白组分,跟踪目标蛋白,目标蛋白的酶解产物进一步用线性液质联用离子肼串联质谱技术(LC-MS/MS)进行分析,以鉴定潜在诊断标志物蛋白的性质,并SELDI/TOF-MS和蛋白芯片技术进一步分析该诊断标志物在肺外结核病的表达量。
     结果:(1)129例活动性肺结核血清和135例对照血清蛋白指纹图谱比较,有50个差异蛋白峰(p<0.01)。以69例其他呼吸疾病血清和66例健康人血清为对照,选择5个蛋白峰(4360、3311、8160、5723、15173 m/z)建立诊断模型1,该模型诊断活动性肺结核的灵敏度为82.95%,特异性为89.63%,准确率为86.36%。以69例其他呼吸疾病血清为对照,选择3个蛋白峰(5643、4486、4360 m/z)建立诊断模型2,该模型诊断活动性肺结核的灵敏度为96.9%,特异性为97.8%,准确率为97.3%。(2)质荷比峰为5643 m/z的蛋白为相对高丰度差异表达蛋白,它在62.8%(81/129)的活动性肺结核患者血清中表达显著增高,在71.9%(97/135)的非结核呼吸疾病患者和健康人血清中表达显著降低。因此,选择5643 m/z蛋白作为潜在的诊断标志物,经RP-HPLC分离、纯化,并利用MALDI-TOF-MS及LC-MS/MS进行鉴定,5643 m/z目标蛋白质是粘蛋白,又称为α-1-酸性糖蛋白。57例结核性胸膜炎患者血清和70例对照血清蛋白指纹图谱比较,有52个差异蛋白峰(p<0.01)。(3)只有47.4%(27/57例)的结核性胸膜炎患者血清中5643M/Z蛋白表达增高;4例非结核性胸膜炎患者血清中5643M/Z蛋白表达均减少。(4)19例结核性脑膜炎患者血清和68例对照血清蛋白指纹图谱比较,有25个差异蛋白峰(p<0.05)。73.7%(14/19例)的结核性脑膜炎患者血清中5643M/Z蛋白表达增高;2例原发性脑膜炎患者血清中5643M/Z蛋白表达均减少。
     结论:(1)蛋白质谱技术标本用量少,可直接快速地检测血清标本,可能成为一种新的结核病诊断方法,通过建立结核病质谱诊断平台服务于临床。(2)通过蛋白质组学技术可有效地筛选、分离、纯化、鉴定结核病特异性标志物。(3)结核特异糖形粘蛋白的表达或粘蛋白糖基化差异分析可能成为一个新的诊断方法用于活动性结核病的诊断和鉴别诊断,为研制新型诊断试剂奠定基础.
Objective:To identify the biomarker and develop a diagnostic model for active tuberculosis(TB) using proteomics techniques,and to study the expression of biomarker in the sera from the patients with pulmonary TB and extrapulmonary TB.
     Method:The proteomic fingerprinting of 346 human sera as follow were analyzed using the surface-enhanced laser desorption ionization time of flight mass spectrometry(SELDI/TOF-MS) and protein-chip technology:129 cases with active pulmonary TB,69 cases with non-TB respiratory diseases,57 cases with tuberculous pleuritis,4 cases with non-TB pleuritis,19 cases with tuberculous meningitis,2 cases with non-TB meningitis,and 66 healthy controls. The peaks were detected and filtrated by Ciphergen Protein Chip(?) Software (version 3.1.1).Using the Biomarker Pattern 5.0 software,a diagnostic model was developed for diagnosis of active tuberculosis.The potential biomarker was separated,purified,analyzed,and identified using reverse phase-high performance liquid chromotography(RP-HPLC),Matrix assisted laser desorption ionisation time-of-flight mass spectrometry(MALDI-TOF-MS) and linear ion chromotograph mass spectrometry/mass spectrometry(LC-MS/MS).
     Result:(1) Fifty protein peaks in the sera were significantly different between 129 patients with active pulmonary tuberculosis and 135 controls with overlapping clinical features(P<0.01).Five protein peaks at 4360,3311,8160, 5723,15173 m/z were chosen for the system classifier and the development of diagnosis model 1.The model differentiated the patients with active pulmonary tuberculosis from the controls with a sensitivity of 83.0%,and a specificity of 89.6%.The diagnostic accuracy was up to 86.4%.Three protein peaks at 5643, 4486,4360 m/z were chosen for the system classifier and the development of diagnosis model 2.The model differentiated the patients with active pulmonary tuberculosis from the controls with a sensitivity of 96.9%,and a specificity of 97.8%.The diagnostic accuracy was up to 97.3%.(2) The discrepant protein peak at m/z 5643 was highly expressed in 62.8%(81/129) sera from active TB patients, and lowly expressed in 71.9%(97/135) sera from other respiratory diseases and healthy controls.Therefore,protein at m/z 5643 was screened as a potential biomarker for active TB,separated,purified by RP-HPLC,identified using MALDI-TOF-MS and LC-MS/MS.The potential biomarker was comfirmed as orosomucoid,which is also named as alpha-1-acid glycoprotein.(3) Fifty-two protein peaks in the sera were significantly different between 57 patients with tuberculous pleuritis and 70 controls(P<0.01).The protein peak at m/z 5643 was highly expressed in 47.4%(27/57) sera from the patients with tuberculous pleuritis,and lowly expressed in 4 sera from the patients with non-TB pleuritis.(4) Twenty-five protein peaks in the sera were significantly different between 19 patients with tuberculous meningitis and 68 controls(P<0.05).The protein peak at m/z 5643 was highly expressed in 73.7%(14/19) sera from the patients with tuberculous meningitis,and lowly expressed in 2 sera from the patients with non-TB meningitis.
     Conclusion:(1) The mass spectrometry and protein chip technology need small quantity of samples,can detect directly serum samples.It might be used as a new method for the diagnosis of the active TB.(2) The proteomic technology can effectively screen,isolate,purified,and identified the TB-specific biomarkers.(3) The alpha-1-acid glycoprotein isoforms or the differences in the glycosylation of alpha-1-acid glycoprotein from TB might be used to diagnose the active TB.
引文
1.Raviglione M.Global tuberculosis control and patient care.2009年4月1日至3日耐多药/广泛耐药结核病高负担国家部长级会议,中国,北京。
    2.中华人民共和国卫生部.2000年全国结核病流行病学抽样调查报告.
    3.Cole ST,Brosch R,Parkhill J,et al.Deciphering the biology of M.tuberculosis from the complete genome sequence.Nature 1998,396:190-198.
    4.Camus JC,Pryor MJ,M(?)digue C,et al.Reannotation of the genome sequence of Mycobacterium tuberculosis H37Rv.Microbiology 2002,148:2967-2973.
    5.Nagai S,Wiker HG,Harboe M,et al.Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis.Infect Immun 1991;59:372-382.
    6.Issaq HJ,Veenstra TD,Conrads TP,Felschow D.The SELDI-TOF MS approach to proteomics:protein profiling and biomarker identification.Biochem Biophys Res Comm 2002,292:587-592.
    7.Ren Y,He QY,Fan J,et al.The use of proteomics in the discovery of serum biomarkers from patients with severe acute respiratory syndrome.Proteomics 2004,4:3477-3484.
    8.Petricoin EF,Liotta LA.SELDI-TOF-based proteomic pattern diagnostics for early detection of cancer.Curr Opin Biotechnol 2004,15:24-30.
    9.Agranoff D,Fernandez-Reyes D,Papadopoulos MC,et al.Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum.Lancet 2006,368:1012-1021.
    10.Wulfkuhle JD,Liotta LA,and Petricoin EF.Proteomic applications for the early detection of cancer.Nature Reviews/Cancer 2003,3:267-275.
    11.Anderson NL,Anderson NG.The human plasma proteome:history,character,and diagnostic prospects.Mol Cell Proteomics,2002,1(11):845-867.
    12.Rosenkrands I,Slayden RA,Crawford J,et al.Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins.J Bacteriol 2002,184:3485-3491.
    13.Starck J,Kallenius G,Marklund BI,et al.Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions.Microbiology 2004,150:3821-3829.
    14.Muttucumarua DGN,Robertsa G,Hindsb J,et al.Gene expression profile of Mycobacterium tuberculosis in a non-replicating state.Tuberculosis 2004,84:239-246.
    15.Wayne LG,Lin K-Y.Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions.Infect Immun1982,37:1042-1049.
    16.Wayne LG,Hayes LG.Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis.Tuberc Lung Dis 1998,79:127-132.
    17.Fournier T,Medjoubi N,Porquet D.Alpha-1-acid glycoprotein.Biochim Byophys Acta 2000,1482:157-171.
    18.Schmid K,Nimberg RB,Kimura A,et al.The carbohydrate units of human plasma alphal-acid glycoprotein.Biochim Biophys Acta 1977,492:291-302.
    19.Baumann H,Gauldie J.The acute phase response.Immunol Today 1994,15:74-80.
    20.Baumann H,Gauldie J.Regulation of hepatic acute phase plasma proteins genes by hepatocytes stimulating factors and other mediators of inflammation.Mol Biol Med 1990,7:147-59.
    21.Hernandez Pando R,Arriaga K,Panduro CA,et al.The response of hepatic acute phase proteins during experimental pulmonary tuberculosis.Exp Mol Pathol 1998,65:25-36.
    22.Fassbender K,Fassbender M,Schaberg T,et al.Glycosylation of alpha-1-acid glycoprotein in bacterial lung infections:distinct pattern in tuberculosis.Clin Chem 1995,41:472-473.
    23.Cordero EM,GonzaTez MM,Aguilar LD,et al.Alpha-1-acid glycoprotein,its local production and immunopathological participation in experimental pulmonary tuberculosis.Tuberculosis 2008,88:203-211.
    24.Pous C,Chauvelot-Moachon L,Lecoustillier M,Durand G.Recombinant human interleukin 1,and tumor necrosis factor affect glycosylation of serum alpha 1-acid glycoprotein in rats.Inflammation 1992,16:197-203.
    25.Mackiewicz A,Laciak M,Gorny A,Baumman H.Leukemia inhibitory factor,interferon gamma, and dexametasone regulate N-glycosylation of alpha-1-glycoprotein in human hepatoma cells.Eur J Cell Biol 1993,60:331-336.
    26.Hochepied T,Berger F,Baumann H,Libert C.Alpha-1-acid glycoprotein:an acute phase protein with inflammatory and immunomodulating properties.Cytokine Growth Factor Rev 2003,14:25-34.
    27.Bories PN,Feger J,Benbernou N,et al.Prevalence of tri-and tetraantenary glycans of human alpha-1-acid glycoprotein in release of macrophage inhibitor of interleukin-1 activity.Inflammation 1990,14:315-323.
    28.Muchitsch EM,Teschner W,Linnau Y,Pichler L.In vivo effect of alpha-1-acid glycoprotein on experimentally enhanced capillary permeability in guinea-pig skin.Arch Int Pharmacodyn Ther 1996,331:313-321.
    29.Costello MJ,Gewurz H,Siegel JN.Inhibition of neutrophil functions by alpha-1-acid glycoprotein.Clin Exp Immunol 1984,55:465-472.
    30.Johnson D,Smith K.The efficacy of certain anti-tuberculosis drugs is affected by binding to alpha-1-glycoprotein.Curr Protein Pept Sci 2007,8:91-108.
    31.Niwa Y,Kishimoto H,and Shimokata K.Carcinomatous and tuberculous pleural:Comparison of tumor markers.CHEST 1985,87:351-355.
    32.Fassbender K,Fassbend M,Schaberg T,et al.Glycosylation of a_1-Acld glycoprotein in bacterial lung infections:Distinct pattern in tuberculosis.Clin Chem 1995,41:472-473.
    33.Nicollet I,Lebreton JP,Fontaine M,et al.Evidence for alpha 1-acid glycoprotein populations of different pI values after concanavalin A affinity chromatography.Study of their evolution during inflammation in man.Biochim Biophys Acta 1981,668:235-245.
    34.Bog-Hansen TC.Crossed immuno-affinoelectrophoresis:an analytical method to predict the result of affinity chromatography.Anal Biochem 1973,56:480-488.
    35.Fassbender K,Ziinmerli W,Kissling R,et al.Glycosylation of alpha 1-acid glycoprotein in relation to duration of disease in acute and chronic infection and inflammation.Clin Chim Acta 1991,203:315-28.
    36.Saldova R,Royle L,Radcliffe CM,et al.Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG.Glycobiology 2007,17(12):1344-1356.
    37.Mooney P,Hayes P,and Smith K.The putative use of alpha-1-acid glycoprotein as a non-invasive marker of fibrosis.Biomed Chromatogr 2006,20(12):1351-1358.
    38.Imre T,Schlosser G,Pocsfalvi G,R Siciliano,E Molnar-Szollosi,T Kremmer,A Malorni,and K Vekey.Glycosylation site analysis of human alpha-1-acid glycoprotein(AGP)by capillary liquid chromatography-electrospray mass spectrometry.J Mass Spectrom 2005,40(11):1472-1483.
    39.Bachtiar I,Santoso JM,Atmanegara B,et al.Combination of alpha-1-acid glycoprotein and alpha-fetoprotein as an improved diagnostic tool for hepatocellular carcinoma.Clin Chim Acta 2009,399(1-2):97-101.
    40.Bence LM,Addie DD,and Eckersal PD.An immunoturbidimetric assay for rapid quantitative measurement of feline alpha-1-acid glycoprotein in serum and peritoneal fluid.Vet Clin Pathol 2005,34(4):335-341.
    41.Salazar A,Pinto X,Mana J.Serum amyloid A and high-density lipoprotein cholesterol:serum markers of infl animation in sarcoidosis and other systemic disorders.Eur J Clin Invest 2001,31:1070-1077.
    42.Peterson PA.Characteristics of a vitamin A-transporting protein complex occuring in human serum.J Biol Chem 1971;246:34-43.
    43.Hanekom WA,Potgieter S,Hughes EJ,et al.Vitamin A status and therapy in childhood pulmonary tuberculosis.J Pediatr 1997,131:925-927.
    44.Zhang Z,Bast RCJ,Yinhua Y,et al.Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer.Cancer Res 2004,64:5882-5890.
    45.Cho WCS,Yip TTC,Yip C,et al.Identifi cation of serum Amyloid A protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profi ling.Clin Cane Res 2004,10:43-52.
    46.Singh P,Kaur S.Acute-phase reactants during murine tuberculosis:unknown dimensions and new frontiers.Tuberculosis 2005,85:303-315.
    1.Cole ST,Brosch R,Parkhill J,et al.Deciphering the biology of M.tuberculosis from the complete genome sequence.Nature 1998,396:190-198.
    2.Camus JC,Pryor MJ,M(?)digue C,et al.Reannotation of the genome sequence of Mycobacterium tuberculosis H37Rv.Microbiology 2002,148:2967-2973.
    3.Fleischmann RD,Alland D,Eisen JA,et al.Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains.J Bacteriol 2004,1841:5479-5490.
    4.Jungblut PR,M ullerEC,Mattow J,et al.Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics.Infect Immun 2001,69:5905-5907.
    5.吴雪琼.结核分枝杆菌保护性抗原的研究进展.中华结核和呼吸杂志2006,29:340-344.
    6.Nagai S,Wiker HG,Harboe M,et al.Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis.Infect Immun 1991;59:372-382.
    7.Covert BA,Spencer JS,Orme IM,et al.The application of proteomics in defining the T cell antigen of Mycobacterium tuberculosis.Proteomics 2001,1:574-586.
    8.Mehrotra J,Mittal A,Rastogi AK,et al.Antigenic definition of plasma membrane proteins of Bacillus Calmette-Gurin:predominant activation of human T cells by low-molecular-mass integral proteins.Scand J Immunol 1999,50:411-419.
    9.Zheng J,Wei C,Leng W,et al.Membrane subproteomic analysis of Mycobacterium bovis BCG.Proteomics 2007,7:3919-3931.
    10.Gu S,Chen J,Dobos KM,et al.Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain.Mol Cell Proteomics 2003,2:1284-1296.
    11.Sinha S,Kosalai K,Arora S,et al.Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.Microbiology 2005,151:2411-2419.
    12.Mawuenyega KG,Forst CV,Dobos KM,et al.Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling.Mol Biol Cell 2005,16:396-404.
    13.庄玉辉,何秀云,张小刚,等.结核分枝杆菌培养物不同组份蛋白质组研究.微生物学报 2002,42:275-280.
    14.Zheng J,Wei C,Leng W,et al.Membrane subproteomic analysis of Mycobacterium bovis BCG.Proteomics 2007,7:3919-3931.
    15.王亮,胡建平.结核分枝杆菌(H37Rv)分泌性蛋白的生物信息学预测方法.第四军医大学学报 2006,27:86-89.
    16.Rosenkrands I,Slayden RA,Crawford J,et al.Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins.J Bacteriol 2002,184:3485-3491.
    17.Starck J,K(a|¨)llenius G,Marklund BI,et al.Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions.Microbiology 2004,150:3821-3829.
    18.Muttucumarua DGN,Robertsa G,Hindsb J,et al.Gene expression profile of Mycobacterium tuberculosis in a non-replicating state.Tuberculosis 2004,84:239-246.
    19.Wayne LG,Lin K-Y.Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions.Infect Immun 1982,37:1042-1049.
    20.Wayne LG,Hayes LG.Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis.Tuberc Lung Dis 1998,79:127-132.
    21.Wong DK,Lee BY,Horwitz MA,et al.Identification of Fur,aconitase,and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry.Infect Immun 1999,67:327-336.
    22.Jungblut PR,Schaible UE,Mollenkopf HJ,et al.Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains:towards functional genomics of microbial pathogens.Mol Microbiol 1999,33:1103-1117.
    23.Betts JC,Dodson P,Quan S,et al.Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551.Microbiology 2000,146:3205-3216.
    24.Homolka S,K(o|¨)ser C,Archer J,et al.Single nucleotide polymorphisms in Rv2629 are specific for Mycobacterium tuberculosis genotypes Beijing and Ghana but not associated with rifampin resistance.J Clin Microbiol 2008,10.1128/JCM.01237-08.
    25.Mattow J,Schaible UE,Schmidt F,et al.Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M.bovis BCG Copenhagen.Electrophoresis 2003,24:3405-3420.
    26.He XY,Zhuang YH,Zhang XG,et al.Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra.Microbes and Infection 2003,5:851-856.
    27.乐军,刘丽蓉,谢建平,等.异烟肼耐药和敏感结核分枝杆菌的比较蛋白质组学研究.中华微生物学和免疫学杂志 2004,24:258-262.
    28.Jiang X,Zhang W,Gao F,et al.Comparison of the proteome of isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis.Microb Drug Resist 2006,12:231-238.
    29.Wang Q,Yue J,Zhang L,et al.A newly identified 191 A/C mutation in the Rv2629 gene that was significantly associated with rifampin resistance in Mycobacterium tuberculosis.J Proteome Res 2007,6:4564-4571.
    30.Chakravorty S,Aladegbami B,Motiwala AS,et al.Rifampin resistance,Beijing-W clade-single nucleotide polymorphism cluster group 2 phylogeny,and the Rv2629 191-C allele in Mycobacterium tuberculosis strains.J Clin Microbiol 2008,46:2555-2560.
    31.Homolka S,K(o|¨)ser C,Archer J,et al.Single nucleotide polymorphisms in Rv2629 are specific for Mycobacterium tuberculosis genotypes Beijing and Ghana but not associated with rifampin resistance.J Clin Microbiol 2008,10.1128/JCM.01237-08.
    32.刘蓓,乐军,淳于利娟,等.结核分枝杆菌 H37Rv 株与耐异烟肼菌株间细胞壁蛋白质组双向电泳图谱比较.复旦学报 2003,42:555-558,563.
    33.刘丽蓉,乐军,王洪海。异烟肼耐药结核分枝杆菌感染人源巨噬细胞的蛋 白质组学研究。生物化学与生物物理进展 2004,31(4):361-367.
    34.包佳玲,乐军,田野苹,等.结核分枝杆菌感染人源树突状细胞的蛋白质表达谱.微生物学报 2005,45:415-419.
    35.Rison SCG,Mattow J,Jungblut PR,et al.Experimental determination of translational starts using peptide mass mapping and tandem mass spectrometry within the proteome of Mycobacterium tuberculosis.Microbiology 2007,153:521-528.
    36.何颖,乐军,胡昌华,等.猫爪草提取物对临床分离结核分枝杆菌蛋白质组表达的影响.微生物学报 2005,45:895-899.
    37.Issaq HJ,Veenstra TD,Conrads TP,Felschow D.The SELDI-TOF MS approach to proteomics:protein profiling and biomarker identification.Biochem Biophys Res Comm 2002,292:587-592.
    38.Ren Y,He QY,Fan J,et al.The use of proteomics in the discovery of serum biomarkers from patients with severe acute respiratory syndrome.Proteomics 2004,4:3477-3484.
    39.Petricoin EF,Liotta LA.SELDI-TOF-based proteomic pattern diagnostics for early detection of cancer.Curr Opin Biotechnol 2004,15:24-30.
    40.Agranoff D,Fernandez-Reyes D,Papadopoulos MC,et al.Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum.Lancet 2006,368:1012-1021.
    41.Salazar A,Pinto X,Mana J.Serum amyloid A and high-density lipoprotein cholesterol:serum markers of inflammation in sarcoidosis and other systemic disorders.Eur J Clin Invest 2001,31:1070-1077.
    42.Peterson PA.Characteristics of a vitamin A-transporting protein complex occuring in human serum.J Biol Chem 1971;246:34-43.
    43.Hanekom WA,Potgieter S,Hughes EJ,et al.Vitamin A status and therapy in childhood pulmonary tuberculosis.J Pediatr 1997,131:925-927.
    44.Zhang Z,Bast RCJ,Yinhua Y,et al.Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer.Cancer Res 2004,64:5882-5890.
    45.Cho WCS,Yip TTC,Yip C,et al.Identifi cation of serum Amyloid A protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profi ling.Clin Canc Res 2004,10:43-52.
    46.Singh P,Kaur S.Acute-phase reactants during murine tuberculosis:unknown dimensions and new frontiers.Tuberculosis 2005,85:303-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700